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1, Summary. New methods are introduced for deriving the sampling dis-
tributions of statistics obtained from a normal multivariate population. Exterior
differential forms are used to represent the invariant measures on the orthogonal
group and the Grassmann and Stiefel manifolds. The first part is devoted to a
mathematical exposition of these. In the second part, the theory is applied;
first, to the derivation of the distribution of the canonical correlation coefficients
when the corresponding population parameters are zero; and secondly, to split
the distribution of a normal multivariate sample into three independent dis-
tributions, (a) essentially the Wishart distribution, (b) the invariant distribu-
tion of a random plane which is given by the invariant measure on the Grass-
mann manifold, (¢) the invariant distribution of a random orthogonal matrix.
This decomposition provides derivations of the Wishart distribution and of the
distribution of the latent roots of the sample variance covariance matrix when
the population roots are equal.

2. Introduction. Much of the distribution theory of normal multivariate
analysis can be deduced from, or is closely related to the fact that the distribu-
tion of a normal multivariate sample is invariant under orthogonal trans-
formations.

Consider a set of n independent- observations from a normal k-variate dis-
tribution (n = k) with a nonsingular variance covariance matrix 2. In most
distribution problems one can eliminate the population means with the loss of
1 degree of freedom by a suitable orthogonal transformation. Assume this has
already been done. Let the rows of the n X k matrix X be independent observa-
tions from a normal k-variate distribution with zero means;

' _12™ eeun -
(2.1) dF(X) = W e II dx,, .
The distribution is clearly invariant under the transformation
(2.2) H:X — HX

where H is an n X n orthogonal matrix. The invariance is a fundamental prop-
erty of dF, indeed, as Bartlett [1] has proved for the univariate case, and a similar
proof holds for the multivariate case, the invariance under (2.2) together with
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the independence of the rows of X uniquely characterizes the distribution
(2.1) of X.

With probability one, the columns of X, regarded as vectors in n-dimensional
Euclidean space R", span a k—dxmensmnal linear subspace (henceforth called
k-plane). Hotelling [8] observed 'that the invariance of the distribution of X
under the group of transformations (2.2) implies that the k-plane is invariantly
distributed. (A formal proof of this result will be given in Section 6.) He also
recognized that the problem of finding the distribution of the canonical correla-
tion coefficients could be reduced to the problem of finding the distribution of
the cosines of the critical angles between the plane spanned by the columns of
X and a plane distributed independently of X, or a fixed plane. From these
observations Hotelling went on to obtain the distribution of the canonical
correlation coefficients for the special case of two canonical correlation coeffi-
cients (assuming the population correlations are zero). The general distribution
was later derived by Fisher [5], Hsu [9], Roy [16], Girshick [6] and Mood [13],
using different methods.

To complete the derivation of the general result along the lines followed by
Hotelling, one requires a convenient analytic expression to represent the in-
variant distribution of a random plane. Such an expression would also be very
useful in other connections. The most obvious way to obtain such an expression
would be as follows. A k-plane in R" can be specified by a system of k(n — k)
parameters, in fact, in many ways. The parameters will then have a certain
distribution in R*"™ corresponding to the invariant distribution of the random
plane. However, such methods lead to intractable expressions because, as we
shall see later on, they destroy the symmetry of the space of k-planes.

Instead, we consider the k-planes in R” as points of a space which is an analytic
manifold, the Grassmann manifold. Blaschke [2] has constructed an exterior
differential form on the Grassmann manifold which may be considered as the
probability density for an invariantly distributed random plane. By a simple
transformation the exterior differential form may be expressed in terms of the
critical angles, and hence the distribution of the canonical correlation coefficients
obtained. This will be carried out in Section 7.

Another analytic manifold, important in multivariate analysis, is the Stiefel
manifold. A set of k& orthonormal vectors in R” is called a k-frame. The k-frames
are the points of the Stiefel manifold. Both the Grassmann and the Stiefel mani-
folds are coset spaces of the orthogonal group which is also an analytic manifold.

The theory of Grassmann and Stiefel manifolds, exterior differential forms,
etc. used in this derivation, is familiar to the differential geometer; but its litera-
ture is widely scattered, and not readily accessible to the statistician unless he
is prepared to go far more deeply into these subjects than is required here. It
therefore seems desirable to give an outline of those parts of the theory that we
require, in a form suitable for immediate application to problems of multivariate
» statistics. Sections 3 to 5 are devoted to this.

Exterior differential forms on manifolds have evolved from a simple rule for
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transforming multiple and surface integrals in Euclidean space. It is based on
an anticommutative multiplication of differentials (see Goursat [7] and Kihler
[11]). As Chern [3] has pointed out, it has potential application in statistics.
Although it is equivalent to the calculation of the Jacobian, it is usually simpler
because it avoids the necessity of explicitly writing out bulky determinants.

Section 3.1 gives the definition of an analytic manifold. In Sections 3.2 to
3.4 the three analytic manifolds to be considered in this paper, namely the
orthogonal group and the Grassmann and Stiefel manifolds, are defined and the
relationship of the Grassmann and Stiefel manifolds as coset spaces of the orthog-
onal group is explained.

Exterior differential forms are introduced in Section 4.1 and their integrals
defined in Section 4.2. The transformation of them is discussed in Section 4.3
and it is shown how an invariant differential form yields an invariant measure.

The exterior differential forms representing the invariant measures on the
orthogonal group and the Grassmann and Stiefel manifolds are constructed in
Sections 4.5 to 4.7 and their integrals are evaluated in Sections 5.1 to 5.3.

Sections 6 and 7 give the derivation of the distribution of the canonical corre-
lation coefficients, as outlined above, and in Section 8 the results stated in the
summary on the decomposition of the distribution of a normal multivariate
sample, are proved. Olkin {14] has given this decomposition by what amounts
to using parameters for the Grassmann and Stiefel manifolds based on the Cay-
ley parameters for the orthogonal group.

3. The orthogonal group and its coset spaces.

3.1. Analytic manifolds. An n-dimensional manifold, M, is a Hausdorff topo-
logical space in which every point p has a neighbourhood O, with a system of
coordinates z7 , - - - , 27 , that is, such that the map re a?, --- , 2% (r ¢ O,) is
a one-to-one bicontinuous map (homeomorphism) of £, on an open set in real
Euclidean space, R". The coordinates x{ , - - - , 2% will be referred to as coordi-
nates centred at p. They are also coordinates centred at any other point of O, .

If ¥, -+, 27 and i, - - - , 2% are the coordinates of a point r ¢ O, N O,
relative to coordinate systems centred at p and q respectively, then since the
correspondences

» » g a
Ty, T T <>T1, "+, Ty

are homeomorphisms, it follows that 7, --- , 25 and %, -- - , 2% are continu-
ous (single valued) functions of each other. A manifold, together with a set of
overlapping coordinate systems, which cover the entire manifold and have the
property that the transformation between any two overlapping coordinate
systems is analytic, is called an analytic® manifold. (A function defined on R"

2 It would be sufficient for the applications in this paper only to assume that the func-
tions have continuous derivatives, thus defining differentiable manifolds. But as we are
applying the theory to the orthogonal group, the Grassmann and the Stiefel manifolds
which are not only differentiable but indeed analytic, we may as well assume analyticity.
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is called analytic in a domain if it can be expanded as a convergent multiple
power series in the neighbourhood of any point of that domain.) The systems of
coordinates possessing the required properties are called admaissible.

A familiar example of an analgtic manifold is the surface of a unit sphere in
Euclidean space, for example, in R®. A system of coordinates, centred at any
point p of the sphere, can be obtained by taking the orthogonal projection of the
open hemisphere with p as pole on the plane tangent to the sphere at p. This is
obviously a homeomorphism of the open hemisphere on the interior of the unit
circle in the tangent plane. Introduce coordinate axes in the tangent plane and
let (xf , %) be the coordinates of the projection on the tangent plane of a point
r in the hemisphere. Then (zf , x7) serve as admissible coordinates for r. The
transformations between two such coordinate systems centred at p and ¢ re-
spectively can be shown to be analytic in their domain of overlap.

More generally, the construction of admissible coordinate systems by projec-
tion on the tangent plane can be applied to show that any algebraic variety
which has a tangent plane at every point, is an analytic manifold. (An algebraic
variety is a surface in Euclidean space determined by a system of algebraic
equations). In particular, the orthogonal group and Stiefel manifold, which we
shall now discuss, are analytic manifolds.

DerFiNiTION. A function f defined on an analytic manifold is an analytic
function in the domain D if, for any arbitrary coordinates 2, , - -+ , 2, admissible
in a domain O, f is an analytic function of 2, - - - , x, in the domain D N O.

3.2. The orthogonal group O(n). An n X n matrix, A, satisfying the equation
A’A = I, where I, is the identity matrix and A’ means the transpose of 4, is
called an orthogonal matrix. An equivalent definition is that A is the matrix of a
linear transformation which leaves the quadratic form zi + - - + zn invariant.
The set of all n X n orthogonal matrices with the operation of matrix multiplica-
tion is called the orthogonal group, O(n).

There are n(n + 1) functionally independent conditions on the n’ elements
of an orthogonal matrix A ¢ O(n); consequently, the elements of A can be re-
garded as the coordinates of a point on a }n(n — 1)-dimensional algebraic
variety or surface in Euclidean n’-space. Since Z; ai; = n, the group surface
is a subset of the sphere of radius v/% in n’-space.

In 1896, Hurwitz [10] pointed out that the element of area of the group sur-
face is a two-sided invariant measure on O(n), that is, invariant under left and
right translations, by which we mean that the respective transformations

3.1) A — HA
3.2) A — AH

H e O(n)

leave the element of area invariant. For, suppose X is an n X n matrix, re-
_ garded as a vector in an n’ dimensional space, and transformed by H ¢ O(n);

3.3) X —-HX or X— XH.
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These are lmear transformations of the n’-space which leave the quadratic
form =.,;4%; invariant. Therefore they are orthogonal transformations (of order
n’ X n%). But the area of a surface in Euclidean space is invariant under or-
thogonal transformations. Hence the area of the group surface in n’-space is
invariant under (3.1) and (3.2).

The invariant measure is sometimes referred to as the “Haar’’ measure on
the orthogonal group, named after Haar, who, in 1933, generalized Hurwitz’s
result by proving the existence of an invariant measure on any locally compact
topological group. Herglotz and Blaschke [2] have derived an exterior differen-
tial form for the invariant measure on O(n) which is, (apart from a scale factor),
a convenient expression for the area of the surface. We shall derive it later on.

3.3. The Stiefel manifold Vi, . Let us call a set of k orthonormal vectors in
Euclidean n-space, a “k-frame”. The k-frames are the points of the Stiefel mani-
fold, Vi, . Regarding the k vectors of a k-frame as the columns of a matrix 4,
we can represent the Stiefel manifold as the set of n X k, (k < n), rectangular
matrices, 4, satisfying the equation A’A = I,. Vi, is an 3k(2n — k — 1)-
dimensional algebraic variety in nk-dimensional Euclidean space and an analytic
manifold. The same argument as for the orthogonal group shows that the ele-
ment of area of this surface is a measure invariant under (3.1).

A group of transformations is said to act transitively in a space if, given any
two points of the space, there is an element of the group which transforms one
into the other. Such a space is said to be homogeneous with respect, to the group.
If x, is any point of a homogeneous space ¥ (with respect to a group 9) and £,
is the subgroup consisting of all elements of $ which leave x; invariant, and if
h ¢ $ transforms 2, into z, then the set of all elements of § which transform
7, into z is the coset 29, . Hence the points z ¢ X are in one-to-one correspond-
ence with the cosets 29, . Thus a space, homogeneous with respect to a group
of transformations, may be regarded as a space of cosets of the group.

The Stiefel manifold is obviously homogeneous with respect to the orthogonal
group of transformations acting on V. according to (3.1). If A, & Vi, say for

simplicity
#-[5]

then the group O, which leaves 4, invariant is the set of square matrices of the

form
I, O
0 H n—k,

where H,_; isany n — k X n — k orthogonal matrix and I; is the unit matrix
of order k.
Hence the coset corresponding to 4 ¢ Vi, is

Iy 0
(4] B][ }
0 On—k)
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where B is any n X m — k matrix such that the partitioned matrix [4 : B] is
orthogonal and O(n — k) is the group of orthogonal matrices of order n — k.2

3.4. The Grassmann manifold. The points of the Grassmann manifold, Gy, .,
(r = n — k) are the k-dimengional planes (passing through the origin) in Eu-
clidean n-space, R". For our purposes, the following obviously equivalent defini-
tion isuseful. Consider the set, X, of all n X k matrices (¢ S n) of rank k;

xll LY xlk
X =
Zny **° Tak

and the group of transformations X — XL where L is any nonsingular & X k&
matrix. The group defines an equivalence relation in X. Two elements of ¥ are
equivalent if there is an element of the group which transforms one into the
other. Such is possible if and only if the column vectors of the two matrices
span the same k-plane in the Euclidean n-space, R", of column vectors. Hence
the equivalence classes of X are in one-to-one correspondence with the points
of the Grassmann manifold, G, .

Gr.» is an analytic manifold. It has dimension k(n — k), because X may be
regarded as a point in Euclidean nk-space and for each fixed X the set of all
elements XL in the equivalence class is a surface in R™ of dimension %*. Hence
the dimension of Gy, is nk — k* = k(n — k).

Like the Stiefel manifold, the Grassmann manifold can be regarded as a coset
space of the orthogonal group O(n). An orthogonal transformation of R™ trans-
forms k-planes into k-planes; thus it induces a transformation of Gy,. . We shall
use the same symbol for the induced transformation of Gy . as for the original
transformation of R". In this sense, the orthogonal group O(n) is a transitive
group of transformations of Gi,. because, given any two k-planes in R", there
exists a rotation which transforms one into the other.

If po is any fixed point of Gy, and O, is the subgroup of all elements of O(n)
which leave o invariant, and if H ¢ O(n) transforms p, into p & Gs,,, then the
set of all elements of O(n) which transform p, into p are the elements of the coset
HO, . Hence the cosets HO, , H ¢ O(n), are in one-to-one correspondence with
the points p € G, . :

Suppose, for simplicity, we let p, be the plane spanned by the first & coor-
dinate axes. The cosets are then of the form

(34) [A | B] [O(k) 0 :l
' 0 O — k)

where the first & columns of the matrix on the left are orthonormal vectors
spanning the plane p and the last » — % columns are likewise orthonormal
vectors, but they span the orthogonal complement of p. The matrix is thus an

3 The orthogonal group manifold can be expressed as a fibre bundle with the Stiefel mani-
fold as the base space and the subgroup O(n — k) as the fibre. Steenrod [18] discusses the
Stiefel and Grassmann manifolds from this point of view.
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element of O(n). The matrix on the right denotes the subgroup 0, of O(n) con-
sisting of all matrices which are a direct sum of orthogonal matrices of orders
k and n — k respectively. O, is the subgroup which leaves the plane spanned
by the first k¥ coordinate axes inYa,ria,nt.

4. Exterior differential forms on manifolds.
4.1. Definition. Consider a multiple integral over a domain A in Euclidean
space R";

7%) k= [ fl, 5 do o de.
A
On making a change of variables
x, = xl(uly e 7u7l)
(4.2) :
Zn = Tnur, + -+, Un)
we have
(4.3) = f F@w) det< )d s -+ duty

To calculate the Jacobian, instead of writing out the matrix of partial deriva-
tives (dz;/0u;) and calculating its determinant, we can evaluate it in the follow-
ing way. Differentiate the transformations (4.2);

(4.4) E; 5%+ du,
Jom
and substitute the linear differential forms (4.4) in (4.1;)
9% 1Y o (3 % g
4.5) k= _/; ) flx(u)) (ZJ: F du,) ("‘: 5, du,) .

Now multiply out the differential forms in (4.5) in a formal manner using the
associative and distributive laws, but instead of the commutative law use an
anticommutative rule for multiplying differentials; that is, put

(4.6) dujdu; = —du;du;.

In particular —du; du; = du; du; = 0.

The justification for this formal procedure is that the rules are consistent
and lead to the correct result as given in (4.3) (see Goursat [7] chap. 3). In fact,
the formal procedure is equivalent to calculating the Jacobian as is shown by
the following

LeMMA 4.1. If du is a column vector of n differentials and if dx = J du, where J
is an n X n matrix and thus dx s a column vector of linear differential, forms,
then the anticommutative product of the elements of dx is the anticommutative
product of the elements of du multiplied by | J | ; that i3
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(47) H?"’- dz; = I J l I—I:_1 du, .

Proor. The left-hand side of (4.7) is clearly equal to J];: du, multiplied by
a polynomial p(J) in the elements of J, which is linear in each row of J. Inter-
changing the order of two factors, say dz; and dz; , reverses the sign of [ ] %1 dw: .
However, it is also equivalent to interchanging the sth and jth rows of the
matrix J. Thus interchange of two rows of J reverses the sign of p(J). Finally,
if J is the identity matrix then p(J) = 1. Hence, according to the Weierstrass
definition of a determinant, p(J) = | J |. The formal procedure may also be
used to transform surface integrals.

An exterior differential form of degree r in Euclidean space R" is a formal
expression of the type

(4.8) Zi,<i,<...<i, Uiy...ip(T) dovsy - <+ doxs,

where u;,...;,(x) are analytic functions of z;, ---, z, . It may be regarded as
the integrand of an r-dimensional surface integral. The exterior product of a
form of degree r with a form of degree s is defined as the form of degree r + s
which is obtained by formal multiplication of the two forms using the associa-
tive, distributive, and anticommutative laws for the multiplication of the sym-
bols dz; .

A form of degree n has only one term, namely u(x) dz, - - - dz, . A form of
degree greater than = is zero because it has at least one of the symbols dz; re-
peated in each term.

The definition may be extended to define an exterior differential form on an
analytic manifold 9. Relative to a system of admissible coordinates on the
manifold, it is an expression of the type (4.8).

DEFINITION. An exterior differential form w(p), p € M, on an analytic manifold
is a system of expressions of type (4.8), one for each admissible coordinate
system, such that if #,, ---, #, and %1, -+, y» are two coordinate systems,
then in the domain of overlap of these coordinates the corresponding expressions
of type (4.8) with coefficients u,...;, and v;,...;, respectively, are related by the
transformation

) L s @) (z s dy,) (z L dy,)

= 20,5, (V) dys, -+ - dys, .

The exterior product of two exterior differential forms  and v is defined as
the exterior differential form whose representation in any coordinate system is
the product of the representations of w and v in that coordinate system. One
can check that the resulting product transforms according to the rule (4.9) on
change of coordinates. Hence it constitutes an exterior differential form on the
manifold.

If po is a fixed point of M with coordinates z?, we shall call the expression

@(Po) = Zttiy...i, (2") dsy -+ - dai,



48 A. T. JAMES

the value of w(p) at po . The values
w@®) doy + -+ ua(a”) dza

of linear differential forms at a fixed point p, of the manifold can be considered
as vectors in an n dimensional vector space with dz, , - - - , dz, as its basic vec-
tors. This space is called the tangent space to the manifold at p, . It is the ana-
logue of the tangent plane to a surface in Euclidean space.

DeriniTioN. The differential of an analytic function f on a manifold is the
linear exterior differential form represented in coordinates z, « « + , . by

= oy 9
df—&'ldm-l' +ax,.dx"‘
The ordinary rules of calculus show that such expressions transform correctly,
that is, in accordance with (4.9). ’

4.2. Integration of exterior differential forms. It is, of course, possible to define
the integral of a differential form of degree r over a submanifold of dimension
r or a measurable subset thereof. However, for our applications we only require
the integrals of differential forms of maximum degree, that is, of degree equal
to the dimension of the manifold, n, and we shall restrict our definition to these.

Expressed in coordinates, an exterior differential form of maximum degree
has only one term

(4.10) U(®) dzf - - - dxb .

As our integrals will be interpreted as probabilities, we require that, if U(z”)
is not positive, it be replaced by its modulus. The domain of integration is
divided into subdomains or cells C; each contained in an admissible coordinate
system. The admissible coordinates map the cell C; into a domain ;- in R" and
the differential form, expressed in these coordinates, is then regarded as the
integrand of an ordinary volume integral over the domain C; in R" and evalu-
ated as such. Thus to integrate (4.10) over a subdomain C; in an admissible
coordinate system, we take the multiple integral

11) [ 1vat, - o dat - st
Cs

The sum of the integrals over the (finite number of) subdomains, into which
the total domain of integration has been divided, is defined as the integral of
the differential form. The integral of the differential form does not depend on
the subdivision of the domain of integration; that is, if a portion of the domain
of integration has two admissible coordinate systems, say =7 and z7, they give
the same integral, namely

[106) da? - 2] =f|U(x“)det<a—x€>dx‘{---dx3.|
ard
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according to the classical formula for the transformation of multiple integrals
in Euclidean space.

Corresponding to an exterior differential form «w(p) of maximum degree on a
manifold ¥(p ¢ %), there is a meagure u given by

(4.11a) u(®) = Lw(p) S CX.

In the general theory of integration of exterior differential forms, a difficulty
arises as to which sign should be assigned to the integrals (4.11) over the compo-
nent domains before taking their sum. It is connected with the orientation of the
domains. However, as we are only going to integrate exterior differential forms
representing probability densities, we have been able to avoid the difficulty by
defining only positive integrals. Changing the sign of an exterior differential
form does not alter its integral, as defined above. Hence we may ignore the sign
of an exterior differential form of maximum degree and ignore questions of orien-

tability of the manifolds.
To integrate a function on the manifold with respect to the differential form,
express it as a function of the coordinates z{ , - - - , % and include it under the

integral sign in (4.11).

4.3. Transformation of exterior differential forms. A one-to-one map of a mani-
fold ¥ on another ), induces maps of the functions on ¥ to functions on 9,
measures on ¥ to measures on ) and differential forms on ¥ to differential forms
on 9.

Suppose f is an analytic homeomorphism of the analytic manifold ¥ on an-
other ). By f being an analytic homeomorphism, we mean that the map f is one-
to-one, and if 21, - -+, &, are coordindtes of p £ ¥ and %1, -+, ¥. are coor-
dinates of the image point ¢ = f(p) € 9, then the y; are analytic functions of
Ty, , T, and the z; are analytic functions of 31, + -+, ¥» . Since f is one-to-
one, ¢ and p are functions of each other. Put p = f™(q).

DEeriNITION. If (p) is an analytic function on %, f induces a mapping of it to
a function ®(¢) on 9 given by

(4.12) o(p) L ®(g) = o(f(9)).
DeriNiTION. If 4 is 2 measure on¥%, f induces a mapping of it to a measure 4
on 9 given by
(4.13) }' vl i
where
AZ) = u(f(@)) Tc

where () denotes the snverse tmage of T, that is, the set of all points of ¥

mapped into T by f.
DerinNiTIoN. The image of a differential form under the mapping induced by f
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is obtained by replacing dx; by Z;(dz:)/(dy;) dy;, the coefficient functions by
their images under map f, and using the rules for exterior products. Thus

) u,-,...,-,(x) dx;, e dx.-,
ceeip

L T w7 (T B ) o (2 B ).

This mapping could be carried out using arbitrary coordinate systems
i, ,Znand y1, -+, y» in ¥ and in P respectively. It can easily be shown
that mappings carried out in different coordinetes agree with one another. From
the definition of the mapping, it is clear that the map of a product of two dif-
ferential forms is the product of their maps. The map of a differential form of
maximum degree gives the map of the corresponding measure, according to the

LemMma 4.2. If p is a measure on X given by the differential form w(p),

i1

(4.14)

(4.15) 4@ = [ o) G c¥,

and f is an analytic homeomorphism of X on Y which induces maps of u on i and
w(p) on &(q), then the measure fi is given by the differential form &(q):

(4.16) i@ = [ o TCY
Proor. By definition
(4.17) AT) = w(f(@) = -( . w(p).

Suppose w(p) = ¢(z) dx; - - - dz,, . Then
6@ = o) (T2 ) - (T 2 auy)

(4.18)

= o(f7'(y)) det (g—;—) dyr - -+ dya,
and hence
(4.19) ff ey 0P = f: a(g)

by the classical formula for the transformation of multiple integrals. (4.17) and
(4.19) imply (4.16). Q. E.D.

An important case is the mapping of a manifold X on itself by an analytic
homeomorphism f. If f maps a set © C X onto a set T = f(&) C ¥'and an
exterior differential form w into &, then (4.19) holds. The differential form w
is said to be snvariant under f if &(¢) = w(g). In this case, by (4.19), we have

(420) [ o® = [a@ = [ o@.
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A measure u is said to be snvariant under a transformation f if u(f7/(T)) = u(T).
(4.20) states that if a differential form is invariant, then the corresponding
measure is invariant. :

While we have used admissible goordinate systems in defining and establish-
ing the fundamental properties of exterior differential forms, in the practical
applications we shall avoid them as they are usually complicated and difficult
to handle. Indeed, the main reason for introducing exterior differential forms in
this paper is to deal with measures on manifolds without the explicit use of ad-
missible coordinates. The map of a differential form has been defined by use of
coordinates, but the following lemma enables us to map them without coor-
dinates.

LemMma 4.3. Let f be an analytic homeomorphism of an analytic manifold X upon
another 9), which induces a map of an analytic function ¢(p) on % to a function ®(q)
on ). Then the differential form de(p) is mapped on d B(g).

Proor. Let 2, « -+, z. be coordinates for p and 1, - - - , ¥» coordinates for g.
From the definition of a map of a differential form

dz; L Z i d Yi
and thus
=29 g 1,3 0 9 92 b =
(4.21) de Z 35, G D 7_:, 3 35 dy, ‘,‘-:,ay,- dy; = d &. QED.

The exterior differential forms representmg the measures that we require on
the manifolds will be constructed in the following way. The differential of an
analytic function (see Section 4.1) on an n-dimensional manifold is a linear
differential form and so are linear combinations of differentials of functions, the
coefficients being analytic functions on the manifold. The exterior product of n
such linear differential forms is a differential form of maximum degree and thus
represents a measure.

In this way we shall construct invariant measures on the orthogonal group,
and the Grassmann, and the Stiefel manifolds. The invariance characterizes
them uniquely (up to a multiplicative constant) according to the

TreorEM 4.1. If X is a topological space and O is a transitive compact topo-
logical group of transformations of X onto itself such that HX is a continuous
Sunction of H and X into X, then there exists a finite measure p on X invariant under
9. u 18 unique in the sense that any other invariant measure on %X vs a constant
Jintte multiple of u.

For our special applications we prove the existence of such invariant meas-
ures by actually constructing them. For a proof of uniqueness see Weil [19].
Chevalley [4] gives an account of analytic manifolds and exterior differential
forms on them in chapters 3 and 5, but from a more advanced and abstract
-standpoint.

44. Repeated integrals. The topological product 9]2 X N of two analytic mani-
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folks 9 and N is an analytic manifold. If 21, -, 2,, and 1, - -+ , ¥» are ad-
missible coordinates of points r ¢ I and s ¢ N in domains D; < M and D, < N,
thenz, -+, Zm, y1, - -, Y is an admissible coordinate system in D; X D, C
M X N. Given differential forms wi(r) on IM and we(s) on N and a function
S(r, s) on M X N, then the extérior product of w; and w, is a differential form
on IR X N and we have

[, 70 dndonte) = [ ante) [ 101, Sentr),

for this reduces to the classical formula for repeated integrals when f and the
differential forms are expressed in terms of the coordinates in ©; and D, . A
similar result holds for the whole manifold or any subdomain A < I X N,

L6, 9xeste) = [ @ [ 705 e

because A can be approximated by a union of product sets D; X D, . Ai(s) < M
is the section of A at s and A; is the projection of A on N.

The importance, for us, of this result is that a manifold, which may be Eu-
clidean space, is often homeomorphic to a topological product of manifolds,
apart from a set of measure zero perhaps. And a differential form when trans-
formed to a differential form on the product manifold often splits into the ex-
terior product of differential forms on the component manifolds. Such trans-
formations are useful for evaluating integrals of exterior differential forms and
for deriving sampling distributions.

4.5. The differential form for the invariant measure on the orthogonal group.
Let A be an orthogonal matrix;

(4.22) A'A =1,.

To keep the notation clear, we introduce an abstract group manifold isomorphic
to the group of orthogonal matrices, and denote its elements by Greek letters.
We then regard the elements of our orthogonal matrices as functions on this
abstract group manifold. Indeed, they are analytic functions. Let A(a) be the
orthogonal matrix corresponding to the abstract group element a. However, the
symbol H will be used to denote both a fixed orthogonal matrix and the cor-
responding element of the abstract group; A(Ha) = HA(a).

The differential of a vector or a matrix (such as A(a)) whose elements are
analytic functions on the group manifold, is defined as the vector or matrix of
differentials of the elements. Regarding A as a function of « and differentiating
(4.22) we have

(dA(a))'A(a) + (A(x))’ dA(a) = 0.

Thus (4’ dA)’ = —A’dA. Hence A’ dA is a skew symmetric matrix of linear
differential forms. The exterior product of the super diagonal elements gives us
a differential form
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(4.23) w(@) = JTi; (aida;) = TIi; (a:das; + +++ + ani dany)

where a; = ai(a) is the 7th column vector of the matrix A(a). The differential
form is of degree in(n — 1) = N and is thus of maximum degree. Hence it
defines a measure u on O(n) given*by

(4.24) 4(®) = L II <, da; & < 0n).

TrEOREM 4.2. The differential forms a;da; and w(e) are invariant under the
transformation

(4.25) a—a= Ha

or equivalently .
A(a) » A(@) = HA(a).

This transformation is called a left translation.

Proor. Applying the definition given in (4.12) to the individual elements of
the column vector a;{e), we see that the map (4.25) induces a map of a;(a)
given by
(426) a,-(a) b d dj(ﬁ)
where the elements of the column vector d;(@) are functions of & defined by the
equation d;(@) = a;(H @) and this equals H’a;(@). By Lemma 4.3 applied to
the elements of da;(a), we have

(4.27) daj(a) — dd;j@) = d(H'a;(@)) = H'da;(&).
Hence
ai(e)’ daj(a) — d4:(&)’ dd;(&)
a;(@)HH' da;(&)
= ai(a)’ da;(@),

and this is the value of the differential form a;(e)’ daj(c) at &, that is, the dif-
ferential form a;’ da; is invariant under (4.25).

Since the transform of the product of differential forms is the product of their

transforms, it follows that w(e) is invariant. Q.E.D.
THEOREM 4.3. w(a) 28 tnvariant under a righi-translation

(4.28)

(4.29) a—a = aH.

Proor. The transform of the matrix A(«)’ dA(a) of differential forms is cal-
culated as follows:

Al@) = A@) = AGH™) = A@H',
dA(a) — dA@H'
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and
A(a) dA(a) —» HA(a) dA(@)H’.

The exterior product of the super diagonal elements of the matrix
HA (&) dA(a)H’ will be the transform of w(e). To evaluate it, consider the
transformation

A(a) dA(a) — HA(a)'dA(@)H'’.

This is a linear transformation of the N = 3n(n — 1) linear differential forms
a;(@) daj(@). If a vector of linear differential forms undergoes a linear trans-
formation, then by Lemma 4.1, the exterior product of them is multiplied by the
determinant of the linear transformation. To complete the proof we require the

Lemma 4.4. If 8 7s a skew symmetric matriz which we regard as a point in an
N = in(n — 1) dimensional vector space and if L 1s a fixed matriz, then the trans-
Sformation

(4.30) S — LSL'

s a linear transformation of the vector space whose determinant is a power of the
determinant of L. ’

Proor oF LEMMA. The determinant of the linear transformation (4.30) is a
polynomial, say p(L), in the elements of L. The transformation L,L, is the same
as Ly and L, carried out successively. Therefore, by the multiplication theorem
for determinants (applied to the Nth order determinants)

(4.31) P(LiLy) = p(L1)p(Ly).

But a polynomial p(L) in the elements of a matrix L which satisfies the equation
(4.31) for all matrices L, and L, is a power of the determinant of L (see Mac-
Duffee [12] chap. 3). Therefore p(L) is a power of | L |. Q. E.D.

Applying the lemma to the proof of the theorem, we see that the exterior
product of the super-diagonal elements of HA (&)’ dA(a)H’ is the product of the
super-diagonal elements of A(&)’ dA(&) multiplied by some power of |H |,
which is 1 apart from sign. Hence the transform of w(a) equals its value at &;
that is, w(a) is right-invariant. Q.E.D.

Since w(4) is invariant under left and right translations, so is the measure u
which is given by (4.24).

LEMMA 4.5. u s invariant under the transformation A — A™ =A’.

Proor. Putting

u(®) = j; w(4), T < 0(n)

introduce a new measure v given by »(T) = u(T™') where by T~ we mean the
set of elements of the orthogonal group whose inverses are in T. Then under
. the transformation A — HA we have A’ — A’H’. Thus when T undergoes a
left translation, T~' undergoes a right translation. But g is invariant under right
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translations. Therefore » is invariant under left translations. From the unique-
ness of invariant measures, » must be equal to p apart from a multiplicative
constant, which will be urity since »(0(n)) = 2(0@®)™) = u(O(n)). The result
holds for any compact group. _

Of course it is necessary to prove that the invariant differential forms which
we construct are not identically zero. This will become evident when we obtain
their integrals over the whole space.

As an illustration, let us consider the invariant measure on the proper orthogo-
nal group for the case n = 2.

cosf sinéd
A= . 0§0<2ﬂ’
—sinf cosé

and
w(A) = aydas = cos 0 d(sin 8) — sin 6 d(cos 6) = dé.

4.6. The invariant measure on the Grassmann manifold. In the case of the or-
thogonal group the differential form for the invariant measure was given by a
single expression defined on the whole manifold. For the Grassmann and Stiefel
manifolds this is not possible. Instead we construct a system of differential forms
each defined locally. Their domains of definition together cover the whole mani-
fold, and wherever they overlap, the differential forms are equal. The system of
local differential forms is then regarded as a single global differential form. It
represents the invariant measure.

G, is the space of k-planes p in R", as defined in Section 3.4. For points
in a neighbourhood of a point po & G, let a1, -, @ and by, -+, bax be or-
thonormal column vectors spanning the plane p and its orthogonal complement
respectively, such that the elements of these vectors are all analytic functions
of p. Such a system of vectors can only be constructed locally. The invariant
measure is given by the differential form

(4.32) =¥ TT%- ] das

in the domain where the vectors a; and b; are defined. The system of all such
expressions is a global differential form, denoted by vt (), which represents the
invariant measure on the Grassmann manifold.

There are three things to be proved; (1) that vectors such as a; and b; can be
constructed in the neighbourhood of any point o £ Gi. ; (2) that the differential
form (4.32) does not depend on the choice of the a; and b;, that is, that any two
expressions of type (4.32) are equal wherever their domains of definition over-
lap; (3) that vp is invariant under the transformations of Gy, induced by or-
thogonal transformations of R".

(1) Take n fixed linearly independent column vectors in R" the first k& of
which span p, . Take the orthogonal projections of the first k vectors on p and
of the remaining n — k vectors on the orthogonal complement of p. For p £ O,
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where 9,, is the domain* of Gy, for which the set of projections are linearly in-
dependent, we can orthonormalize the projections on p by the Gram-Schmidt
process to give orthonormal column vectors a; , - - - , ax in p and orthonormalize
the projections on the orthogonal complement of p to give orthonormal vectors
b1, - -- , bu_y in the orthogonal complement of p. Thenay, - ,ax, b1, -+, bns
are the required set of orthonormal vectors spanning p and its orthogonal com-
plement respectively.

(2) Suppose that in a domain D C G, there are two expressions like (4.32)
constructed from vectors a;, b; and @, b, respectively. Let 4, B, A, B be the
respective matrices with these vectors as their columns. Then there exist or-
thogonal matrices H; and H, of respective orders k and » — k whose elements
are analytic functions of p ¢ D such that
(4.33) A = AH,

(4.34) B = BH;.

We can carry out the transformations (4.33) and (4.34) in two stages. 5
Differentiate (4.33), d4 = (dA)H: + A dH,. Premultiply by B/, B'dA =

(B’ dA)H; + 0 since the columns of A and B are orthogonal. Hence by Lemma

4.1

5105 das = | Hy| ITiea b; da,
and

Ik Tk b) dds = | Hy |" T3k TTen b5 dai = 1152t T15-1 0] das .
In a similar way we can carry out the transformation (4.34) and we have
(4.35) T2 115 85 da = IT55 ILiea b) das

Thus the differential form (4.32) does not depend on the choice of a; and b; .
Hence the local differential forms (4.32) agree wherever their domains of defini-
tion overlap and they can be considered as local expressions for a single global

differential form vz, .
(3) Proof of invariance of vr . Let H be a fixed orthogonal transformation:

(4.36) p—q==Hp; p=H" pqeG,.

Suppose a;(p) and b;(p) are the respective sets of orthonormal vectors which
span p and its orthogonal complement, the elements of ai(p) and b;(p) being
functions of p. Then

ai(p) — 4i(q) = a:(H™q),  bi(p) — bi(a) = b(H "q),
dai(p) — ddi(q) = da(Hq),
bi(p)’ dai(p) — by(Hq)’ das(H q)
= b(Hq)’H'H da(H™q) = (Hb;(H9))’ d(Ha:(Hq).

4 Oy is almost all of Gy, .

(4.37)
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Hence
4.38) IIi=t ITiaibi(v) das(n) — 115 Ilim (HO(H ') d(Hai(H™q)).

Since a;(H™'q) = a:i(p) and b;(H'q) = b;(p) span p and its orthogonal comple-
ment respectively, it follows that'Ha;(H 'q) and Hb;(H 'q) span q = Hp and
its orthogonal complement respectively. Therefore the right-hand side of (4.38)
is equal to vz (q). Thus the differential form v (p) is transformed by H to a dif-
ferential form which at g is equal to vz (q). Hence vi is invariant. Q. E.D.

4.7. The invariant measure on the Stiefel manifold. V. is the space of ortho-
normal k-frames in Euclidean n-space, of which we denote the typical member
by an n X k matrix, A, satisfying the equation A’A = I . As in the case of the
orthogonal group, A’ dA4 is a skew-symmetric matrix. Choose an n X (n — k)
matrix, B, whose columns are orthonormal vectors spanning the orthogonal
complement of the plane spanned by the columns of A. As in the case of the
Grassmann manifold, the elements of B must be analytic functions of admissible
coordinates for A. The invariant measure on the Stiefel manifold is given by
the differential form

(4.39) T2k 115 b das [T i<; o das

which is defined almost everywhere on V., .

Expressions like (4.39) can be constructed in a set of domains which cover
the entire manifold. They define a differential form w; which is of maximum de-
gree, namely $k(2n — &k — 1), and therefore represents a measure. (4.39) does
not depend on the choice of B, the proof being similar to the one for G,,, Sec-
tion 4.6 (2). It is invariant under the transformation A — HA where H is an
n X n orthogonal matrix. The proof is a combination of the proofs for O(n)
and G,» . The b; transform like the b; for the Grassmann manifold as in (4.37),
while a; and da; transform like the corresponding quantities for the orthogonal
group as in (4.26) and (4.27).

Finally (4.39) is invariant under the group of transformations A — AH where
H is now a k X k orthogonal matrix. The proof is practically identical with that
of Theorem 4.3.

b. Integrals of the invariant measures.

5.1. Integration of the invariant measure over the Stiefel manifold. We first con-
sider the case k = 1 which is that of the unit sphere in Euclidean n-space. Tke
column vector a is of unit length and can be regarded as a point on the unit
sphere. by, bs, - -+, bn are orthonormal column vectors orthogonal to a. We
have to integrate the exterior differential form

(5.1) 117 b da = wi(a)

over the unit sphere. As we shall see, the differential form is really the element

.of area on the unit sphere. This can be shown by a direct transformation to
spherical polar coordinates, as follows.

Let z, be the unit vector lying along the last coordinate axis and let q be the
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[n — 1]; plane perpendicular to it, which thus contains the first n — 1 coordinate
axes. Let 0, be the angle between a and z, and a be the unit vector lying along
the orthogonal projection of @ on q. 6; and « are new “coordinates” for a, and

5.2) @ = T, cos 0; + asin 6, .

If we exclude the points z, and —z, from the sphere, then 6, has the range
0 < 6, < 7, and « ranges over the unit sphere in the Euclidean n — 1 space, q.
In fact, the unit sphere with z, and —z, removed, is the topological product of

the ranges of 6; and .
To express the differential form, (5.1), in terms of 6, and «, choose b; in the
2-plane spanned by a and z. and such that b, is perpendicular to a; thus put

(5.3) by = —x,8in 6; + a cos 6;.
Choose by, « -, by in q, perpendicular to a. Differéntiating (5.2) we have
(5.4) da = (—z, sin 6; + a cos 6;) d;, + dasin 6; .

Since « is a unit vector and is perpendicular to z, , a’a = 1, 'z, = 0.
Differentiating,

(5.5) a'da = 0, do'z, = 0.
Therefore, from (5.3), (5.4) and (5.5)
(5.6) bida = db, .

Since by, -+ - , by are orthogonal to z, and «,
bjda = bjda sin 6 j=2+-,n—1
Hence, if we repeat the procedure,
73 b;da = sin "6, d6; [17= b da
6.7 = sin "7’ sin "0, - - - sin 0,2 d6, db; - - - Ay
0<0pa1<2m0<t:;<mi=1-,n—2.

Hence the differential form (5.1) is simply the element of area on the unit
sphere. Integrating (5.7), we have

(538) ‘ [T 5;d6 = A@)
where A (n) is the integral of (5.7) which is the area of the unit sphere in R":
27t

JIn the general case, the invariant measure w; on Vi, is represented almost
everywhere by the differential form (4.39).
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THEOREM 5.1.

(5.10) fv k

where A(v) is the area of the unit sphere in R’ given in (5.9).
Proor. It is sufficient to prove that

k
w;’,‘=IIlA(n—i+l)

"

(5.11) f o = A(n) Wil
Vi

Vik—-1m-1

where wp77 is the invariant measure on the Stiefel manifold Vi_y,n_y.0f (k — 1)-
frames in R™*, because iteration of (5.11) gives (5.10).
Rewriting (4.39) in full, we have

wi = asda; azday - - - arday byday - - - by day
- azday - -+ ardas bidas - - by s day
(5.12) ’

. b;dak b;_kdak.

The differential form in the first row depends only upon a; . In fact, by an argu-
ment similar to the proof of (4.35) one can show that the first row remains un-
altered if the vectors az, -+, ax, b1, -+« , ba in it are replaced by any set
of orthonormal vectors orthogonal to a; . Comparison with formula (5.1) shows
that the first row of (5.12) is the element of area on the unit sphere Vi, given
by the equation aja; = 1 in R". Denote it by «} (a1).

For a fixed a1, (a2, - -+ , ax) range over all (¢ — 1) frames in the (n — 1)-plane
perpendicular to a;. Denote this set of (k — 1)-frames by Vi_j,.-1(a1). The
integral (5.10) can then be written as a repeated integral

(5.13) [ o= ot o
Vk,n Vin Vk-1n-1(a1)

where & is the differential form consisting of the last & — 1 rows of (5.12). Al-
though & and the range Vi_1,,-1(a1) over which it has to be integrated both de-
pend on a; , nevertheless the integral

514 ola) = [ &
Vi-1,n-1(61)

does not depend on a; , as we shall now prove.
Let H be any fixed n X n orthogonal matrix. Then

¢(a1)=f asdas -+ biday - -+

Vi-lin-1(1)

= a;H’H daz e b;H'H daz .

Vi-1n-1(a1)



60 A. T. JAMES

Put
= Hay
@; = Ha; 1=2,--,k
b = Hy; j=1+-,n—k.
As (a2, - - -, ax) ranges over Vi_y,n1(a1), (@, - - - , @) ranges over
Viain1(Hay) = Vie1,n-1(G1).
Hence
(5.15) o) = [ ada- Bdd e = o).
Vi-1m-1(1)

Any unit vector @ can be obtained from a; by a suitable choice of H. There-
fore p(a1) does not depend on a; and is simply a constant ¢.

Choose H so that @, is a vector with its last coordinate unity and all others
zero. Since @, -+ - , by - - - are orthogonal to @, , each will then have zero as its
last coordinate. Hence ¢ can be seen to be the integral of the invariant measure
on the space of & — 1 frames in R"™. Since ¢ is a constant, we can integrate
over the unit sphere in the right-hand side of (5.13) giving (5.11), and the the-
orem follows. ‘

5.2. Integration of the invariant measure on the orthogonal group. It is a special
case of the integral for the Stiefel manifold. If A is an n X 7 orthogonal matrix
then from Theorem 5.1 we have

k k k 21‘,;'/2
(5.16) fwz’§=fHa§daj=HA(v)=Hi:m—z>-

<j tmm]l i=1
(5.16) gives the integral over the whole (improper) orthogonal group, that is,
including the orthogonal matrices with negative determinant. The formula,
(5.16), is consistent if we take the area of the unit sphere in R', which consists
of only two points, namely =1, to be 2.

5.3." Integration of the invariant measure on the Grassmann manifold. The dif-
ferential form, (4.39), representing the invariant measure on the Stiefel mani-
fold looks like a product of differential forms representing the invariant meas-
ures on the Grassmann manifold and the orthogonal group. It suggests that
the integral of the invariant measure on the Stiefel manifold should be the
product of the integrals of the invariant measures on the Grassmann manifold
and the orthogonal group, and such is, indeed, the case. Having evaluated the
integrals of the invariant measures on the Stiefel manifold and the orthogonal
group, we can thus find the integral of the invariant measure on the Grassmann
manifold.

If A € Vi,»is an n X k matrix with orthonormal column vectors, the column
vectors of A span a k-plane in R" which can be regarded as a point, b, in the
Grassmann manifold Gy,.(r = n — k). The k-frame is determined uniquely by

W
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the specification of the plane, p, and the orientation of the k-frame in p. To
specify the orientation, introduce another ‘“reference’” k-frame, represented by
the columns of an n X k matrix, H, in the plane p, the elements of H being
analytic functions of p for almost all p. Then

(5.17) " A=HC
where C is a k X k orthogonal matrix. p and C are functions of A and the trans-
formation 4 <> p, C is one to one where A ranges over almost all the Stiefel
manifold, p over almost all the Grassmann manifold and C over the orthogonal
group of order k.

Differentiating (5.17)

dA = HdC 4+ dHC.

It can be assumed that the n X (n — k) matrix, B, introduced in Section 4.7
to construct the invariant measure on the Stiefel manifold, is a function of p
alone. Since B'H = 0,

(5.18) B'dA = B’ dHC
(5.19) A’dA = C'dC + C'H' dHC.

Therefore J

(5.20) II 116 da: = | C " TLII b; dh: = T1 11 b; dh:
(5.21) I1i<; @} da; = I1%<i ¢ de: + »dH

where xdH signifies differential forms involving the elements of dH. The right-
hand side of (5.20) is a differential form defined on the Grassmann manifold and
is of maximum degree, while H is a function defined on the same space. There-
fore, the product of any differential of dH with (5.20) is zero.

Hence

(5.22) IT I1 %} da: 11 aj da; = I I1 b dhi 11 c; de:

and

528) K= [ of = [[Tsjan=[oi [ [b= 3 46) /340,

ymn—~k41

where A () is given by (5.9).

6. Measures invariant under an induced group of transformations.

6.1. Definitions. If f is a map of a space X on a space 9 then f~y (orf™'T)
for y ¢ P (or T < 9) denotes the inverse image of y (or L) that is, the set of
all points of ¥ mapped by finto y (or T). We say that a measure x on ¥ is mapped
by f on a measure & on 9 if, for every (measurable) set T < 9, 4(Z) = u(f~'T).

A many-to-one map f of a space X on a space ® divides X into a system of

equivalence classes, each equivalence class being the inverse image f~ 'p of a
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point p ¢ ®. The set of equivalence classes is thus in one-to-one correspondence
with the points of ®. Now if § is a group of transformations of ¥ on itself each
of whose elements transforms each equivalence class onto an equivalence class,
then $ may be said to nduce a group of transformations of the space of equiva-
lence classes. Since each equivalence class corresponds to a point in @, § thus
induces a group of transformations of ®.

DerFiniTION. Let § be a group of one-to-one transformations of a space ¥ onto
itself and f be a map of X on another space ®. If for each p ¢ ® and each H ¢
there exists a point p; ¢ & such that

(6.1) H({'p) = ';

then we define the transformation H; of ® by the equation p; = H;p and say
that the transformation § acting on ¥ induces the transformation H; on ®
and that the group § induces a group 9y .

LemMA 6.1. Suppose that f maps a space ¥ on a space & and that a group
of transformations of X onto itself yields an induced group 9 of transformations
of ® onto itself. Let u be a measure on X mapped by f to a measure i on ®. Then
if u 18 tnvariant under O, i is invariant under ;.

Proor. For a measurable subset £ C ®

AHE) = p{f THE} = p{Hf'T} = p{f7T} = 4{T}.

As a very simple illustration of the lemma, let ¥ be the Euclidean 2-plane and
O the group of rotations of it. Let u be a finite measure on ¥ invariant under
$, that is, circularly symmetrical, for example ¢~ “1**¥dg,dz, . Introduce polar
coordinates (r, 8) in the plane. Let ® be the unit circle with 8 as its coordinate
and let f map a point (7, 6) in the plane, on 6. f maps the measure x on a measure
4 in ®. Then the group $ induces a group of rotations of the unit circle, under
which, by Lemma 6.1, the measure i must be invariant. Thus x is the uniform
measure on the circle. We give several applications of the lemma.

6.2. Distribution of the plane spanned by a set of random vectors. Let X be
an-n X k matrix whose rows are n independent observations from a normal
k-variate distribution with means zero, that is, with the distribution (2.1). As
pointed out in Section 2 the distribution is invariant under the orthogonal
group of transformations (2.2). Consider the columns of X as k vectors in Eu-
clidean n-space namely, z;, -+, zx, and let p = f(z) be the plane spanned
by them. As, with probability one, «;, -+, 2« will be linearly independent,
the plane will be k dimensional. Thus f is a map from the space of n X k ma-
trices, %, to the Grassmann manifold G, (r = n — k). The orthogonal group
of transformations of ¥ induces a group of transformations of G . Hence, by
Lemma 6.1, the distribution of p is invariant under the induced group of trans-
formations. According to Sections 4.3 and 4.6 the invariance characterizes the
distribution of p uniquely as the invariant measure on the Grassmann manifold,
and the probability density is given by the differential form

(6.2) K T15=F T15m bidas .
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The invariance of the distribution of p was recognized by Hotelling [8]. The
type of argument, given above, to prove the invariance has been used by T. W.
Anderson in other connections.

6.3. Relation to.the invariant measure on the orthogonal group. As a second
application of the lemma we shoWw how the invariant measures on the Grass-
mann and Stiefel manifolds may be derived from the invariant measure on the
orthogonal group. It was shown in Sections 3.3 and 3.4 that the Grassmann
and Stiefel manifolds may be regarded as coset spaces of the orthogonal group.
Let po be a fixed k-plane in R", (thus po &€ G,.) and A ¢ ¥ an invariantly dis-
tributed orthogonal matrix. The matrix A transforms R" into itself and induces
a transformation of Gy, into itself. The mapping

(6.3) A—Ap =1p

from ¥ to Gy, maps the invariant measure on ¥ to a measure on Gy, which,
by Lemma 6.1 must be invariant.

The representation of a homogeneous space in terms of the group is very
useful because the group has more symmetry, namely, a group element can be
transformed from both left and right by other group elements and also the
inverse can be taken. The representation of the invariant measure on the Grass-
mann manifold in terms of the invariant measure on the orthogonal group will
be used in deriving the distribution of the canonical correlation coefficients.

The invariant distribution on the Grassmann manifold was obtained above
by a random transformation of a fixed plane p, by an invariantly distributed
orthogonal matrix. The result still holds if p, has an arbitrary probability dis-
tribution provided it is independent of A.

TrEOREM 6.1. If Py 78 @ random point in the Grassmann manifold with an arbi-
trary probability distribution and A is an independently invariantly distributed
orthogonal matrix and if

(6.4) p=Ap

then p 1s invariantly distributed in the Grassmann manifold.

Proo¥r. Suppose po € Gy, p € G- and A £ A. (6.4) is a map of A X Gy onto
Gr.» . The joint distribution of the pair (4, po) in A X G, is invariant under the
group of transformations

(6.5) (A’ pO) - (HA) 130)

where H is an orthogonal matrix or transformation. But the transformation
(6.5) induces the transformation p — Hp in Gy,.. Hence by Lemma 6.1, p is
invariantly distributed. Q.E.D.

In a similar way one can show that the invariant measure on the Stiefel
manifold can be obtained by a random orthogonal transformation of a fixed
k-frame, or even of a random k-frame provided it is distributed independently
of the orthogonal matrix.

6.4. Critical angles between two planes.
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TuEOREM 6.2. If p and g are planes of dimension p and q respectively, p < q,
in Euclidean space R" and if 0 is the angle between an arbitrary vector a in p and
an arbitrary vector a in q, then as a and « vary over p and q respectively, 6 has p
stationary values, 3w = 6; = 6, = --- = 0, = 0 corresponding to pairs of vectors
say a1, a1, -+, Gy, ap. The stationary angles 0; are uniquely determined by
'p and q and if no two of them are' equal, the corresponding vectors are uniquely
determined apart from length and a simultaneous reversal of direction of a; and
a; . a; 18 orthogonal to a; and a;(i #= 7).

The angle between a; and «; is, of course, 6;. These angles are called the
critical angles between the planes p and q. For a proof of the theorem see Hotel-
ling [8] or Roy [17].

7. Application to the distribution of the canonical correlation coefficients
and the roots of certain determinantal equations. If the rows of the
matrix [X:Y] = [21 - - 2%y - -+ y,] are n independent samples from a (¢ + ¢)-
variate distribution, with means all zero, and if p and q are the planes spanned
by the column vectors z;, -+, ox and ¥y, - -+ , y, respectively, then Hotelling
[8] (see also Roy [17]) showed that the sample canonical correlations between
X and Y are the cosines of the critical angles 6;, - - - , 6; between p and q where
I = min (k, Q)- Denote (01 ] 01) by 4(”? q)

The canonical correlation coefficients are often expressed as the roots of a
determinantal equation. Let X; be the n X k matrix whose 7th column is the
orthogonal projection of the 7th column of X on the plane spanned by the column
vectors of Y. Then the roots of the determinantal equation | X1 X; — A X'X | = 0
are the squares of the canonical correlation coefficients, cos 6; . The same problem
also arises from multivariate analysis of variance (at least, in the null case).
For this problem Y is fixed instead of random, for example, ¥ can be taken as
the matrix whose column vectors represent the first ¢ coordinate axes.

The distribution of the canonical correlations for samples from normal popu-
lations in the null case, was found simultaneously by Fisher [5], Hsu [9], Roy
[16] and Mood [13], in 1939. Let us illustrate the application of Grassmann and
Stiefel manifolds by giving yet another derivation!

For the null case, that is, when X and Y are independent, Fisher has pointed
out that the assumption that Y is normally distributed can be dropped. Thus
assume that the rows of X are independent samples from a k-variate normal
distribution (with means zero) and that Y has any arbitrary distribution inde-
pendent of that of X. In Section 6.2 it was proved that the plane p is invariantly
distributed. Since Y is independent of X, q is independent of p. From the joint
distribution of p and q we derive the distribution of the critical angles, Z(y, q).

The distribution of Z(p, q) remains the same if the random plane q is replaced
by a fixed plane. We prove this by representing the distribution of p in terms
of the distribution of an invariantly distributed orthogonal matrix as shown
in Section 6.3. Let A ¢ % be a random orthogonal matrix distributed invariantly
and independently of q. Let po be an arbitrary fixed k-plane. Then Ap, is a
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random k-plane distributed invariantly and independently of q and thus the
joint distribution of Ap, and q is the same as the joint distribution of p and g.
Hence £ (Apo, q) has the same distribution as Z(yp, q).

Since the critical angles between two planes are invariant under their simul-
taneous orthogonal transformatior, we have, on multiplying Ap, and q by 4™

(7.1) Z(Apo,q) = £(p, A79).

But by Lemma 4.5, A~ has the same distribution as A; therefore Z(Ap,, q)
has the same distribution as Z(po, Aq). Since, by Theorem 6.1, Aq is invari-
antly distributed, it follows that Aq has the same distribution as Aqo, g0 being
an arbitrary but fixed ¢g-plane

We have now proved that the distribution of £ (p, q) is the same as the dis-
tribution of Z(p,, Aqo) which, again, is the same as that of Z(Ap,, q). We
can use whichever is the more convenient.

CaseE 1.7m = k + g. Let us choose the plane of the smaller number of dimen-
sions as the random plane. Suppose it is Ap, (hence £ =< ¢) which we shall now
denote by p. Were & > ¢, we could simply use £ (o, Aqo) instead of Z (Ao, qo).
Choose qo as the plane spanned by the first ¢ coordinate axes.

If we take arbitrary orthonormal vectors a;, - - - , axr in p and n — k arbitrary
orthonormal vectors by, -+, b, in the orthogonal complement of p, then
according to Sections 4.6 and 6.2 the distribution of p = Ay, is given by the
differential form (6.2).

We shall see that apart from a set of measure zero, the Grassmann manifold
is analytically homeomorphic to the topological product of a simplex in R?,
over which the critical angles range, and two Stiefel manifolds. By transforming
the differential form to a differential form on the product space and integrating
over the two Stiefel manifolds, we find the distribution of the critical angles.

According to Theorem 6.2 the vectors in p which make the critical angles with
0o are uniquely determined by p apart from length and reversal of direction,
provided no two critical angles are equal and no critical angle is 0 or 3. Let us
exclude these exceptional cases as they have measure zero.

The orthonormal column vectors ai, ---, a: in (6.2) can be chosen arbi-
trarily in p. Let them be the vectors which make the respective critical angles
with go and such that the first component of each a; is positive. Such conditions
determine (a1, -+, ax) uniquely as analytic functions of p for almost all p,
that is, on a set @ of p excluding merely a set of measure zero. Let a;, -+ - , o
be unit vectors in gqo which make the respective critical angles with p. Then
a, * -, a are mutually orthogonal and lie along the respective projections of
@1, , 0, 0n G. Let B1, -+, Br be the orthonormal vectors lying along the
respective projections of a;, - - - , a; on the orthogonal complement of g, . Thus

azai = 0ij, B:BJ = 0ij, a:ﬁj =0, ,j=1---,k

(7.2) .
a; = a; cos 0; + B;sin 6; t=1---,k.
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Since (a1, -+, ox) is a k-frame in the g-space qy it can be regarded as a point
in a Stiefel manifold. Let V;,, denote the part of this Stiefel manifold over which
(a1, -+, o) ranges. From the condition imposed above upon a;, ---, ax,
it follows that this will be the set of all orthonormal (ay, - - - , &) such that the
first component of each vector is positive. On the other hand, (8;, --- , 8) will
range over the whole Stiefel manifold V3 ., . Let © be the set of (6;, -+, 6)
such that 37 > 6, > 6. > --- > 6, > 0.

Thus p ¢ G determines (8;, - -+ , 6:) €0, (or, -+, ) € Vigand By, -+, B) €
Vi.n—q uniquely, and conversely p is determined by these, because by (7.2)
they determine a set of vectors a;, - - -, a; which span p. The transformations
are not only one-to-one but also analytic; hence G is analytically homeomorphic
to the topological product of ©, Vi, and Vi.._y . By a suitable choice of by, - - -,
b._r we express the differential form (6.2) on G as a differential form on the
product space.

Differentiating (7.2), we have the relations

aide; = 0, BidB: = 0 =1,k

(73) aida; = —ajda;, BidB; = —Bj dp: i#j Lj=1-,k
da; = (—a; sin 0; + B; cos 0;) d6; + da; cos 6; + d; sin 0

i=1,-,k

Since a; and 8; lie in fixed mutually orthogonal planes
74 i dB; = B des = 0. Gi=1 -,k

Now (b1, - -, ba) is an arbitrary set of orthonormal vectors in the orthogonal
complement of p. By choosing

(7.5) b; = —a;sin 0; + B; cos 0; t=1,---,k
We have

(7.6) b: da; = do; i=1,-,k
and

(7.7) bi da; = —a; da; sin 6; cos 0; + B} dB; cos 6; sin 6;

i%j Gj=1 -,k

By using ‘1‘;he relations (7.3) and remembering to change the sign when re-
versing the order of two linear differential forms, and remembering that any
term containing a repeated linear form is zero, for example, (a; da;)(aj da;) = 0,
we calculate that
(7.8) (bida;)(bidas) = (ajdes)(BidB:) (cos® 8; — cos® 6;)

i1#j 4,5=1---,k.
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Choose the orthonormal vectors by41, - - - , by in go perpendicular to a; , - - -,
ay, and choose bgy1, «*+ , bax in the orthogonal complement of g, perpendicular
to B, -+, Bx. Then by, -+, bsx are orthonormal and span the orthogonal

complement of p. Furthermore
, bidascos0; i=1,---,k j=k+1,---
79  bida=1 ’ 4
b; dB; cos 0; t=1 .-,k j=q+1,---,n—k.

Multiplying (7.6), (7.8) and (7.9) according to the rule of the exterior product,
we see that (6.2) becomes

n—k k k n—k
K'IHHb da; = K_IHa;da.HH bda,HB,dB.II 11
7 10) =] j=1 <J =1 je=hi il je=g+1
( * , n—q—k _k
-b; dp; (:[I1 cos 0;) (II1 sin 0,-) 11 (cos2 0; — cos® 6;) doy - - - dby.
i= = i<j
Thus a1, -, ar and B, -+, B are invariantly distributed k-frames in

go and the orthogonal complement of qo respectively. Hence the invariant dis-
tribution on the Grassmann manifold can be transformed into three independent
distributions, namely, the distribution. of the critical angles that the plane
makes with a fixed plane, and two invariant distributions in Stiefel manifolds.
Since the restriction on the a; implies that the first component of each a; is
positive, the a; , - - - , ax range over the (27°)th part of the Stiefel manifold while
B1, : -+, B ranges over the whole Stiefel manifold.
Therefore by Theorem 5.1

k k ) k
(7.11) f II &} de: IT fI bidas =27 [] A(g — 3 + 1)
1<Jj tem=]l jumk+1 =1
and
k , k n—k , k
r12)  [TIgas 11 T bjass = JL Aw — g — i + D).
<j =1 j=g41 t=1

Hence the distribution of the critical angles is
k

k o~k / k n—g—k
(7.13) K(n, k, q) (Dl: cos 0,-) <I]; sin 0.-) H (cos® 6; — cos® 6;) dby -+ + db,

<j

where

and
25"/

The distribution of the canonical correlations is found by putting r; = cos 6;.

An) =
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CasE 2. ¢ < n < k + ¢. The planes p and q must intersect ina k + ¢ — n
dimensional space; therefore k£ + ¢ — = of the critical angles will be identically
zero, leaving only 6,, -- -, 6,_, different from zero.

CasE 2a. k = q.

Step I. According to (7.1) we can take a fixed plane p, and a random plane q
instead of pand qo. If a;, - - - , @, arechosen in g and b, - - - , ba_, in the orthog-
onal complement of q, then the distribution of q is given by

1 -
K~ 3,1 H?_lq bj da; .

Step II. But this differential form equally represents the distribution of the
orthogonal complement, ¢*, of g, which has dimensions n — ¢ < k. Indeed

q n—q fn—q q
(7.15) K ]I I1 bidae = k7 T1 11 af db;.
t=l jaxl teel joml
The critical angles 67 , - - - , 6%_, between q* and p, are the complements of the
nonzero critical angles between q and p, , that is
(7.16) o’:=’§'—o,- i=1---,n—gq.

We can carry out the preceding analysis, interchanging the roles of a; and b; .
Using the correspondences

old New

n n dimension of space

k n—gq dimension of random plane
q k dimension of fixed plane

from (7.13) we obtain the distribution of the 67 :

n ktg—n [/ n— gk
Kn,n — ¢ k) (IT; Cos 0?) (If sin 03‘)

fml

n—q
- I1 (cos® 6% — cos® 6%) do¥ - - - dot_,
i<i

and putting 6F = ir — 6;, the distribution of 6; :
. n—q ktg=—n [n—g a—k
K(n,n — q,k) (Hsin(h) <Hcos0.->
Tl 1

t=1

(7.17) B
. Ii; ((3082 oj b COS2 0;) d01 e dﬂn_q.
i<

Case2b.k = ¢ k < n < k + ¢q. We only require Step II. That is we take
the orthogonal complement of p, instead of p, as the random plane. Hence
thie correspondences are
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Old New

n n dimension of space

k n—k dimension of random plane
q q dimension of fixed plane.

The distribution of 67 is

n—k k+q—n { n—k —a
Kn,n —k, q) ( cos 0?) .\H sin 0?)
==l 1=1

n—k
1T (cos® 6% — cos® 6%) dot - -- dot_.
<]

and hence of the 0; is

‘n—k k+g—n /n—k k—q
Kn,n—k q) (H sin 0;) (H cos 0,-)
=1 j:

j=1

(7.18)

n—k
. H (cos® 8; — cos’ 6;) dby « -+ dB,_y.
i<j
As before, the distribution of the canonical correlation coefficients is obtained
by putting r; = cos 0;.

8. Decomposition of the distribution of a normal multivariate sample.

8.1. Introduction. The distribution of n independent observations from a
univariate normal population with zero mean and unit variance can be split
into two independent distributions by transformation to spherical polar co-
ordinates; namely, the x distribution and the invariant distribution of a vector.
The latter can be expressed in terms of the element of area on the unit sphere
in R". This result is useful in deriving the various sampling distributions.

By using the exterior differential forms (see Sections 4.5 to 5.2), for the in-
variant measures on the Grassmann and Stiefel manifolds, we shall derive the
multivariate analogue of this decomposition. Let X be an n X k matrix (k < n)
whose rows are n independent observations from a normal k-variate population
with means zero and variance covariance matrix =. X is distributed as in (2.1).

TueoreMm 8.1. The distribution (2.1) of a normal k-variate sample can be de-
composed into three independent distributions

a. essentially the Wishart distribution,

b. the invariant distribution of the plane spanned by the vectors x,, -+ - , T ,

c. the invariant distribution of the orthogonal k X k matriz which determines
the orientation of 1, - -+, xr tn the plane they span.

The process of decomposition yields, incidentally, the distribution of the
latent roots of the sample variance covariance matrix, a distribution found by
Fisher [5], in the special case that all the population latent roots are equal.

Let X be an n X k matrix distributed as in (2.1). We can put

. (8.1) X=ALG
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where
1. A is an n X k matrix such that

2. Lisak X k diagonal matrix with l; > I, > --- > I > 0 down the diagonal,
I3, ---, I being the latent roots of XX,

3. Gis a k X k orthogonal matrix with the elements in the first row positive.
Equation (8.1) holds for almost all X and determines 4, L, and G uniquely.
To obtain (8.1), let G be the matrix satisfying Condition 3, which reduces
X'X to diagonal form L’ that is, such that X’X = G L’¢". Putting 4 = X G L™
yields (8.1) with A satisfying (8.2). (8.1) implies that the Euclidean space R™
of matrices X is, apart from a set of measure zero, analytically homeomorphic
to the topological product of a Stiefel manifold V., , a simplex in R* and part
of an orthogonal group manifold, over which 4, L and G range respectively. We
now express the volume element 11dz:; ; of R™ as an exterior product of differ-
ential forms on these manifolds.

Differentiate (8.1)

(8.3) dX =dALG@ + AdLG + A LdG".

Choose an n X n — k matrix B such that the partitioned matrix [4 | B] is orthog-
onal. Premultiply (8.3) by the transpose of [A | B] and post-multiply by G;

(] oxe - i) o+ [ 5]+ 25

_ I:A’dA L+dL-LG dG:I
B'dA L

(84)

since G’ d@G, like A’ dA, is skew symmetric (cf. Section 4.5).

To evaluate the exterior product of the left-hand side of (8.4), consider first
a single column dz; of dX. By Lemma 4.1 the exterior product of the elements
of the transformed vector [A | B)'dz; is | A | B | ][ 71 dz:; . Hence the exterior
product of the elements of the matrix [A | B/'dX is| A | B|* I]:.; dvi; . In the
left-hand side of (8.4) the row vectors of the matrix [4 | B} dX are transformed
by G. Hence the exterior product of the elements in a single row will be multi-
plied by | @ | and since [4 | B/'dX has n rows, the exterior product of all the
elements is multiplied by | @ | " . Therefore the exterior product of the elements
in the left-hand side of (8.4) is

(8.5) ‘ |4 |B|*|6G|"]L.;dwi;
which equals J]:,; dxi; since [4 | B] and G are orthogonal matrices.

The exterior product of the (i)th and (j7)th elements of the matrix on the
right-hand side of (8.4) is
(8.6) (a:dajl; — lyg: dg;)(aj dad: — l,g; dg:) = (aida;)(gi dg)(T — 13).
1#] i;j=1!""k
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By considering that the row vectors of the matrix B’ d4 are transformed by L
we see that the alternating product of the elements of the matrix B’ dA L is
8.7) | L | " IT5m IT3E 05 das

where b; is the jth column of Bwand a; is the ¢th column of A. Therefore, from
(8.5), (8.6) and (8.7)

k n—k k k
I dzi; = <III z.~) I<I @ -1 dh--- diy I<I g: dg;

[~

(8'8) k n—k k
11 ai da; IT I 0} das.
<] jeml Teml

This is an interesting decomposition of the volume element of the nk-dimen-
sional Euclidean sample space.’ The differential form

k
(8.9) H g: dg;

<j
is the invariant measure on the orthogonal group, which was discussed in Sec-
tion 4.4, and the differential form

k k n—k
(8.10) 11 &) da: I1 11 0} da:
1<J i=1 jml

is the invariant measure on the Stiefel manifold V;,, of k-frames in R" (see
Section 4.6). The decomposition leads immediately to the distribution of the
latent roots of the sample variance covariance matrix.

8.2. Latent roots of the variance covariance matrix. The distribution of the latent
roots, I, « - , Iz , is found by integrating over the Stiefel manifold and over the
group of orthogonal matrices. Since the density function in (2.1) does not depend
upon A, the integral over the Stiefel manifold can be evaluated separately and
is given by (5.10).

Let C be the k¥ X k orthogonal matrix which reduces Z to diagonal form

M
(8.11) C'2C =A =
i
The columns of C' are linear functions which give the extremal variances in the
population. Since the columns of G are the linear functions which give the ex-

tremal variances in the sample, G is the maximum likelihood estimate of C.
From (8.11) and (8.1)

k
(8.12) AED> ‘iki ol = =
v (8.13) x:'xj = En:ge,,g,-,. l,f.

5 This corresponds to the result given by Olkin [14] p. 29.
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Hence from (2.1), (8.8), (5.10), (8.12) and (8.13) we get the joint distribution
of the latent roots I3, - - - , i of X’X and the linear functions G;

ﬁA(n—i+1) &

daF(l3, -, ;@) = = . % H(l%—l?)
(8.14) @)™ 29k T ari2 ™
=1
k A }(n—k—1) ® s A ,
' (I.I 2) T @ o 1T g,

where A(») is given in (5.9).
To obtain the distribution of the latent roots of X’X alone, put § = C'G.
Being the invariant measure,

H’$<i 9; dg; = H':<f 8 ds; ..
By dividing (8.14) by 2°, we can drop the restriction that the elements in the

first row of G must be positive and thus let G and hence S range over the whole
(improper) orthogonal group. The distribution of the latent roots of X’X is then

k
H Aln — i+ 1) /5 \te—k-1 _k
aF@s, -+, 1) = = (II1 z2> 1@ -1

. A A
(2r)r 2 [T b !
=1

k
( [t b ds,.) e d
3
the integral being taken over the orthogonal group.
In the special cases
a. When the population latent roots, A;, are all equal, the exponential term

in the integral becomes

—_ k 2
o amzk_ 1

that is, independent of S, and we only have the invariant measure on the orthog-
onal group whose integral is given by (5.16). This distribution was found by

Fisher.
b. When n = 2, we can put

cosf —siné
S=]\. 0<0<2r
sin 6 cos 0

ssds; = do

and the integral is expressible as an imaginary Bessel function of zero order as
given by Girshick.

8.3. The Wishart distribution. The variables l;, - -+, &x , G, can be expressed
in terms of X'X.
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From (8.1) X’X = G L’ G". Differentiating and pre- and post-multiplying by
G’ and @ respectively
(8.15) ¢ dX'X)@ = ¢ dG L’ + L’ dG’ G + 2L dL
=@ dG L’ — L' ¢ dG + 2L dL.
The (7, j)th element of the matrix in the right-hand side of (8.15) is
i dg; @ — 1) i j
21; dl; 1= 7.
To evaluate the alternating product of the diagonal and super diagonal elements
of the left-hand side of (8.15), notice that
dX'X) > @ dX'X) T

is a linear transformation of d(X’'X), regarded as a vector in a space of dimension
1k(k + 1). The coefficient of st: d(z:z;) will be the determinant of this linear
transformation, which, by an argument similar to the proof of Lemma 4.4, is
proved to be a power of | G | which is 1. Hence the exterior product of the diago-
nal and super diagonal elements of the matrix on the left-hand side of (8.15) is

(8.17) IL%s; d@iay).
(8.17) and (8.16) give

@®18) II d@izy) = 2 (II z) L@ —1)I]g:dgsdl--- di.
1<j [ <j

<j

(8.16)

Using (8.18) to substitute for H'ﬁq g: dg; in (8.8) yields

n—k k
(8.19) H dzi; = 27% | XX [P0 H d(x'z;) H a; da; I-Iz II1 b; da;.
) Juml tem

Adjoining of the density factor of (2.1) and integration over the Stiefel manifold
(given by (5.10)) yield the distribution of X’X which is essentially the Wishart
distribution:

dF(X’X) __I_E_‘:_H A(n —-v+ 1) I X'X li(n—k—l)

(2 )ink 21:
D 1T aldia)
i<d

(8.20)

where A (») is given in (5.9).

8.4. The general decomposition. Formula (8.19) shows that the distribution
(2.1) of a normal multivariate sample can be decomposed into two independent
distributions, a Wishart distribution and an invariant distribution on the
Stiefel manifold.

. To split off the distribution of the plane spanned by the columns of X, we
decompose the differential form
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(8.21) 114} da: TI 1] bidas

for the invariant measure in the Stiefel manifold into two differential forms
representing independent distributions, namely, the invariant measure on the
Grassmann manifold and the invariant measure on an orthogonal group of order
k. The decomposition is given by equation (5.22).

From (5.22) and (8.19) we have the complete decomposition of the distribu-
tion (2.1):

z i —itr (Z”1x’ n—k~— :
dF(X) = (;ngnkji ¢ itr (21X’ X) , X'X Ii( k—1) gj d(x;xj)
(8.22) nk ko LI
- T 11 b5 dhs, I] ¢5 de,
=1 =1 i<j

.

which is the result stated in Theorem 8.1.

In the univariate case, the Wishart distribution becomes the x’, the invariant
measure on the Grassmann manifold becomes the element of area on the unit
n-sphere, and the third factor disappears.
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