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Summary. A sequential problem is considered in which independent observa-
tions are taken on a chance variable X whose distribution can be represented by

(1) dGe(z) = Y(8)e” du(x),

where the parameter 6 belongs to a given interval Q of the real line but is other-
wise unknown. The problem is to test H,:0 < 6* against H;:0 > 6*, where 6*
is a given point in Q. Under certain assumptions the following class A is shown to
be essentially complete relative to the class of decision rules with bounded risk
functions. The decision rule ¢ € A if and only if after taking n observations
(i) 6 depends-on the observations only through n and v, = > i, z; and
(i1) é specifies a closed interval J,:[aia , as.] for each n and the following rule
of action
(a) Stop experimentation as soon as v, £ J, and
(1) accept H, if v, < a1,
(2) accept Hy if v, > aq, .
(b) If a1 < a2, take another observation if a;, < v < asa .
(¢) If a1n < @2 and v = ai,, accept H; or take another observation or ran-
domize between these two (7 = 1, 2).
The Koopman-Darmois family of probability laws given above contains dis-
crete members such as the binomial and Poisson distributions as well as abso-
lutely continuous members such as the normal and exponential. It is interesting
to note that the members of the class A can be obtained by starting with the
sequential probability ratio test for testing some point 87 < 6* against another
point §; > 6* namely, continue as long as

I we)e™
II v(e)e =
=1
and replacing the constants B, A by two arbitrary sequences B, , A, such that
B, 24, (n=12, ---).
1. Statement of the problem. Independent observations are taken on a chance
variable whose distribution is given by

@) dGy(z) = Y(0)e” du(x)
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320 MILTON SOBEL

where the parameter 6 is an unknown constant in a given subset @ of the real
line but is otherwise unknown and hence

© —1
(3) ¥(6) = l:f_ e dy(x)] > 0forallge®

The measure u(x) is given to be absolutely continuous or discrete. The parameter
space Q is given to be an interval [§, 8] which may be finite or infinite, open or
half-open or closed. It will he shown that a certain class A of decision rules is an
essentially complete class for testing the hypothesis

H,: 8 £ 6* against H,: 6 > 6*

where 6* is a given constant in Q. There is also given an indifference zone Z in
the form of an open interval (6, , 6.) with

4) <6 Z0*<0,<8,

that is, if the true 6 ¢ Z then the loss incurred by acceptlng either hypothesis is
negligible and can be set equal to zero.

The results of this paper hold also for the case in which (2) is replaced by
¢(6) exp {r(0)t(y)} dv(y) where #(6) is strictly monotonic in 8 and ¢(Y) is an
absolutely continuous or discrete chance variable. Letting * = #(y) reduces
this form to ¢(8) exp {a7(8)} du(xr) where u(z) is absolutely continuous or dis-
crete. All the proofs below depend only on the strict monotonicity of 6 and
therefore hold if 6 is replaced by r(8) throughout.

If Q is not an interval we can define a strictly monotonic function 6(r) from
an interval @* onto ©. Then considering + as the unknown parameter in * and
using the last remark in' the previous paragraph the results will still hold.

ASSUMPTIONS.

1. Let W(6, j) (j = 1, 2) denote the loss incurred by accepting H; when 6 is
the true value. It is assumed that
W, 1) = 0for 8 < 6, ; W6, 2) = 0for 6 > 6
w(,1) > 0for6 > 6,; W(6,2) > 0foro < 6
and that the two weight or loss functions W (8, j) (j = 1, 2) are bounded func-
tions of 6 on Q. It is also assumed that W (6, 1) is a nondecreasing and W (9, 2)

a nonincreasing function of 6 on Q:
2. Let C(n) denote the cost of taking n observations on x. It is assumed that

(6) Cn)=a+c+ - +ca [c) = 0]
where ¢, , the cost of taking the nth observation, is a positive constant which
may vary with n. It is also assumed that for some positive constant K

@) lim inf nc, = K.

Let V = 2.1 X;, X = V/n and let z; denote the observed value of X;
Let S: denote the smallest interval containing all possible values of X for all

(5)
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n(n = 1,2, --). It is convenient to use £ to denote an arbitrary point in S; .
We define

(8) g:(8) = ¥(6)e™’ forall € ¢ S; .

It is easily seen that a maximum liKelihood estimate 8 of 8 based on the observed
value Z of X is obtained by maximizing (8). The following assumptions are used
in Lemma 1 and Theorem 2.

3. (i) For each Z ¢ S; there exists a point § = 8(Z) £ @ such that g:(6) is strictly
increasing in [6, 8] and strictly decreasing in {4, 6].

(ii) There exist points &; < &, in S; such that

0(z,) # 6(%,) and 0, < 6(F) < 6, (¢ =1,2).

If ¢(0) is differentiable, then for assumptions 3(i) and (ii) to hold it is sufficient
that for each £ ¢ S; the maxinium likelihood equation has a unique solution
6(z) which takes on all values in @ as Z runs through S; . In the normal, binomial
and Poisson cases the reader can easily check that §() = & and that the assump-
tions are satisfied.

3. Regular convergence in the space of decision functions. It is assumed that
the reader is familiar with the concepts of cost, loss, risk function and Bayes
solution. However, the definition of regular convergence in the space of de-
cision functions given by Wald ([1], p. 65) is too general for our purposes and is
reviewed here.

Let a* = (21, 22, -+ +) denote a sequence of independent observations on a
random variable X. A (randomized) decision function § following Wald ([1],
p. 6) consists of a set of nonnegative functions §;,(z*) 2 0, (j = 0,1, 2; n =
0,1,2, ---) defined for all 2* and such that for all z*

2
> oia(x*) =1 (n=012---).
=0

The quantities 8;.(z*) (j = 0, 1, 2) [which depend only on the first n coordinates
of x*] represent, respectively, the probability of taking another observation,
accepting H, and accepting H, when n observations have been taken, the ob-
served values are the first n coordinates of x* and § is the decision rule used. A
nonrandomized decision function is a special case of the above in which the
value of §;,(z*) is zero or one for each n, each j and each x*.

Two cases are considered according as X is a discrete or absolutely continuous
chance variable. In the discrete case a sequence %'} is said to converge to a
limit 8° in the regular sense if
for each integer n = 0, each z* and each j (j = 0, 1, 2,). In the absolutely con-
tinuous case let

n—1

(10) dojn(2*) = [LIO éw('x*):] djn(2*)
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denote the probability, given x* and §, of selecting d; immediately after the nth
observation. For each j and 7 it is assumed that this is a Borel measurable func-

tion of &1, -+ - , x. . For each 7 and n let
(11) 80in(S) = fs Sojn(x*) dxy dzy - - - dix,
where S = 8, is a Lebesgue measurable set in the space of z,, 22, - - z,.

For n = 0 the left member of (11) as well as the integrand are defined to be
dojo(x*) = 80 (j = 0, 1, 2). The sequence {6°} (z = 1,2, - - ) is said to converge
to 6° in the regular sense if

(12) lim 83;4(S) = 80;a(S)

for all j, all bounded sets S and all integers n = 0. It has been shown ([1], Theorem
3.1) that the sequence {8°} (¢ = 1, 2, -~ -) is convergent, that is, a limiting rule
&’ satisfying (12) exists, if the left member of (12) exists for all j, all bounded,
measurable sets S and all integers n = 0.

The definition of regular convergence for the absolutely continuous case is
weaker than that of the pointwise type which was given for the discrete case. It
will be useful to note that the corresponding definition of pointwise convergence
for the absolutely continuous case implies regular convergence. This implication
is easily seen from the fact that

=200

lim f&'.;,-,.(a:*) dry - dz, = flim d4ia(x*) day -+ - dz,
1m0 VS 8

for all j, all bounded, measurable sets S and all integers n = 0. This equality
-follows from the Lebesgue theorem since 0 < §y;,(x*) < 1 and S is bounded.

4. Relation of this paper to a result of Wald. The purpose of this paper is to
give an essentially complete class of decision rules for the problem described
above. The following theorem of Wald ([1], Theorem 3.19) is used in the proof.
Let D, denote the class of all decision rules whose risk functions are (uniformly)
bounded in Q. Let ¢ denote a class of a priori edf’s such that for any & £ ¢ there
is a sequence {£;} of members of ¢ such that
(13) }112 tlw) = &)
for any measurable subset w of Q. Let B; denote the class of all Bayes solutions
relative to members of ¢. Then the closure B; in the regular sense of B; is es-
sentially complete relative to Dy .

To obtain this result, several assumptions are made on the cost function, the
loss function, the space D of decisions and the set of decision rules available to
the experimenter. The verification of these assumptions under the more restric-
tive assumptions of this paper is mostly trivial and is omitted. See ([1], chap. 3).

An a priori cdf £ will be called nondegenerate if it assigns positive probability
to every open subset of Q. It will now be shown that the class ¢ of nondegenerate
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cdf’s satisfies the hypothesis of Wald’s theorem. Let & be any cdf not in ¢.
Let £* be any specified cdf in {. Let {e;} (1 = 1,2, -+ ) be a decreasing sequence
of numbers such that 0 < ¢; < 1 and lim._, ¢; = 0. Define

(14) £(0) = e£*l0) + (1 — e)5(0).

Clearly £:(6) is a cdf in ¢ for each 7 and we have for any measurable subset w
of Q@

(15) lim £(w) = fo(w).

1=200

Hence the class ¢ satisfies the hypothesis of Wald’s Theorem 3.19.

6. The essentially complete class A and outline of the proof. If a decision
rule § depends on the observations only through » = >, z; for each n (n =
1,2, ---) then 8;,(v) will be used to denote the probability of accepting H;
given the pair (n, v). The class A of decision rules is defined as follows. The
decision rule & £ A4 if and only if for each positive integer n the following hold.

(i) 6 depends on the observations only through v.

(ii) & specifies a closed interval J.(8): [a1n(8), @2x(8)] or simply Jn: [a1n, aza]
which determines the action to be taken as follows.

(a) Another observation should be taken (i.e., d0.(v) = 1) if a1n < v < azn.

(b) Experimentation is stopped as soon as v ¢ J, and

(1) H, is accepted (i.e., d1.(v) = 1) if v < a1n
(2) H, is accepted (i.e., 82.(v) = 1) if v > azn .

(C) If A1 < Q2n then 52,,((11,,) = 51,,(0,27.) = 0.

Condition (c) can be omitted when u is absolutely continuous since it concerns
only a set of Ge-measure zero for each 6 ¢ Q. The closed interval [a.n , a:.] may
reduce to a point but will always be nonempty; however, in the discrete case it
need not contain any points of positive probability. Then the principal result of
this paper will be that the class A s essentially complete relative to D, . Clearly
an immediate consequence will be:

CoROLLARY 1. The class A, of all decision rules in A, whose risk functions are
bounded in Q, form an essentially complete class relative to Dy .

The proof of the principal result consists in showing

(a) that A is essentially complete relative to A, and

(b) that every Bayes solution (if altered at most on a set of measure zero)
belongs to A'and hence that B, C A. It then follows from Wald’s Theorem 3.19
and (b) that 4 is essentially complete relative to Dy . Using (a) it follows that
A has the same property. The paper ends with a corollary which shows that the
same result holds if no indifference zone is given.

6. A is sequentially compact. In order to show that A is essentially complete
relative to A it is clearly sufficient, to prove the following theorem.
» THEOREM 1. For any & ¢ A there is a 8* € A which 1s equivalent to 8, that is, for
which
(16) r(8, 8*) = r(6, §) for all 6 € Q.
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Proor. To prove the theorem it is sufficient to show that for any sequence
{6°} (¢ = 1,2, --+) of members of A which is convergent in the regular sense

(i) there exists a limit (in the regular sense) é which is in 4 and

(ii) any two limits (of the same sequence) are equivalent. In the discrete case
a much stronger result'holds, namely A = A. Since in the discrete case the set
of quantities §;,(z*) for all possible triples (n, j, £*) determines the decision
function completely then by (9) the convergent sequence {5‘} must have a
unique limit 6*. It remains only to show that 6* ¢ 4.

In the absolutely continuous case it is easily seen by (11) that any two limits
of the same sequence can differ at most on a set of n-dimensional Lebesgue meas-
ure zero for n > 0 and not at all for n = 0. Hence they must be equivalent. It
therefore remains in both cases only to identify the limit * and show that
d*eA. )

1. Consider the sequences {as,(6)} (¢ = 1, 2, ---) for 8 = 1, 2, and
n =0,1,2, ---.Since each element of each of these sequences lies in the same
compact set [the real line with 4 « added] then by the method of diagonaliza-
tion there exists a subsequence {7,} of the positive integers such that each of
the above sequences converges. Let ag. denote the corresponding limits for each
B and each n. Then clearly '

17) —® S S 4 S o (n=012--).
2. Consider the set of sequences {855 (as.)} ( =12, --)forg=1,2;j =
0,1,2andn = 0, 1, 2, --- . Since each element of each of these sequences lies

in the closed interval [0, 1] which is compact, then by diagonalization there
exists a subsequence {i,} of {¢,} such that each of the above sequences con-
verges. Let 8;,(agn) denote the corresponding limits for each B, each j and each =.
Then clearly 0 < 68;.(ag,) < 1 for each triplet (83, j, ») and

2
(18) Zoajn(aﬂn) =1 (ﬁ = 1’ 27 n = 0’ 11 2) ”')-

The symbol 60(ag) denotes the constants ;0 (j = 0, 1, 2). Since {7} is a sub-
sequence of {7.} the limits ag, remain unchanged.
3. Let J, denote the nonempty closed interval [a1s , @2.] and let §* denote the
following decision rule.
(i) % =050 (j =0,1,2).

(i) If a1n < v < @2, then 85,(v) = L. (Continue experimentation).
(iii) If v £ J,, then d5,(v) = 0 (Stop experimentation and)
(a) 81n(@) = 1forv < ain (accept H,)
(b) 65.(v) = 1 for v > az, (accept H,).
(iv) If v = ag, then 67n(ag.) = 8;u(agn) B=12; 7=0,1,2).

(Condition (iv) as well as paragraph 2 could be omitted in the absolutely continu-
ous case since they concern only a set of measure zero.) )
4. Clearly 6* ¢ 4 and it remains only to show that §* is a limit of {4"} in the

regular sense. The above construction was such that
(19) 87.(v) = lim 8%(v) for each triple (n, j, v),

y=0
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that is, such that the subsequence {8"} converges pointwise to 8*. Hence by
Section 3 {6} converges to 8* in the regular sense, that is, for the discrete and
absolutely continuous cases respectively

(20) limedi%(v) = 65.(v) for each triple (5, n, v)
Y=

(21) lim 8§%,(S,) = 84;x(S.)  for each triple (5, n, S.)-
=00

By hypothesis the full sequence {8’} is convergent in the regular sense so that
the left members above converge for the full sequence. They must therefore con-
verge to the same limits as the subsequences, namely, the right-hand members
above. Hence 8* is a limit in the regular sense of {6°}. This proves Theorem 1.

7. Terminating property of the Bayes solutions in B;. The proof given here
that (almost) every Bayes solution with respect to & cdf £ ¢ ¢ belongs to A rests
on the fact that every Bayes solution in B; terminates in a finite number of steps
with probability one. Assumptions 3 are used only for the latter result which we
shall now prove after some definitions and lemmas.

Let ¢ denote an arbitrary cdf over @. The a posterior probability that 6 be-
longs to any Borel measurable subset w of @ given the triple (n, v, £) is

[ wore ao
[ wore a0

The notation & for the a posteriori cdf given the triple (n, v, £) is justified since
the right member of (22) depends on the observations only through » and v.
£ will then denote the original a priori cdf £ for all ».

Following Wald (1], Section 4.1.1) certain functions py, p1, pa, p» Will be
defined which can be used to describe the class B; of Bayes solutions relative
to the a priori cdf £. Let D*, Dy and D, denote respectively the class of all decision
rules, the class of all decision rules which require that no observations be taken
with probability one and the class of all decision rules which require that at least
one observation be taken with probability one. Wald defines for any triple

(n, v, §),

(22) [ o -

(23) po(&r) = sif};f (&, 8)

249 p(&) = inf r(&, 0)
8eD?

(25) (&) = aigr;)f (&, 8).

(Actually the function p(%,) depends on the sequence (Ca+1, Cny2, **+) Which
may vary with n and should be written p"(¢y) unless all the ¢; (¢ = 1, 2, ---)
are equal. To simplify notation and since the proofs are not affected it will be
assumed that the superscript on ¢ also applies to p. The same remark applies
to (25).) Since Dy < D* then clearly for any triple (n, v, £)

(26) FED = pol&) — &) 2 0.
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Wald has shown ({1], Theorem 4.2 and 4.1) that for any cdf &'

(27) p(&) = min [po(&), m(&)]

and that

(28) e = [ f p(E) dGoly) dE2O) + .

If go(x) denotes the integrand in (2) then (28) can be written as

(29) w6 = [ [ etay) duty) ds2@ + eun
Q

Denote by w; , ws respectively the closed intervals [6; , 8], [, 6,] in Q. Let

(30) bt = [We, 1 @ = [ We, e
Q Wy

(31) ) = [ W6,2) dg6) = | W(,2) del©)
Q w2

where the last expression in each case follows from (5). Clearly, pa(£') and
ps(£)) denote respectively the risks of accepting H; and H: given the triple

(n, v, £). Then by (23)
32) (&) = min [pa(&), pu(8)].

The class B; of Bayes solutions relative to the fixed a priori cdf & can be de-
scribed as follows.

@) If pu(&') < po(t,) for some pair (n, v) then for any 3 £ D, there exists a
decision rule 8 ¢ Dy such that r(&, &) < r(¢, §). Hence for such a pair (n, v)
any Bayes solution &; £ D, , that is, any Bayes solution will prescribe another
observation with probability one.

(i) If pa(£) < min [ps(&), p1(£s)] for some pair (n, v) then similarly any Bayes
solution &; will accept H; with probability one when the pair (n, v) is observed.

(iii) A similar result holds for H: when py() < min [pa(&), p1(£)].

(iv) If pa(E)) = po(&s) < pu(&') for some pair (n, v) then any Bayes solution
o will accept H, , H, with probabilities p, 1 — p respectively where 0 < p =1
when the pair (n, v) is observed. (It will be a consequence of Lemmas 3 and 5
that when u is absolutely continuous the equalities in (iv) through (vii) take
place at most on a set of v points of Ge-measure zero for each 6 & 2. The Bayes
solution can be arbitrary on such a set since it is defined only up to a set of
measure zero.)

) If pu(&)) = pa(&) < pu(§) for some pair (n, v) then any Bayes solution &
will accept H; and take another observation with probabilities p and 1 — p
respectlvely where 0 £ p £ 1 when the pair (n, v) is observed. (In (v) through
,(vii) it is assumed that the value p,(¢)) is attainable with some & € D, for each
pair (n, v). This is actually a consequence of ([1], Theorem 3.2).)

(vi) A similar result holds when pi(&') = po(&) < pa(&s).
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(vil) If p1(&) = pa(ts) = po(£s) for some pair (n, v) then any randomized or
nonrandomized decision rule is a Bayes solution when the pair (n, v) is observed.

Let § denote the maximum likelihood estimate of 6 given the pair (n, v).
Since § depends on v/n it is convenient in Theorem 2 to consider the statistic
£ = v/n instead of v itself. Then £ will denote the a posteriori cdf given the
triple (n, &, £).

LemMA 1. The function 8(%) which is uniquely defined by Assumption 3(i) is
nondecreasing.

Proor. Consider two points #; < % and let §; = 6(Z,) and 6, = 6(z,). By as-
sumption 3(i) we have for all 6 £ Q

(33) Y 2 9(0)e
(34) V)" 2 y(o)
Hence putting 8 = 6, in (33) and 6 = 6, in (34) and dividing yields
0u(Zy — &) = b(F — 7).
Since &, > i, , it follows that
(35) by = 6(F) = 0(z) = 6,. Q.E.D.

THEOREM 2. If & ¢ ¢ then there exists an integer N = N(&) such that any
Bayes solution 6; relative to & will terminate before N + 1 observations with prob-

ability one.
Proor. Let & < % denote the two points mentioned in' Assumption 3.
By Lemma 1 and this assumption 6; < 8(£,) < §(Z;) < 6, . Define

o = 36(z) + ()]
Let &' denote the following terminal decision rule:
“Accept H, if 6(F) < 6,,  accept H, if 6(z) > 6,.”

Let S; and S2 denote respectively the set of points in S; for which 4(Z) < 6,
and 6(Z) > 6, . These sets are clearly not empty. If ' is used the average risk
given the triple (n, Z, £) is

W, %) del(6) if % &S}
(36) r(gf, 8 ={ "
f W (o, 8*) de2(9) if 7 e S
wsz
In order to show that
37 lim r(£2,8") = 0 uniformly for all £ £.S;

N=00

it is sufficient to show that the upper value in (36) tends to zero uniformly for
all % ¢ S} and a similar result for the lower value. Since the two cases are alike,
only the first will be shown. Since by assumption W (8, &) is a bounded function

.
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of # and since g:(6) > 0 then using (22) with v replaced by nZ it is sufficient for
(37) to show that

[ los@1 ago)

(38) lim|= =0 uniformly for £ ¢ S;

/ [9:(0)]" d&(6)

where wo is any subset of Q. Take for wy the interval (8, 6;) where 6, = 6(Z,).
For any n by Assumption 3(i) the function [g:(6)]" is strictly decreasing in the
interval (6(Z), 6) and hence also in the subintervals (6, , ) and (6., 8). Hence
an upper bound for the expression in brackets in (38) is

o) 1
[g;(éz)]" £(wo)
Since £ ¢ ¢ and 6, < 6, then £(wo) is a positive constant. By (8)

(40) [95(02)]" — [3"(02) 65:(02'-'92):'".

g,—,(éz) ¥(6,)
Since 6y < 62 = (%) it follows from Lemma 1 that Z, is an upper bound for the
set S; . Hence by (40) since 8. > 6, it is sufficient to show that

(41) lim [Z._(%] ~0

The function ¢:,(6) is strictly decreasing in the interval (4, , ;). The expression
in brackets in (41) is therefore a positive constant less than unity and (41)
follows. This proves (37).

It follows from (41) that the approach to zero is at least exponentially fast.
On the other hand, by Assumption 2 the constants ¢, may approach zero but not
fast enough for Y 7.1 ¢, to converge. It follows from (7) that there exists an in-
teger N = N(¢) such that forn = N

(39)

(42) 0 = po(&) S 7(E,8") < an for all 7 ¢ Ss.
By (28) it follows that pi(£;) = ¢a41 for all pairs (n, %) and hence for n = N
(43) po(E7) < pu(E7) for all T ¢ S:.

It follows from the description of B; above that any Bayes solution 8; will ter-
minate experimentation before N 4 1 observations with probability one. This
proves Theorem 2.

The above result does not hold in the case of testing a simple hypothesis
against a simple alternative. For example every Wald sequential probability
ratio test which consists of a pair of parallel lines does not have the above prop-
erty. It would be interesting to determine whether we can restrict our attention
to tests consisting of pairs of converging straight lines. Although Theorem 2 is
useful here as a tool it appears to have some interest in its own right.
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Let S, denote the interval generated by v = n& as & varies over Sz . Since
(43) holds for all £ & S; it will also hold for all v £ S;, that is,

(44) po(E) < m(&) forallve Sy.
Hence by (27) forn =2 N ‘
(45) p(&) = po(&) forallve S,.

In the normal case the sets S, are equal to the real line for each n. If the sets
S, actually depend on 7, as in the binomial case, the range of validity of (44)
and (45) varies with n only because £ may not be defined for all ». Hence (44)
and (45) hold whenever the expressions therein are defined.

8. Other properties of the Bayes solutions in B; . The purpose of this section
is to show that (almost) every Bayes solution §; relative to a £ ¢ ¢ belongs to 4.
In the discrete case this holds for all Bayes solutions é; with £ ¢ ¢. In the abso-
lutely continuous case the result is slightly weaker, namely, for each £ ¢ { any
Bayes solution 8; not in A4 differs from another Bayes solution &; in 4 at most on
a set of n dimensional Lebesgue measure zero for each positive integer n.

Let

(46) AE) = po(&) — m(ED
(47) FoE) = o)) — palts).

Thus fi(¢)) can be regarded as the advantage of taking another observation
over stopping for the given triple (n, v, £). Similarly ff(ifl' ) is the advantage of
accepting H; over accepting H, for the given triple (n, v, £).

It follows from the description of B; above that in order to prove the desired
result it is sufficient to show the following for each £ e ¢.

For each positive integer n there exists a nonempty closed interval

Ja(8): [a1n(£), @an(£)] or simply J.: [ain, @)

such that

(48) w(E) > piE) or fig)) > 0] for @i < v < @z,
(49) m(E) < p(E) for fiE) < 0] forve Ja,
(50) o) > pal8S) [or fa(&7) > 0] forv < aua,
(51) : os(ED) < palED) [or fa(gr) < 0] for v > az,
and if a1, < G2a

(62) po(Es) > min [pa(£)), pr(£)] forv = ayn,
(33) pa(£s) > min [ps(&), pr(E0)] forv = az. .

.Equations (52) and (53) are superfluous for the absolutely continuous case
since they are concerned with a set of Gy-measure zero for each 6 £ Q. In other
words, the Bayes solution obtained by pointwise minimization of the average
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risk is to continue as long as a1, < v < az. . Experimentation is stopped as soon
as v £ J, . Then H, or H, is accepted according to which involves the smallest
risk. To show for any £ ¢ ¢ the existence of J,(¢) satisfying (48) through (53)
for each n will require several lemmas and theorems. Let

(54) HE) = wE) = mE) = max [f2(&), 0]
where the latter equality follows from (32) and (47). In what follows n will de-
note an integer, v a point in S;' and 9 a point in @ even if this is not explicitly

stated. Let
[¥(0)]me*®

ps(6) =
fn WO de(6)”

(55)

Then p,'(6) is a probability law relative to the measure £(6).

LemmMaA 2, Let £(8) be any cdf on Q. Let W(8) be a bounded, nonincreasing func-
tion of  which is not constant on a set of &-measure unity. Then for all n > 0 and
all pairs vi < v,

(56) [we a@ > [we ano.
< Q
If the last condition on W(6) is omittéd then the weak inequality holds.
Proor.? Since v > v, the ratio py,(8)/pr,(6) is a strictly increasing function

of 9. Let Q4 and Q— denote respectively the intervals on which p,,(6) > and
< ps,(6). Then

fn W (o) dlen(6) — £1,(0)] = [ _WORLO) — 24,0 d6)

(57)
- L _WO)p,6) — p,(0)] d(6)

Since W-(#) is nonincreasing there is a constant ¢ such that

(58) [m WO)plL6) — pr@)]de6) < e fﬂ+ [p2(6) — pr.(6)] d£(0)

(59 [ WO - pi0) &0 z ¢ [ phO) — pLO)] dE6).

0 o
If W(6) is niot constant everywhere (£) at least one of the above inequalities can
be replaced by the strict inequality. Since p,,(6) and p,,(6) are both probability
laws relative to £ then

(60) f D50 — pLO)dEe) = f,,. o2, (6) — pis(6)] d&(6).

# 8 The proof of this lemma was kindly offered by Professor Erich L. Lehmann.
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It follows from (57), by the use of (60) and the revised inequalities (58) and (59),
that

(61) [ W) dign(6) — £.(6) < 0

which proves the lemma.

Clearly if £ e ¢ then it is sufficient in the above lemma to assume that W (6)
is bounded, nondecreasing and not constant throughout Q.

CoRroLLARY 2. Let f(y) be a bounded nonincreasing function of y = %,y which
s not constant on a set of u-measure unity. Then for all pairs 6; < 0,

(62 [ 5w douts) > [ 10 a6,

Proor. Since for 6, > 6; the ratio gs,(y)/ge, (y) is & strictly increasing function
of y the proof is exactly as in Lemma 2.

CorOLLARY 3. Let fi(y) and fa(y) be bounded functions of y = Zui1 such that
fi(y) is nonincreasing and

(63) A1) 2 £©) jor all y.
Then for any &, all n > 0 and all pairs vi < vy
6 [ [ 5 dow) &0 z [ [5G i) 0.

Proor. Since fi(y) is nonincreasing then by Corollary 2 for any pair 6, > 0,

(65) Wi(6) = [:.ﬁ(y) dGy,(y) = [: N1i(y) dGe,(y) = Wi(62),

that is, W1(8) defined in (65) is a nonincreasing function of 6. If we define W,(8)
similarly with f; replaced by f. then by (63)
(66) Wi(6) = Wy(8) for all 6 £ Q.

Also since fi(y) (¢ = 1, 2) are bounded functions of y then clearly W.(6) are
bounded functions of 8 ( = 1, 2). Hence for all pairs »; < v, by Lemma 2

) f W6 den(6) = f W,(6) den(6)
and by (66)
(68) fﬂ W.(6) dil(6) = fﬂ Wa6) dey(6).

The result (64) follows from (67) and (68).
CoROLLARY 4. If in addition to the hypothests of Corollary 3 the inequality (63)
5 18 strict on a set S* of positive u-measure then the inequality (64) is a strict one.
Proor. Since gs(y) > 0 for all ¥ and all 8 the added hypothesis implies that a
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strict inequality holds in (66) for all 6 € Q. The strict inequality will then hold in
(68) and hence also in the final result (64).
LemMA 3. For any £ e ¢, all n > 0 and all pairs v; < v,

(69) falgn) > fa(ey),
(70) HOAESHCAER)
(71) foe)) > folery) if fogr) > 0.

In words, as v increases

(i) the advantage of accepting H, over accepting H, increases,

(ii) the regret in accepting H, if we have to make a decision without further
observations is nonincreasing. If there is any regret at all it must actually de-

crease.
Proor. The functions — W (6, 1) and W (6, 2) satisfy the assumptions of Lemma

2 for any ¢ ¢ ¢. Replacing W(8) by W (6, 2) and —W (8, 1) in (56) gives respec-
tively

(72) (&) > po(Ey),

(73) palsy) < palksy).

Subtracting (73) from (72) gives the desired result (69). With the aid of the last
equality of (54) the results in (70) are immediate consequences of (69). To prove
(71) note that if f5(¢7,) > 0 then by (54) and (69)

(74) FoER) = fag)) > faler).

By (54) the value of ﬂ)(é,:;) is either fﬁ(EZ‘z) or zero. In the former case (71) fol-
lows from (74) and in the latter case the result follows from the assumption
that f3(¢),) > 0. This proves Lemma 3. Let

(75) FiE) = pE) — (&),
(76) fIE) = pal&) — m(&).

It will be shown that f; is nonincreasing and that f{ is nondecreasing in » when
te¢and n > 0 are fixed and that these monotonicities are strict whenever the
corresponding functions are nonnegative. It will also be shown that if we define

(77) fiE) = min [AE), FE] = mE) — alE)
then there exist two points a1, = @z. such that
fi€") = 0if and only if a1, £ v < a2s

and if a;, < az, then
figh) >0 for ain < v < azn.

These are the points involved in equations (48) through (53). To show that fHED
ig a nonincreasing function of v (Lemma 5) the following result is needed.
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LemMma 4. For any cdf &, all n = 0 and all v

78) me) = [ [ PETE) dGoly) dE2(6)

where y = ZTnyy .

The proof is omitted. Intuitively the lemma says “if there is no cost of taking
observations and H, is ‘going to be accepted after the next observation then
nothing is gained or lost by accepting H, now.”

LemMA 5. For each £ ¢, all n > 0 and all pairs v; < vp

(79) A& = fiE)
(80) AE) > fE,) if fig,) 2 0.

ProoF. An induction on n will be used. The theoren is first shown forn = N =
N (&) defined in Theorem 2 for each ¢ ¢ ¢. Substituting (78) and (28) in (75) and
using the fact that (45) holds for n = N gives

(81) £y = [ [ A o) 25,0 — eu

(52 e = [ [ e do) &0 — oun

where y = Z,41.

@) Corollary 3 will now be used with fi(y) and fa(y) replaced by foErt,
and f3 (E,,,+,,) respectlvely The functions fo are clearly bounded by (54). By
(70) fo(&rts) is a nonincreasing function of y and (63) also follows from (70).
It therefore follows by Corollary 3 that the double integral in (81) is not less
than the double integral in (82). This proves (79) for n = N.

(ii) If v is such that fi(¢r) = O than by (81)

&) [ e = eond | [ o) det@ | ant)

where gs(y) is the integrand in (2). Since for each y the function gs(y) > 0 for
each 6 the expression in brackets must also be positive for each y. Hence

(84) fOEE) Z e > 0
on a set S* of positive u-measure. Then by (71) since v; < v2
(85) | fER) > fEs for y ¢ 8*.

It follows from Corollary 4 that (80) holds for n = N.

If N = 1 the theorem is proved. Otherwise assuming the theorem holds for
n=k+1L,k+2 -+ ,N(N=k+1>1)it will be shown to hold for n =
k. Let

(86) /&) = &) — pE) = max [f3&), fED]
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where the last equality follows from (27). Substituting (78) and (28) in (75)
and using (86) gives for any n (and in particular for n = k)

(87) &) = [ [P o) 3,0 = e
(58) &) = [ [ £ o) a6 - o

where y = %4 .

) Corollary 3 will again be used with fi(y) and fa(y) replaced by FPER,
and f° (5,,,+,,) respectively. The boundedness of these functions follows from
(86) and (27). It remains only to show that f (E’,fl+,,) is a nonincreasing function
of y since (63) follows easily from this result. Let yl < ¥, denote two possible
values of y. By (70)

(89) FoEtin) Z folein,
and by the induction hypothesis on (79)

(90) @) 2 15,
Hence using the last equality of (86)

(91) F&i) 2

It therefore follows from Corollary 3 that the right member of (87) is not less
than the right member of (88). This proves (79) for n = & and hen¢e for alln > 0.

(ii) If v; is such that f1(£,) = 0 then proceeding as in (83) and (84) we obtain
from (87) and (86) the result

(92) max [fo(&7h), AET)] = &) Z e > 0

on a set S* of positive u-measure. Consider any y & S*.
Cask 1. If f} is the larger in (92) then by (71), (92) and (79)

93) FER) = ) > £iE),
(94) FPEL) > FUER) = FE.

Caske 2. If f7 is the larger in (92) then by (70), (92) and the induction hy-
pothesis for (80)

(95) et = f"(s’:i’ly) > fi’(e’:;t,, ,
(96) f ( v1+y) > fO( v ) = fO( v2+1/

Cask 3. If f1 = fo in (92) then both (93) and (95) hold. Hence in each case
for all y £ 8*
o7) F'@&i) > max [fo&lh), fili)] = f6h

It follows from Corollary 4 that the right member of (87) is greater than the
tight member of (88). This proves (80) for n = k£ and hence for all » > 0.
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If we define f3 , f5 , f1 and f* in exactly the same manner as /2, /3, f+ and f°re-
spetively except that p, and p, are interchanged, then the following theorem
can be proved in a manner completely analogous to that above.

LeMMA 6. For each £ € ¢, all n >+0 and all pairs v; < v,

(98) fi&) = fi)

(99) fi&) < fi(g)) if fi(g,) 2 0.
Just to indicate why the inequalities are reversed the reader will note that the
analogue of (69) holds with reversed sign since fo = —f3.

THEOREM 3. For each £ ¢ ¢ and each n > 0 there exists a nonempty closed interval

Jn(S): [aln(s)) a2n(£’)]

such that equations (48) through (53) hold.
Proor. Define az, = a,.(£) as the greatest lower bound of values of » for which

(].OO) Pb(E:) =< min [Pa(é:); pl(é:)]

if any such values exist and define it as « otherwise. Define a1, = a1,(£) as the
least upper bound of values of v for which

(101) pa(£) = min [pp(£), pr(£)]

if any such values exist and define it as — « otherwise.
(1) To show that ai, = @.. we note that for any v, satisfying (100) by (69)

(102) foE) < foErY.=0 forv > .

Since this contradicts (101) it follows that the least upper bound of v values
satisfying (101) is at most equal to the greatest lower bound of » values satis-
fying (100). Hence a1, = @2, and a nonempty closed interval fai. , as.] is there-

fore defined for each n > 0.
" (ii) For any v points such that a1, < v < @z, neither (100) nor (101) holds

and hence using (32)
(103) p(E) < min [pa(£), pe(E)] = po(E).

This proves (48).
(iii) For vy > a2, (if such values exist) by (100) and (79)

(104) fiEr) < 0.

If strict inequality holds we apply (79) and if equality holds we apply (80),
but the two results are the same, namely that

(105) fi(E) <0 for every v > v .
Since v, can be taken arbitrarily close to the greatest lower bound a,, then

(106) fig) <0 for every v > as,.
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(The reason for introducing v, is to avoid the proof of continuity of f3 in v. Al-
though the continuity holds it is not needed for our purposes.) Similarly by
(101) and Lemma 6 it follows that

(107) fig) <0 forv < ain -
Hence by (106) and (107)
(108) po(¢) = min [pa(&), p(E))] < m(8)  foreveryve Ja.

This proves (49).
(iv) By (100), (101) and (69)

(109) e <o for v > am,
(110) &) <0 . forv < ain .

This proves (50) and (51).
(v) By definition of a1, , a2, it follows that

(111) po(£2) > min [pa(£r), p(£)] forv < aam,
(112) pa(£7) > min [p(&), m(£)] forv > an.

Hence if a1, < az, then (111) holds for v = a1, and (112) holds for » = asn .
This proves (52) and (53) and completes the proof of Theorem 3.

As mentioned above, it follows in the discrete case that for each chéet the class
B; C A and hence B; C A. Hence by the definition of closure By < A. In the
absolutely continuous case Theorem 3 shows that for £ € ¢ there exists a Bayes
solution § = &; which belongs to A and that any other Bayes solution &’ = 8;
relative to the same & can differ from 6 at most on a set of n-dimensional Lebes-
gue measure zero for each positive integer n. Hence by (11)

(113) %nj(sn) = 537;5(‘8”)
for each n = 0, each j and every Lebesgue measurable set S in the space of
%1, 22, -+ T, . Hence, given any sequence {8 VG = -+) of members of

B; which converges in the regular sense (see Section 3), we can for each ¢ re-
place ¢ by a member of A without altering the convergence or the limit. Clearly
then, since any member of B; is a limit of members of B; it is also a limit of
members of A and must therefore be in 4, that is, B; C A.

It now follows from Wald’s Theorem 3. 19 (see Section 4 above) that A is
essentially complete relative to D, in both the discrete and absolutely continu-
ous cases. Then using the result of Section 6 the final result is obtained, namely
that A is essentially complete relative to D, .

CoOROLLARY 5. If in the above problem the indifference zome 3s the emply set and
6(Z) takes on values between 6* and 9* + e for every e > O then the class A remains
essentially complete relative to D, .

Proor. Consider the sequence of problems P’ (i = -+) in which the
para.meter space Q remains fixed and the indifference zone Z‘ is the open interval



COMPLETE CLASS OF DECISION FUNCTIONS 337

(6%, 6,) where 6* < 6,41 < 6; < 8 foreach (s = 1,2, ---) and lim,_, 6; =
6*. Then the limiting problem P° has an empty indifference zone. In order that
Assumption 3(ii) hold for each problem P it is sufficient that among the values
assumed by the function 8(%) there is a strictly decreasing sequence approach-
ing 6*. By the above the class A is then essentially complete relative to D,
for each problem P ({ = 1,2, ---). Let 3 be any decision rule for P°. Then & is
also a decision rule for each problem P‘. For each ¢ (i = 1, 2, - - -) there exists
a decision rule 8; ¢ A such that

(114) (6, 8:) < ri(6,5) forall 8@
where 7,(8, 3) is the risk function when 4 is the decision rule used and P’ is the

problem. Since (6, 8) differs from r,(6, 5) only on the open interval (6%, 6,) then
by (114) :

(115) %0, 8;) < 70(6, 5) for6eQ —Z'.
Wald has shown ([1], Theorem 3.2) that we can extract from the sequence

{6:} of members of A a subsequence {8;,} which converges in the regular sense
to a limit § and which is such that

(116) lim inf 7,(8, 8;,) = 74(6, &) foralld e Q.

a=0

By Theorem 1 it can be assumed that § ¢ A since otherwise we can find an
equivalent rule in A. Consider any point 8 ¢ Q. For sufficiently large ¢ the
point 6 ¢ @ — Z' so that (115) holds. Hence by (115) and (116)

(117) ro(6, 30) <ro(6, 8).
Since 8 is arbitrary (117) holds for all £ Q. This proves the corollary.
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