ESTIMATION BY THE MINIMUM DISTANCE METHOD IN
NONPARAMETRIC STOCHASTIC DIFFERENCE EQUATIONS!

By J. WoLFowITZ
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1. Introduction. The present paper is intended to report some of the ideas
described in a special invited address delivered by the author at the meeting of
the Institute of Mathematical Statistics at Chicago on December 29, 1952. This
address dealt with two topics: a) the connection between the method of maximum
likelihood and the Wald theory of decision functions, with an explanation of the
asymptotic efficiency of the former; and b) estimation by the minimum distance
method. The first of these topics is discussed in [1], and this paper will be devoted
to a discussion of the second.

The origin of the minimum distance method is to be found in [2]. Applications
of the method were extended and generalized in [3]. The paper [4] contains a
theorem which is an essential tool. A paper by Kac, Kiefer, and the present
author, entitled “On tests of normality and other tests of goodness of fit based
on the minimum distance method,” is in preparation.

The method of estimation to which this paper is devoted is characterized by
the fact that the estimators are always such as to minimize the distance between
suitably chosen distribution functions (d.f.). In a variety of problems, which
includes many where classical methods, like that of maximum likelihood, fail
to give consistent estimators, it yields estimators which actually converge with
probability one to the quantities being estimated; we call such estimators super-
consistent. The problems treated in the present paper provide examples of this.

The basic ideas of the proofs of the super-consistency of these estimators are
to be found in [2] and [4]. Application of the minimum distance method, unlike
that of the method of maximum likelihood, is not mechanical, and, in the cases
we have treated, always requires the development of special results.

The present paper presents results on problems not hitherto treated in the
literature. It is intended to be largely self-contained, and its organization is as
follows. Section 2 gives essential preliminaries. Section 3 contains a statement of
some of the results already obtained elsewhere. In Section 4 are formulated three
new problems in nonparametric stochastic difference equations. In Sections 5,
6, and 7 we exhibit minimum distance estimators for these problems. In Sections
5 and 6 we prove the super-consistency of the first two estimators.

In a few places the proofs are not given in all detail in the interest of brevity,
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204 J. WOLFOWITZ

but sufficient detail is given to exhibit the fundamental ideas and spirit of the
method. Places where the proofs below are not given in full detail are: Section
5, in the paragraph containing (5.10) and in the following paragraph; Section 6,
for equations (6.3), (6.6), and (6.10), and in the paragraph following the one
containing equation (6.10). At these points references to [2] and [4] are given
where the reader will find similar theorems completely proved; a study of these
proofs will enable him to reconstruct the missing points in all detail. The spirit
of these results is discussed below when we discuss the basic ideas of the method.
The proof of the result of Section 7 is omitted because it is easier than, and so
much like, the proofs of Sections 5 and 6. Section 8 consists of concluding re-
marks.

The author is very grateful to Professor J. L. Doob for several helpful dis-
cussions while this paper was being written. Professors L. Hurwicz, T. Koopmans,
and J. Marschak were very kind in answering the writer’s questions about the
literature and problems of stochastic difference equations.

The author wishes to take this opportunity to apologize for the inclusion, in
the paper [2], of its Section 10. This section was by way of an incidental remark
and had nothing to do with the minimum distance method. The idea of this
section, as was kindly pointed out to the author by Professor W. Kruskal, was
previously employed by Geary [5].

2. Essential preliminaries. Let s;, s;, - - - s; be k¥ numbers. By their empiric
d.f. we mean a function, say S(z), such that £S(x) is equal to the number of

these numbers s, , - - -, s; which are less than z. Let (s1, #1), -+ -, (s, &), be k
couples of numbers. By their empiric d.f. we mean a function, say S(z, y),
such that kS(z, y) is the number of couples (s;, t;), ¢ = 1, .-+, k, such that

8; < z and ¢; < y. Similar definitions apply in higher dimensions.

Let (Z1, Z,) be a pair of chance variables. Their d.f. G(z, y) is P{Z; < =
and Z, < y}, where P{ |} denotes the probability of the relation in braces.
Similar definitions apply in one and higher dimensions.

We stress here, as we have done in our previous papers, that our method
does not depend upon any particular definition of distance, and is applicable
with very many definitions. One of the problems requiring investigation is, in
fact, to determine which definition will yield better results, and in what sense.
Failing such knowledge, we will adopt the Fréchet distance which is mathe-
matically convenient and not otherwise unreasonable.’

Let Si(x), Sa(x) be a pair of d.f.’s. The distance 8(S;, S2) between them will
be defined by

8(S1, 82 = sup | Si(x) — Sa(x) | .

2 The notion of a metric space is due to Fréchet, so that in a large sense every distance is
a Fréchet distance. We shall adopt the customary designation of the distance & between two
distribution functions as the Fréchet distance.
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Similarly, the distance é between the d.f.’s S;(z, y) and Sy(x, y) will be defined by
8(Sz, S) = sup | Ss(x, y) — Si(z, v) |
z,Y
Similar definitions apply in higher dimensions. Let K be a class of d.f.’s. The
distance 6(Sy , K) of the d.f. Sy from the class K will be defined by
8(So, K) = inf 8(Sp, K').
K'eK
Let Y1, Y2, -+ be a sequence of independent, identically distributed chance

variables with the common d.f. G(z). Let G%(x) be the empiricd.f.of Yy, -+, V.
The theorem of Glivenko-Cantelli ([8], page 260) states:

(2.1) P {lim §[G(z), Gh(x)] = 0} = L.
Let {Yi;},7=1,---,m;,7 = 1,2, --- ad inf., be independently distributed

chance variables. Let Gi(x) be the common d.f. and G%(x) be the empiric d.f.
of Ya, -+, Yim, . Define

Zn: m; Gi(x) }i m: G (z)
G (@) = ’—‘i—"— and () = ‘:'——,;—— .

An important tool in some applications of the! minimum distance method is
the following result (proved in [3]):
(2.2) P {lim 8[G"(x), ™" (z)] =0} = 1.

(The approach to the limit in (2.2) is actually uniform in the @’s; see Theorem
4.2 of [3]).

Let {Yi},e=1,---,k;j=1,2, - , ad inf., be a sequence of independent
chance variables such that, for each 7, {¥;},5 = 1,2, ---, ad inf., all have the
same d.f. Let ¢ = (g1, ---, gx) be any k real parameters. Let G(z | ¢) be the
df. of 3 %51¢: Vi, and G.(x | g) be the empiric d.f. of

k
{;qlY;}r J=1”n

Another important tool in the application of the minimum distance method is
the following result (first proved in [4]):

(2.3) P {lim sup 8[G(x | @), Gulz | @)] = 0O} = L.

Actually this theorem is valid under much weaker hypotheses, and at the end
of [4] there is given a prescription for proving this result under weaker condi-
tions with essentially the same proof. In the new applications of the minimum
distance method which we shall make later in this paper, we will actually make
essential use of this theorem under several sets of weaker conditions. It should
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be noticed that this theorem does not merely say that the d.f. G,(z | ¢) converges
to the d.f. G(z|¢) uniformly in ¢ (actually the convergence of G.(z|q) to
G(z | ¢) is not only uniform in ¢ but actually uniform in G (see the proof of
Theorem 4.2 of [3])). The theorem actually says that the convergence is simul-
taneous for all ¢ from — « to 4 «, which is considerably more than uniformity.

.

3. Some previous results obtained by the minimum distance method. In this
section we describe a few results already obtained, together with some heuristic
considerations underlying them. We shall sometimes forego full generality in the
interest of clarity of exposition.

Let {X},7=1,---,n;5 =1, .-+, m; be independently distributed chance
variables. (In [3] we discussed also the case where the chance variables are
not independent). Let Fi(x | 6, a;) be the d.f. of Xi1, - -+, Xim,; . The parameters
6 and «; upon which this d.f. depends are unknown; for simplicity we take them
to be scalars although our results are equally valid-for vectors. The parameter
8 occurs in every group of X’s (Xa, -+, Xim, constitute the 7th group) and
was called by Neyman and Scott [6] “structural.” The parameter «; occurs only
in the 7th group and was called “incidental.”

Let T be a (given) set within which 6 is known to lie (of course T may be the
whole line). Write

an=(a1,a2,---,an) and c‘x=(oq,a2,~--).

Let A, be the set within which &, is known to lie, and A the set within which &
is known to lie. Let Fi(x) be the empiric distribution function of
Xia,Xa, -+, Xim; , and define

Bn(x) — =1 .
Z m;
1=1
Let &, = (a1, -+, ay), and define
Z miFix |6, ai)
(x| ¢, ay) = =t -~ .
2 mi
=1
Let 6%, of,, ++-, a%, be Borel-measurable functions of Xy, ---, Xoam,
such that' (writing o = (afn, -++, ak) 05T, at e 4, , and

@1 HC(x |0, a¥), B'@)] < 111 + inf olC"(x |8, &), B*@)]
0'eT,ahedy
The estimator 6% is a minimum distance estimator. Under a reasonable
restriction it is proved in [3] that 6% is a super-consistent estimator of 6. The
basic ideas of this simple proof are as follows:
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i) From (2.2) if follows that
(3.2) P { lim 5[C"(x | 6, &») B*(2)] = 0} = 1.

Hence from the definition of 67, it follows that a fortiori
(3.3) P {lim 8[C"(x | 6%, o), B"()] = 0} = 1.

ii) If 6% differs appreciably from 8 then the distance
(3.4) S[(C™(x | 6, an)y C™(x | 6, &)

is appreciable. This is essentially the postulated restriction.

iii) Equations (3.2) and (3.3) imply that the distance (3.4) is almost always
small for large n. Hence 6% cannot differ appreciably from 6 for large n.

We remind the reader that the above is only a heuristic outline of the proof,
and also that the final result is a limiting property which holds with probability
one.

Consider now the following problem: Let £ = &, &, - - - ad inf. be an infinite
sequence of constants which are unknown to the statistician. Let « and 8 be
parameters unknown to the statistician. Let (u;, v;), 7 = 1, 2, --- , ad inf., be
a sequence of identically, independently, and jointly normally distributed pairs
of chance variables, which the statistician cannot observe. The means of u;
and »; are known to be zero; their covariance matrix is unknown. Let the ob-
servable chance variables be (v;, y:),7 = 1, -+, n, where

=&+ u; and y; = a+ B+ v;.

The problem is to give consistent estimators of « and 8.

Let ¢; and ¢, be any real numbers and A.(z | ¢i, ¢;) be the empiric d.f. of
{y:s — ¢1 — coxs} for 7 = 1, -+, n. Let N* be the class of all normal d.f.’s with
mean zero. Define a, and b, as any Borel-measurable functions of the arguments
L1, 5 Tn, Y1, *°* » Yn, such that

€1,02

8[An(x | an, bs), N*¥] < % + inf 8[A.(z|c1, c2), N*.

It is proved in [3] under reasonable restrictions on the sequence £ that a, and
b, are super-consistent estimators of « and B, respectively. The basic ideas of

this proof ‘are as follows.
i) From (2.1) it follows that

(3.5) P {lim 8[4.(z | o, 8), N*¥] = 0} = 1.

Hence a fortiori we have

(3.6) P {lim §[4.(x | an, bs), N¥ = 0} = 1.

n=+
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ii) One proves that

P{lim 6[[1,,(:1: | @, b,,),%:;l N@| (@ — an) + (B — ba)é:, Uz(bn))]

: - op =1

where N(z | d1 , d2) is the normal d.f. with mean d; and variance d; ,

3.7)

2 2 2 2
g (C) = 02 — ZCpa'laz - coy,
2 2 2 2
Eu’ = o1 ) Ev' = o2 N Euy = po1G2 .

iii) One proves that, if |@ — ¢;| + | B — ¢2| is appreciably different from
zero, then the distance from N* of

3.9) WY NG| @ o) + (8 ~ o, 7))

is appreciably different from zero.

From i, ii, and iii one concludes that a, approaches « and b, approaches g.

The postulated restrictions on £ are such as to enable us to draw conclusions
ii and iii. Meager restrictions suffice for this. In particular, if &, &, -+ are
independent observations on a chance variable whose distribution is not normal
(this is the case treated in [2]), these restrictions are satisfied with probability
one. The conclusion of iii is proved by a compactness argument. In proving
equation (3.7) one uses an argument similar to that used to prove (2.3) and
first proves

P{lim sup & [A,,(x le,e),nt Xn: N@|(@—c) + B — citi, 02(62))]

(3‘9) n~*o c1,c9 =1

From this (3.7) follows easily. The result (3.9) is much deeper and more difficult
to prove than the result (2.2). One cannot obtain (3.7) directly from (2.2)
because a, and b, are functions of 23, ---, Za, %1, - -, ¥» and not constants.
The relation (3.9) says not merely that (2.2) holds in this particular set-up
uniformly in ¢, ¢z, but actually simulianeously for all pairs ¢, ¢», which is
considerably more than uniformly. This is essentially the relationship between
(2.1) and (2.8). Mere uniformity is easy to prove but it is not what is needed.
In general, the proof of the super-consistency of a. and b, is much more
difficult and elaborate than the corresponding proof for 6% , chiefly in the need
for proving (3.9). The operational reason seems to be the following: When
estimating 0 one has a definite empiric d.f. at his disposal, (B.(z)), and compares
it with the “true” d.f. and the nearest d.f. When estimating « and 8 one has
to adjust the empiric d.f. (4.(z | ¢1, ¢2)) until its distance from a sum of normal
distributions which themselves depend upon the empiric d f. is least. In the new
problems treated below one obtains the estimator by varying a parameter until
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two empiric d.f.’s which depend upon it are closest together. One could then
anticipate correctly that the proof of super-consistency will be more compli-
cated as a result.

4. Statement of the new problems. In all that follows the indices 7 and n are
to run through all the positive integers, and the index j is to run through all
the integers, unless the contrary is explicitly stated. The sequence {u;, v;}
will always be a sequence of independent chance variables. All the u’s are to
have a common distribution, and all the »’s are to have a common distribution.
To avoid the trivial it will be assumed throughout this paper that neither u,
nor v; is constant with probability one. The chance variables {u;, v;} are statis-
tically nonobservable variables. This means, mathematically speaking, that the
estimators we shall construct will be functions of other (observable) variables,
which will always be denoted by z; .

ProsLEM A. Suppose

4.1) Zi = Ui + QUi

with o an unknown constant which may be any number less than one in absolute
value. No assumption whatever will be made on the distribution of v, . The prob-
lem is to estimate the parameter «; for all n we are to construct Borel measurable
functions a,(2;, -+, *,) such that a, — « at least in probability. (Ours will
converge to a with probability one).

ProsrLEM B. Suppose 8 is an unknown constant which may be any number
less than one in absolute value (other than zero), and

(4.2) Yi = BYia + us.
We wish this process to be stationary. It is easily seen that this implies that
(4.3) Yi = jzw B ;.

Some assumption has now to be made so that the series in (4.3) will converge
with probability one. Now let

(4-4) Te = Y+ 0.
The problem is to construct estimators of the parameter 8, that is, Borel meas-
urable functions b,(x;, - -+, ,) for all n such that b, — 8; our estimators will

converge with probability one.
ProsrLEM C. Suppose v is an unknown constant which may be any number
less than one in absolute value, and

4.5) Ty = YTioy + Ui
The chance variable x, is chosen so as to make the process {z;} stationary. It

is easily seen that this implies that

(4.6) T = E v

j=—o0
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We shall assume that 4.6 converges. The problem is to construct estimators of
the parameter v, that is, Borel-measurable functions g.(z;, -+ - , 2,) for all n
such that g, — v; our estimators will converge with probability one.

Problems involving several simultaneous equations of higher order or problems
of greater difficulty can of course also be treated by our minimum distance
method. It seems to the author, however, that the attendant complications
would obscure the essential points of the method. This explains our choice of
problems.

S. Problem A. For convenience we will suppose in this section that the
number of observations {z,} is odd and equal to 2n + 1. Thus we will construct,

for every positive n, a function a.(z:, -, Z2.41) of the arguments exhibited.

Let a be a real parameter which, in this section, will always be less than one
in absolute value, and A.(z|a) be the empiric df. of {®; — ax. i} for
t=2,---,2n + 1. Define
(5.1) Bu(z,y|a) = Au(x |a)-A.(y | a).
Let C(z, y | @) be the bivariate empiric d.f. of the pairs

{(@2i41 — axs:), (T2s — ax2;1)} 1=1--,n.

Let a. be any Borel-measurable function of a;, - -+, @41 such that |a, | < 1

and
(5.2) 8[Balz, y | aw), Culz, y | an)] < 11; + Iir’1<f1 8[Ba(z, y | @), Culz, y | @)].

TurorEM 1. We have

(5.3) P{lim a, = a} =1

n—r00

that s, a, s a super-consistent estimator of a.
The remainder of this section will be devoted to a proof of Theorem 1. Define

(54) wi(a) =T — QL1 = U; + (0( - a)ui_l — aal;—g .
Hence
(55) wi(a) = U; — azui_z .

We see that wi(a) and wy (a) are independently distributed whenever | ¢ — ¢’ | = 3.
Also, for any ¢, wi(e) and w41 (a) are independently distributed.

Let H(z | a) be the d.f. of wi(a). Let Ai(z | a), s = 1,2, 3, be the empiric d.f.
of all w;(a) such that 2 < j < 2n 4 1, and j = ¢ (mod 3). Thus each 4..(z | a)
is the empiric d.f. of independently distributed chance variables (w;(a)), each of
which is the same linear combination of independently (within each sequence)
distributed u;’s. From our generalization [4] of the theorem of Glivenko-Cantelli

we obtain that
(5.6) P { lim sup §[4w(x | a), Hx | a)] = 0} =1 fori = 1,2,3,

n—0 |a|<1
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Hence

5.7 P {k:r; Iitllg 8[An(x | a), Hz | a)] = O} = 1.
Let .

(5.8) D(z,y|a) = H@|a)-H(y | a).

From (5.7) we obtain

(5.9) P {lim sup 8[B.(z,y | a),D(x,y|a)] =0} = 1.

n—w |af<l

Let E(z, y | @) be the d.f. of (ws(a), we(a)). Then the infimum of
3[E(x,y | a), D(z, y | a)]

in the domain {|a| < 1,|a — a| = d > 0} is, say, I(d) > 0. This is proved by
a compactness argument based on the following two facts:
i) If I(d) = O then, for some number a, with [ay — a| = dand |a | = 1,

(5.10) E(x,y|a) = D(z,y | a),

ii) But this cannot hold because, when (@ — a)(1 — | aa|) # 0 (as is surely
the case for a = @), ws(a) and w.(a) are not independently distributed, as (5.8)
would then imply. To show the latter we employ the following argument. Let
o(t) be the logarithm of the characteristic function of u; . This is well defined
in a neighborhood of the origin, which is the only place where we will require
¢(1); we use that branch of the function ¢(¢) for which ¢(0) = 0. The independ-
ence of ws(a) and wq(a) would imply that, in a neighborhood of the origin,

o(la — als + &) + o(—aas + [a — alt)
= ¢([a — a]s) + o(t) + ¢(—aas) + ¢([a — af).
If now
o(le — als + 1) = o(la — als) + ()

for all s and ¢ in a neighborhood of the origin, then ¢(s) = ¢os in a neighborhood
of the origin, where ¢, is a constant. Since exp{p(s)} is a characteristic function
at least for small | s |, it follows that ¢, is purely imaginary and hence that the
characteristic function of u; is exp{cos} for all s. This violates the assumption
that wu; is not constant with probability one and proves the desired result.
We now employ the following argument due to J. L. Doob. Define (always only
in a neighborhood of the origin) the function

Y(s, ) = o(s + 1) — o(s) — (t).
Then ¢(s, ) is continuous and (s, £) = ¢(¢, s). Also (0, t) = 0 and
Y(la — als, ) + ¢(—aas, [a — a]t) = 0.
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Hence
¥(s,8) = —¢(—aala — a] s, [a@ — a]t)

—¥(la — alt, —acla — a] )

¥(—aot, —aas) = Y(—aas, —aat).

Now always | aa | < 1 since | @ | < 1. For every positive integer » we have
¥(s, 1) = ¥((—aa)"s, (—aa)™).

Hence ¥(s, t) = 0 in a neighborhood of the origin, so that the proof is complete.

Essentially as in [4], making use of the fact that each w; is a linear combina-
tion of independent u’s, one can prove that
(5.11) P {lim sup 8[Cu(z, y | @), B, y | )] =0} =1

n—0 |a|<

The facts cited in the last two paragraphs are basic to our proof of convergence.
Theorems corresponding to them are proved in [2] and [4] and cited below for
our other problems. The method of proof for new problems will consist in part of
choosing suitable d.f.’s for which one can assert similar theorems. The proofs
of the present theorems require considerable detail, but can be constructed by
the reader who understands the ideas of the proofs in [2] and [4]. They are
omitted here and in subsequent sections of this paper because their detailed
exposition would make this paper inordinately long for both reader and writer.

Suppose now that the theorem is not true. Then there exist positive d; and d,
such that

(6.12) P{limsup|a, —a|> d} > ds.
Hence
(5.13) P{ lim sup 8[E(z, y | an), D(z, ¥ | an)] = l(dl)} >ds.

From (5.11) we obtain
(5.14) P {lim 68[Cn(z, ¥ | av), E(x, y | aw)] = 0} = 1.

From (5.13) and (5.14) we obtain
(5.15) P {lim sup 8[Ca(z, ¥ | aw), D(z, ¥ | an)] 2 Ud)} > do.

From (5.9) and (5.15) we obtain
(5.16) P {lim sup 8Ba(a, y | an), Cale, y | @] Z U} > da.

Since wi(a) and w;41(e) are independently distributed we have

(5.17) E@ y|e) = D, y|a).
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From (5.9) therefore we obtain

(5.18) P {lim 8§[B.(z,y | @), E(z,y | )] = 0} = 1.
From 5.11) and (5.18) we obtain

(5.19) P {1im 8[Bu(z, ¥ | @), Calz, y | )] = 0} = 1.
From (5.2) and (5.19) we obtain

(5.20) P {lim 8[Ba(z, ¥ | an), Calz, y | @)] = 0} = 1.

The contradiction between (5.16) and (5.20) proves Theorem 1.

6. Problem B. For convenience we will assume in this section that the number
of observations {z;} is 4n + 1. Thus we will construct, for every =, a function
ba(x1, *** , Zanya) of the arguments exhibited.

Let b be a real parameter which throughout this section will be assumed to
be less than one in absolute value. Let

mid) = z; — bxiy = us + (v: — bvia) + (B — D)yiar .

If |2 — ¢ | = 2 then m;(8) and m.(B) are independently distributed. If b = g
and |7 — 7’|, = 2 then m;(b) and my(b) are not independently distributed.
Let A,(x | b) be the empiric d.f. of ma(d), -+ , Muy4a1(b). Define

Ba®, y | b) = Au(z| b)4a(y | b).
Let C.(z, y | b) be the bivariate empiric d.f. of the 2n pairs
(ma(b), ms(®));  (ma(b), ms(b));  (ma(b), ma(b));
(ma(0), mo(0)); -+ 5 (Man—1(b), Man41()).

Let b, be any Borel measurable function of ;, - -+, %441 such that | b, | < 1
and

(6.1)  8[Ba(x, y| ba), Culz, y | ba)] < % + inf 8[Balz, y | b), Culz, y | D).

We shall now sketch the proof of

THEOREM 2. We have
(6.2) . P {limb, =6} = 1.

For any b, the sequence {m;()} for ¢ = 2,3, ---, ad inf., is a sequence of
stationary chance variables. Moreover, each m(b) is a (stationary) linear com-
bination of u’s and »’s which are all independently distributed. Hence the
stochastic process {m;(b)} is metrically transitive, for any b. Making use of the
ergodic theorem we obtain without difficulty that the conclusion of the Glivenko-
_ Cantelli theorem ([8], page 260) holds for the sequence {m(b)}, whatever be b.
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Let H(z | b) be the d.f. of m;(b). Using the methods of [2] and [4] one can prove
that

(6.3) P {lim s1§p 8[A.(x|b), H(x|b)] = 0} = 1.
Let )

(6.4) D(x,y|b) = H(x |b)-H(y | b).

From (6.3) we obtain

(6.5) P { lim sup 3[Bu(x, y|b), D(z,y|b)] = 0} = 1.

Let Ci.(z, y | b) be the bivariate empiric d.f. of the pairs
(ma(b), ma(b)); (ms(b), ms(D)); (m(b), miz(b)); - - =5 (Man—a(b), Man(b)).
and Cy.(z, ¥ | b) be the bivariate empiric d.f. of the pairs
(ms(d), ms(0));  (ma(), me(d)), -+ 5 (Man-a(b), Mansa(b)).

When |7 — #'| = 2, miB) and my(8) are independently distributed. Hence
from the extension to the present case of the bivariate Glivenko-Cantelli theo-
rem we obtain

(6.6) P { 1i_I}l 8[Cin(x,y|B), D(z,y|B)] =0} = 1,7 = 1,2
Hence
(6.7) P {igr; 8[Cu(z, v |B), D(x,y | ®] = 0} = 1.

From (6.5) and (6.7) we obtain
(6.8) P { li_Ig 8[Bn(x, y|B), Culz, y|8)] = 0} = 1.

From (6.1) and (6.8) we obtain
6.9) P { lim 8[Ba(z, y | b, Calz, 9) |B)] = 0} = 1.

n—>00

Using the methods of [2] and [4] it can be proved,’ although considerable
detail is required, that, for ¢ = 1, 2,

(6.10) ¢ P {lim sup 8[Cin(x, y | 1), E(x,y|b)] = 0} =1,
where E(x, y | b) is the d.f. of the pair (ma(b), ms(b)). From (6.10) we obtain
(6.11) P { lim sup 8[C.(z, y | b), E(x,y|b)] = 0} = 1.

n—w0 b

3 This illustrates the fact that the result of [4] does not require for its validity the in-
dependence of the chance variables. It is actually valid under much weaker conditions and
obviously can be extended to multivariate distributions.
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By a compactness argument similar to that of Lemma 2 of [2] one can prove that
the infimum of 8[E(x,y | b), D(z, y | b)] in the domain {|b| < 1,|b — 8| = d > 0}
is, say, li(d) > 0. (The reader will have noticed that E(z, y | 8) = D(z, y | 8), and,
for b # B, that §[E(z, y | b), D(z, y | b)] > 0.)

Suppose now that Theorem 2, is not true and there exist positive di and d,
such that

(6.12) P {limsup b, — B| > di} > ds.
Hence
(6.13) P { lim sup 8[E(z, y | ba), D(x, y | bw)] = L(d)} > da.

From (6.11) and (6.13) we obtain
(6.14) P { lim sup 3[Ca(z, | ba), D(z, ¥ | b)] = L(d)} > da.

Together with (6.5) this yields
(6.15) P { lim sup 8[Bu(, y | ba), Calz, y | ba)] Z L(d)} > da.

The contradiction between (6.9) and (6.15) proves Theorem 2.

7. Problem C. For convenience we will assume in this section that the number
of observations {z;} is odd and 2n + 1, say. Thus we will construct, for every n,
a function g,(21, * - , T2n41) of the arguments exhibited.

Let g be a real parameter which throughout this section will be assumed to
be less than one in absolute value. Let

(7.1) g:i(9) = x;i — gxica = Ui + (v — 9)Tia .

The chance variables {g:(y)} are all independent of each other. If ¢ # v and
i1 # ¢ then ¢:(g) and ¢« (g) are not independently distributed.
Let A,(x | g) be the empiric d.f. of ¢:(9), ¢s(9), - -, @n11(g). Define

Bn(x’ Y | g) = An(x I g)'An(y I g)'
Let C.(z, y | g) be the bivariate empiric d.f. of the pairs
(2209), (9));  (24(9), 3595 -+ 5 (@2(9), Geaa(9))-

Let g. be :any Borel-measurable function of @y, - -+, 2.1 such that lgn] <1
and

(12)  [Bala, 162, Cula, y | 9] < -+ inf alBa(x, v |B), Cala, y| D)

Then, in a manner similar to that of preceding sections, one can prove that

P{limg, =7} =1
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8. Conclusion. What the “practical” value of the minimum distance method
is is very unclear at present to the writer. For example, the method enables one
(Section 3 or [2] and [3]) to fit a straight line when both variables are subject
to normal* errors, under an assumption (on £) so weak that the very pretty
result of Reiersgl [9] is an immediate consequence. (Reiersgl’s theorem states
that, if the &, &, -+ of Section 3*are independent chance variables with a
common distribution function which is not normal, then o and g8 are identified).
However, if one assumes that any cumulant of order not less than three of the
common distribution is not zero—an assumption to which many practical
people would not object—one can, using Geary’s method ([5] or [2], Section 10)
expeditiously obtain consistent estimators of o« and 8. It might therefore be
argued that the difficulty of the problem is due solely to insistence on mathe-
matical generality and aesthetics, and disappears when one is willing to make
practical assumptions. The same argument could be made about the problems
described in Section 4 of this paper; if one assumes second moments to exist
one can, without any difficulty, obtain consistent estimators.

It seems to the writer, however, that the minimum distance method is of
interest precisely because it enables one to solve a class of problems which
cannot be solved by classical methods, and to do this in a manner which seems
very reasonable and suggestive. The problems need not be solely problems of
estimation but may also be problems of testing hypotheses. Thus (see [2],
page 149) suppose one wishes to test the hypothesis that the common distribu-
tion function of the independent chance variables z;, -, 2z, is normal. One
could base this test on §(Z, , N**), where Z,(x) is the empiric distribution func-
tion of 2z, -+, 2., and N** is the class of all normal distribution functions.
Also there is no doubt that the minimum distance method is useful in the solu-
tion of many identification problems (for a discussion of identification problems
see Koopmans [7]). Reiersgl’s theorem and other problems of [3] and the present
paper are cases in point. It is the author’s opinion that the minimum distance
method will also be useful in the treatment of many nonparametric problems.

An important general problem is to find a method of full generality which
will yield efficient estimators of structural parameters in the case where each
new set of observations depends also upon another incidental parameter. The
solution of this problem is at present unknown. Neyman and Scott [6] have
shown that the method of maximum likelihood does not always yield efficient
or even consistent estimators. The minimum distance method as employed
in [3] (briefly described in Section 3 of the present paper) yields consistent
estimators in rather wide generality; its efficiency remains to be determined.

If an efficient estimator does not exist the problem would seem to be to char-
acterize the complete class of estimators. One should not a priori preclude the
possibility of employing some reasonable measure of efficiency other than the

4 Actually, as pointed out in [2], the errors need not be normal, nor need the linear re-
lation be in two dimensions only.
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usual one. If most or many consistent estimators are not normally distributed
this may be advisable.

Among statistical methods which employ the idea of distance is the one for
which Kolmogoroff and Smirnoff obtained many asymptotic distributions and
for which Wald and the present, writer obtained small sample results (for a
description and references see, for example, Birnbaum [10]). Suppose, for ex-
ample, that one wishes to test the simple hypothesis that the distribution func-
tion of n independent, identically distributed chance variables is a given distribu-
tion function F(z). The Kolmogoroff-Smirnoff test is based on the Fréchet
distance between F(xr) and the empiric distribution function of the chance
variables. There is no minimization of distance in the Kolmogoroff-Smirnoff
test. In the application of the minimum distance method one always minimizes
the distance between two distribution functions, or between a distribution
function and a class of distribution functions, or between two classes of dis-
tribution functions.
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Note added in proof. The author has recently succeeded in applying the mini-
mum distance method, in a manner different from that of the present paper, to
a considerably larger class of problems. Linearity or other such restrictions are
not needed, application is fairly routine, the proofs are much simpler, and the
result of [4] is not used. Identified distribution functions can also be estimated.
A Dbrief description of these results will appear approximately concurrently with
the present paper in the Proceedings of the National Academy of Sciences.



