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Forn = 2and a; = as = by = 1, b, = —1 we obtain from (22)
f:(&) = exp [— (o1 + oD)t*/2]
This shows that o7 = o7 and establishes Bernstein’s theorem.
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ADDENDUM

The authors are indebted to Professor G. Darmois for calling their attention to
his note in the C. R. Acad. Sci. Paris, Vol. 232 (1951), pp. 1999-2000 in which he
proved the theorem for n = 2 without assuming the existence of moments. He
later extended this to the case of arbitrary n. His paper will be published in the
Bulletin of the International Statistical Institute. The method of proof used by
Professor Darmois is different from the one presented in this paper. The authors
learned that these results were also obtained by methods similar to Darmois’
by B. V. Gnedenko (Jzvestiya Akad. Nauk. SSSR, Ser. Mat., Vol. 12 (1948),
pp. 97-100) for the case n = 2 and by V. P. Skitovich (Doklady Akad. Nauk.
SSSR (N.S.) Vol. 89 (1953), pp. 217-219) for any n.

While reading the proofs of this paper the authors learned that the theorem
was also discussed by M. Logve in the appendix to P. Lévy’s “Processus stochas-
tiques”, Gauthier-Villars, Paris, 1948, pp. 337-338.
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ON OPTIMAL SYSTEMS!
By Davip BLACKWELL

Howard University

1. Summary. For any sequence z;, @, --- of chance variables satisfying
|z, | £ 1 and E(@, |21, -+, Zpy) £ —u(max | z. || 21, +++, Ta1), where u
is a fixed constant, 0 < u < 1, and for any positive number ¢,

Pr{sup (&s + -+ + z.) =t} §<1—u>'
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Equality holds for integral ¢ when @y, xz, - - - are independent with
Priz, =1} = (1 — u)/2, Pri{z, = —1} = (1 + w)/2.

This has a simple interpretation in terms of gambling systems, and yields a
new proof of Lévy’s extension of the strong law of large numbers to dependent
variables [2], with an improved estimate for the rate of convergence.

2. The theorem and its interpretation. We consider a gambling house which
will play any game named by the customer, provided that (1) the customer’s
maximum gain or loss does not exceed one unit and (2) the customer’s expecta-
tion does not exceed —ug, where g is his maximum gain or loss. A customer
with unlimited credit wishes to devise a system of play which will maximize
his probability of eventually becoming at least ¢ units ahead, where ¢ is a fixed

positive number. Thus a system is a sequence x;, ;, - -+ of chance variables
satisfying
1) |z | =1
(2) E@. @, , @) £ —u(max |z, | |21, -+, Ta).
A particular system is obtained by letting z;, xz, - -+ be independent, with

Pr{z, =1} = 1 — u)/2 and Pr {z, = —1} = (1 + u)/2. For this system,
it is known ([1], p. 290) that

t
3) Pr {mai( (@ + - +x) 2t} = (iTZ)
for any positive integer ¢. Our theorem is that this is the best system in the
sense of maximizing the probability of eventually attaining ¢, that is, we shall
prove the
THEOREM. For any system xy, xa, - - satisfying (1) and (2), and any positive
number t,

t
Pr{(@ + -+ + 2. = t for some n} §<%——E—Z>

Proor. For any real number ¢ and any system S, let

¢(N7 S; t) = PI‘{ max (:vl + + xk) g t}; ¢(N; t) = SUp¢(Ny S’ t)
S

0<k=n

In particular ¢(0, S, ¢) = 1fort < 0, = 0 for ¢t > 0. We shall show that
4) ¢(N + 1,1 = sup E¢(n, ¢t — ),

zex
where X consists of all chance variables z satisfying |z | < 1 and Ez £ —u
max | 2 |. Actually (4) is intuitively clear; it asserts that, to maximize the
probability of reaching ¢ during N + 1 trials one must, for each value of 2,
use that system in the remaining N trials which maximizes the probability
of attaining the new required sum ¢ — ; and one must choose z; so that the
average probability of attainment in the remaining trails is maximized.
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To avoid tedious measurability difficulties, we remark that we may restrict
attention to those systems for which (a) each z, assumes a finite set of values,
all rational, (b) z, = 0 for sufficiently large n, and (c) the probability of any
particular sequence x;, 22, - - is rational. Denote by $ the countable set of
systems satisfying (a), (b), and ().

Now any system S ¢ 8 is described by specifying the initial variable z; and
for each value v of z;, the system S(v) € $ to be used thereafter when 2, = v.

We have, for S¢8,t > 0,

(5) ¢(N + 17 S’ t) = E¢(N; S(xl)v t — xl))

so that

©) o(N + 1,8, < E¢(N,t — 1) < sup E¢(N, t — 2).
zex

Taking the sup over S ¢ 8 in (6) yields
() ¢(N + 1,¢8) = sup E¢(N, ¢ — 2).

zex
On the other hand, (5) yields
®) E¢(N, S(m), t — m) = ¢(N + 1, 1)
For a fixed initial variable 2, , allowing S{z:) to range over all S ¢ 8, independ-
ently for the different values of z, , yields
) Ep(N,t — m) = o(N + 1, 2).
Since any « ¢ X is an admissible initial variable, from (9) we obtain

zex
Inequalities (5) and (10) yield (4) for ¢ > 0; for ¢ < 0, (4) is obvious, since
o(N + 1,t) = 1 and E¢(N,t — z) = 1forxz = 0.
To continue the proof of the theorem, we consider the transformation U,
taking Borel-measurable functions of ¢ into Borel-measurable functions of ¢,
defined by

(11) Uf(t) = sup Ef(t — ).

Equation (4) asserts that Ug(N, t) = ¢(N + 1, £). We verify, for g(t) =
[A — w)/@ + w), that Ug = g. To see this, fix {, and d, with 0 < d < 1, and
let h(f) be the linear function of ¢ with A(ty — d) = g(to — d) and A(t, + d) =
g(ts + d). Then for any z ¢ X with sup |z | = d

Eg(ts — @) = Eh(ts — ) = h(bo — E(z)) = h(b + ud),

with equality if and only if 2 assumes only the values +d, —d and E(z) = —ud.
Now

) = gl — d) + 2t D = gl =d) ¢ _ 1o
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so that

r(d) = h(to + ud) = g(t)[3(1 + wg(d) + 3(1 — wg(=d)].
Since r(0) = r(1) = g(t) and r is convex in d, r(d) = g(t) for all d, Eglty — x) =
g(t,) for all z ¢ X, with equality only for x = 0 and z = +1 with probabilities
(1 + u), and Ug = g.

To complete the proof of the theorem, we note that fi < f. for all ¢ implies
Ufy < Uf, for all . Since ¢(0, {) = 1for¢ < 0 and 0 for ¢ > 0, (0, t) < g(@) for
all ¢. If (N, t) < g(t) for all ¢, applying U yields

Up(N, ) = ¢(N + 1,¢) = Ug(®) = g(®)
for all ¢ so that, by induction, ¢(N, t) < g(t) for all ¢, N. Consequently
limy. ¢(N, £) < g(¢). But for any system S,
Pr{z + -+ + z. = t for some n}
= limn_;oo ¢(N, S; t) = limN—WO ¢(N; t) = g(t)
= [(1 — w/Q + W]
and the proof is complete

COROLLARY. If 1, @2, -+- salisfy |2.| = 1 and E@, |z, -+, Zn) = 0,

then (x1 + -+ + %a)/n — O with probability 1; in fact

... N/ (2+€)
(12) Pr{ mt )| o somen 2 N} < 2<—1->
n 1+ e

Proor. Pr {M = e for some n = N}

n
< Pri(m — ¢/2) + -+ + (z. — ¢/2) Z eN/2 for some n}

1 NI (2+€)
=<
()

where the last inequality is obtained by applying the theorem to the sequence
Yn = (@, — €¢/2)/(1 + ¢/2), with ¢ = €N /(2 + ¢). The same inequality holds
for Pr {(x1 + -+ + %.)/n £ —efor some n = N}, and the corollary follows,
The part of the corollary on convergence with probability 1 is due to Lévy
(12, p. 252). However, his method of proof does not yield a geometric rate
of convergence in the sense specified by (12).

Added in proof. T. E. Harris has kindly called my attention to a result of S.
Bernstein (see J. V. Uspensky, Iniroduction to M athematical Probability, McGraw-
Hill Book Company, Inc., New York and London, 1937, pp. 204-205, problems
12-15), which yields a geometric rate for independent variables under conditions
weaker than uniform boundedness. Moreover, for the case of independent .
with |z, | < 1, Bernstein’s rate is slightly better than that given here, having
an expansion r = 1 — (¢&¢/2), (¢/6) + --- as compared with r = 1 — (¢/2) +
(¢/2) + - - - for the rate given here.
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