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1. Summary. For the problem of testing a simple hypothesis on a density
function of the form fy(e) = exp {¥o(6) + D % ¥i(0)t:(e) + to(e)}, explicit char-
acterizations are given of a minimal essentially complete class of tests, the mini-
mal complete class, and the closure of the class of Bayes’ solutions, under certain
assumptions. Applications are made to discrete distributions of the above form
and to some problems of testing composite hypotheses. The likelihood ratio tests
of these hypotheses are characterized and shown to be admissible under certain
assumptions. ’

2. Introduction. Consider a probability density function of the form
k
gv(e) = exp {'/'o + Zl: Yitie) + to(e)} ,

with e a sample point in an n-dimensional Euclidean space,andy = (1, - - , ¥)
a parameter in a subset ¥ of a k-dimensional Euclidean space. It can be shown
[1]thatt = (&, -+« , t) = [tle), - - - , tx(e)] is a sufficient statistic which admits
a density

k
py(t) = exp {\l/o + ;\l’iti + to}

with respect to a measure in a k-dimensional Euclidean space, and that the
family of such densities withy ¢ ¥ is strongly complete. A family M of measures

e on T is called strongly complete [1] if f f(®)dus = 0 a.e. in Lebesgue measure on
T

¥ implies f(f) = 0 a.e. M.

We shall assume that py(¢) is a density with respect to Lebesgue measure unless
the contrary is specified. Let T' denote the set of values of ¢ for which py(t) > 0
for some fixed ¥ ¢ ¥; we assume here that T does not vary with y.

We shall consider the problem of testing a hypothesis Hy : ¢ ¢ »° against an
alternative H; : ¢ ¢ o', where « and «’ are disjoint subsets of ¥. For the one-
parameter case (k = 1), complete class results have been obtained by Lehmann
[2] and by Blackwell, Girshick, and Rubin (cf. [3]), and certain minimax results
have been obtained by Allen [4]. The present paper contains generalizations of
Lehmann’s results. We shall be concerned in the following with the case in which
« consists of a point ¢ and o' = ¥ — ', except where otherwise specified.
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22 ALLAN BIRNBAUM

For all statistical purposes we can, as shown in [5], restrict our consideration
‘to tests of Hy each characterized by a measurable decision function & = &(¢),
where 0 < 6(f) < 1, defined on T, such that when ¢ is observed the test rejects
H, with probability &(¢).

For any test 8, let 8;(¢) denote the probability that the test will accept H,

when ¢ is the parameter point; that is 8;(¢) = 1 — f pyd(t) dt. We define the
T

risk function r5(y¥) of a test § as follows:

ﬂ&(\l’) \0 € “’”
r(¥) = (1 — B(¥) Yo,
0 Ve — o — o)

Let £(¢) denote a cumulative distribution function defined on ¥. A Bayes’
solution with respect to £(¢) is a test 8; such that the “Bayes’ risk” ry(§) =

_/; rs(¥) dE(Y) is minimized by taking § = §;. Let B denote the set of all Bayes’

solutions; that is & ¢ B if and only if there exists a £ such that & is a Bayes’
solution with respect to £. Let ¥V’ denote the set of all tests & such that & is non-
randomized (i.e., 8(f) is O or 1 only) and the set A on which &(f) = O (the test’s
acceptance region) is the common part of T and some open convex set in k-
dimensional Euclidean space. Let V denote the set of all tests é such that 6 £ V
if and only if there exists a 8’ ¢ V’ such that the set on which &’(f) # 8(f) has
Lebesgue measure zero.

The following are the usual definitions of some terms which will be used below:
A class of tests is called complete if for every test & outside the class thereis a test
¢’ in the class which is uniformly better, that is such that 75 () < r5(¢) for all
¥ and 73 (y) < rs(y) for some . A class of tests is called minimal complete if it
is complete but has no proper subset which is complete. A class of tests is called
essentially complete if for every test & outside the class there is a test 8’ in the class
such that 7 () < r:(¥) for all Y. A test is called admissible if there exists no
uniformly better test. A class of tests is called minimal essentially complete if it
is essentially complete but has no proper subclass with this property. A test §
will be called uniformly as good as a test &’ if rs(y) < rs(Y) for all .

3. Characterizations of complete and essentially complete classes. The follow-
ing theorem has been proved by Reiersgl [7].

THEOREM 1. B is a subset of V. ,

Proor. For any £, let v be the saltus of £ at ¢ = ¢". Then

n® = [ ) &) = [ 6:60) dev) + 21 - 2667
-/ [ [ 11 = s@ime dt] &) + v — 2v [ (1= 50)1pn(t) &t
=1+ [[([ 20 @) ~ 20| 11 = 50 @
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Let Q1) = [ pu(t) dE) — 2vpe(®), 5o that

MQ=L%M—MM&+%

Clearly r;(¢) is minimized by § = §; such that
0 teA; = {t ) <0
0 = e= (t1QW <0},
all other ¢
But Q(t) < 0 is equivalent to

w> [ (555) %

= L exp {7:: W — ¥t + (Yo — wﬁ)} ds(¥)

= R(t), say.

Thus 4; = {t | R(t) < 2y, teT}.
Now for 0 < A < 1 and for any real « and v, we have

e)«u+(l—)«)v § xeu + (1 _ k)ev,

with strict inequality holding in case u # v. Thus if # and ¢” are distinct points
in A;, then for 0 < A < 1 we have

RO 4+ [1 — Ajt") < AR(@) + (1 — MR(@") < 2v,

proving that &; eV’. Furthermore R(f) = 2y holds only on a set of Lebesgue
measure zero. For

RO _ [ s = % exp {3 (e — vt + (o — W) W)
—a—t?—"—wi—:‘exl)l!l’i Viti + (Yo — o) p dE(Y
is nonnegative for all ¢, for each j. Moreover, if for any j and ¢, 8°R(t)/dt; = 0,
then Pr{y; — ¢j | £} = 1. If for some ¢ we have 8’R(t)/dt; = Oforj = 1, --- k,
then Pr{y = ¢° | ¢} = 1.

In the latter ease the Bayes’ acceptance regions are T itself and all subsets
which differ from T’ by sets of Lebesgue measure zero. In the remaining case we
have that for each ¢ £ T there exists a j for which 8’R(¢)/dt; > 0. Hence R(t) =
2y holds at most on the boundary points of the convex acceptance region A;,
which constitute a set of measure zero.

Since R(f) = 2y holds only on a set of Lebesgue measure zero, every Bayes’
solution with respect to £ must differ from &; at most on a set of Lebesgue measure
zero. Hence every Bayes’ solution is in V. Q.E.D.

Wald ([6], Theorem 5.8) has proved that under assumptions which are satis-
fied by p,(t), an essentially complete class of tests is constituted by the closure
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B of B in the sense of regular convergence, which is defined as follows: lim,., 8; =
d in the regular sense if

tim [ 5.0) dt = [ 1) dt
i—0 VR R
for any bounded subset R of the sample space T. If lim;.. 8; = & except on a
set of Lebesgue measure zero, then it is clear that §; converges to 8, also in the
regular sense. For the special case of §; ¢ V (but not in general) the following
converse is also true.

LeMMA. Let lim;.e 8; = 8o in the regular sense, where 5;(t) = 0 on a convex set
Ai, and 8,(t) = 1 elsewhere. Then lim;. 8; = 8 except on a set of Lebesgue
measure zero. Furthermore 8 € V, and except on a set of Lebesque measure zero,

0 ona =1lim N 4;,
8ot) = e iz
1 elsewhere.
Proor. Let

Ao=]:im.l£.Aj, ao=‘1~imnA,v, D—_‘-Ao—ao.

T—0 21 im0 J214

It is clear that a, is convex. If lim;.. 8;(f) does not exist almost everywhere
in Lebesgue measure, then wu(D) > 0, where u denotes Lebesgue. measure.
For infinitely many A, we have D C A, and for infinitely many A, we have
DA.' = O

Let & be a point of D which is not a boundary point of a, . Let H be the smallest
convex set containing ap and b, and let % be an interior point of H — a, . Such points
h and k exist except in the trivial cases u(D) = 0 or u(a;) = 0.

Let K be the convex cone consisting of the half-lines from & through the points
of ap . Let K* be the “negative” cone consisting of the other halves of the same
lines. Then u(HK*) > 0. Since h ¢ D, we have HK* C A; for infinitely many
4;,and HK*A, = 0 for infinitely many A4; . Let R be a bounded subset of HK*

with u(R) > 0. Then f 6:(t) dt = u(R) > 0 for infinitely many ¢, and also
R

/ 8:(t) dt = 0 for infinitely many 7. Thus §; do not converge in the regular sense
R

if u(D) > 0, proving the first assertion of the lemma.

If the 6; converge in the regular sense, and hence u(D) = 0, the second as-
sertion of the lemma follows from the faet that a, is convex.

From the lemma it follows that V = V, where V denotes the closure of V
in the regular sense. Since B < V by Theorem 1, B 7 = V. Since B is es-
sentially complete we have

CoROLLARY 1. V s an essentially complete class.

Since for every test in ¥V there is a test in ¥’ with identical risk function, we
have

CoROLLARY 2. V' is an essentially complete class.
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The above-mentioned completeness property of the family of distributions
py(t) implies that two decision functions with identical risk functions differ at
most on a subset of T with Lebesgue measure 0. Hence we have

CoRroLLARY 3. V is a complete class.

In the following sections it will be shown that, under certain additional assump-
tions, affirmative answers to the following questions hold.

1) Does B coincide with V'?

2) Is V the minimal complete class?

3) Is V' a minimal essentially complete class?

In general V will not be minimal complete if w’ is a proper subset of ¥ — w'.
For example, consider the case in which py(f) = ©@m)™"* exp {—i(t — ¥1)°},
with «’ and o’ consisting respectively of ¥; = 0 and ¢; = 1, and with & = 1.
Here the minimal complete class is known to consist of the class of best tests of
all sizes. The acceptance regions of these tests are all the intervals which are
infinite to the left and all the sets which coincide with such intervals to within
sets of Lebesgue measure zero. Since these acceptance regions are a proper sub-
class of V, V is not minimal complete.

However, V is known to be minimal complete in some one-parameter cases.
If we take the preceding example with ' altered to consist of Y; = 1 and ¢; =
—1, the minimal complete class consists of all “two-tail”’ tests of all sizes ([6],
pp. 136-138). The acceptance regions of these tests are all the intervals and all
the sets differing from intervals by sets of Lebesgue measure zero, that is just
the class V. Here V', the class of all open intervals, is clearly minimal essentially
complete.

For other density functions py(¢) with k& = 1 (that is, one-parameter distribu-
tions) the same properties can be proved for V and V' provided o’ contains a
point ¥1 < ¥3 and a point ¥y > ¥; (cf. [2]). While the following two sections
give the same conclusions for & > 1, they necessarily require stronger restric-
tions on «’. Thus the one-parameter results referred to will not all be contained as
special cases.

4. Full characterization of B. Hereafter “a test A’ will mean a (nonran-
domized) test d withé = Oon A and é = Lon T—A.

AssumpTioN 1. The subset «’ contains hyperspheres of arbitrarily large radii.
That is, for some increasing unbounded sequence d;, dz, - - - , all formal solu-
tions ¢ of the equations d; = i (y: — ¢3)* for j = 1,2, - - - are contained in
w’. This assumption is satisfied if ¥ is k-dimensional Euclidean space and ¥ — o’
is bounded.

TueoREM 2. If Assumption 1 is satisfied, V = B.

Proor. Since V = V, and by Theorem 1, B < V, we have B C V. It re-
mains to show that V < B. The method of proof will be to show that every
A ¢ V is an essentially unique limit (in the regular sense) of a sequence of Bayes’
solutions {A4;,}.

LeMMA. For every bounded convex set C, the test A = CT 1s an essentially unique
limat, in the regular sense, of a sequence of Bayes’ solutions.
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Proor or LEMMmA: Let A be the set-theoretic product of 7 and any bounded
convex set C in k-dimensional Euclidean space. For each point ¢ ¢ (¥ — "),
let n(¥) be the quantity such that

Sl et =0 aw =+ /T e

el

is the equation of a supporting hyperplane of C, and such that the left member
of this equation is negative for ¢ any interior point-of C. For any d > 0, let

we={Y|dW) =d}, pW) = exp {o — ¥o) + n(¥) W)}
Let o4 = f dwg, where dws denotes an infinitesimal element of (b — 1)-

dimensional Lebesgue measure on wg . Let

1
=141 [ o) d.

Then we define the cumulative distribution functlons £: = £4(¥) as follows: &
has a saltus ys at ¢ = ¢, and for any subset » of ¥-o°,

[de) =2 [ o9) de.

Consider the Bayes’ solution with respect to £; given by
Ag = {tIRa(t) < 2v4, teT}
where, as in the proof of Theorem 1,
k
Ry(t) = L exp {El s — ¥t + (o — ¢8)} dta(y).
Here

Rat) = va + Z—;‘ [ | oxp {Z_; Wi — ¥t + 1(¥) d(««)} dq .

1>;1:fmdexp<d-[z(¢' )t.+ﬂ('//):|>dw¢,teT}.

1=l

Thus

te=f

Now for ¢ any interior point of A and d > 0, the exponent in the integrand in
the preceding expression is d multiplied by a negative quantity which is nu-
merically never less than A(z), for ¢ £ wq, where A(t) is the Euclidean distance
from ¢ to the closest boundary point of A. Thus as d increases the integrand ap-
proaches 0 uniformly over wq, and the inequality is satisfied for all sufficiently
large values of d. Hence each interior point ¢ of A is an interior point of A, for
all d exceeding some d;, .

For every exterior point ¢ not a boundary point of 4, let ws denote the subset
of wa such that for each ¢ £ wg , the equation

g (17(—‘;)£> ti+ ) =0
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determines a plane which separates ¢ from A4; that is the left member of the pre-
ceding equation is positive for all ¢ € w;. Since n(y) is continuous, f  dwg =
wq

m(ws), say, is positive. We can choose ¢ > 0 such that for each d > 0, the subset
w§ of wi such that

& xb,—nl/?) €
;( ) ti+n¥) 2 ¢ YEws,

satisfies f . dwa = 3m(wg). Hence in the inequality which defines A, above, the

we
exponent in the integrand is not less than d-e on a set of Lebesgue measure not
less than im(wi). Hence as d increases, the right member of the inequality ap-
proaches «, and the exterior point ¢ of A4 is also an exterior point of A, for all d
exceeding some d; . Hence we have that A differs from lima.. A4 at most by a
subset of the boundary of A, which has Lebesgue measure zero, proving the
lemma.

Proor oF THEOREM 2. Since every unbounded convex set is an essentially
unique limit, in the regular sense, of a sequence of bounded convex sets, and
hence is included in the closure of any class which contains all bounded convex
sets, Theorem 2 is proved.

ExamrLE 1. Let py(t) = (1/27) exp [—3{(ts — W) + (& — ¥2)°}]. With ¥ as
the (¢1, ¢») plane and o’ = {(1,¥2)}, the subset o' = ¥ — « contains all
solutions (Y1, ¥s) of d® = (Y1 — ¢1)* + Y2 — ¢2)° for d > 0. Hence the con-
vex sets in the (&, £) plane are an essentially complete class for testing Ho :
(W1, ¥2) = (1, ¥2). A similar conclusion will clearly hold when py(t) is any
multivariate normal distribution with known covariance matrix and unknown
mean y.

b. Characterization of a minimal essentially complete class.

Cask 1: Bounded acceptance regions.

ASSUMPTION 2. {, is a continuous function of .

Let D, denote the class of tests A of H, whose acceptance regions are bounded.
Let V3 denote the class of tests in ¥V’ with bounded acceptance regions.

TuroreM 3. If A’ and A” are distinct tests in Vs , then neither test is uniformly
as good as the other, if ¥ satisfies Assumptions 1 and 2.

CoRrOLLARY 1. If T is bounded, and if Assumptions 1 and 2 are satisfied, then
V' is a minimal essentially complete class.

Proor oF CoroLLARY 1. When T is bounded, V; coincides with V’ which is,
by Corollary 2 of Theorem 1, an essentially complete class. But an essentially
complete class, no member of which is uniformly as good as any other, is minimal
essentially complete.

Proor oF THEOREM 3. Let A’, A” be distinct tests in V3 . Assume that

7‘.4'(1/’0) = 7'4"(1/’0)-
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Then each of the sets A” — A” and A” — A’ has positive Lebesgue measure.
Let t* be any interior point of A’ — A”, and let T” be any supporting hyperplane
of A” which separates t* form A”.

Let the equation of T” be written Y s ad; + ao = 0, with Y s a? = 1. Let
A(t) = Y% ait; + ao ; that is, A(f) is the directed distance from 7" to any point

t. Let
A* = {t

Then A* has measure L(A*) > 0. For ¢ any point in A* and ¢’ any point of
A”, the closure of A”, we have

[A@) — A@")| = 3A@®)| > 0.
Let ¢° = c¢(a1, --- a) for any real ¢, and let
g(t', ¢, ¢) = log [pye(¥)/pye(t")] — (o — ) = 20 aulti — &)
= wc|A®) — AW

;m—ﬁfé%Mwﬂ,mA}

Now by Assumption 1, «’ contains points y° with ¢ — « and with ¢ —» — .

Hence we can choose a sequence y°!, ¢°% --- such that lim;,, |c] = « and
all ¢; are of the same sign as Y _; a.(t; — &7), for ¢’ ¢ A* and ¢” ¢ A”. By Assump-
tion 3, lte — to| is continuous and hence bounded say by v, for #.¢ A* and
t” ¢ A”. But
loglpy ci(t') /py ci(t”)] = i | AWW) — A(") | + (& — &)

> 1 el -|AG*)] — v
Hence lim;.. [pyci(t')/pycs(t”)] = « uniformly for # ¢ A* and ¢’ ¢ A”. That

is, for any M > O there exists a ¢’ such that pyc’(t')/pyc’(¢”) > M for all ¢’ ¢ A*
and t” ¢ A”. Let

p= inf pc(t), P = sup pc(t");
t'cA* t’'’eA’’
then p/p = M. Now
nwﬂzﬁywmm;uvm

r) = [ pve® &t s (A,

where L(A”) is the measure of A”. Hence

reW) 5 LAY-p , LA% o
ra W) = D@5 = LA

But M may be chosen arbitrarily large, in particular so large that
M > L(A”)/L(A*).

In this case we obtain r,.(¥) > r4. () for ¢ = some ¢°*
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Therefore A’ is not uniformly as good as A”. Interchanging A’ and A” in the
preceding discussion, we conclude also that A” is not uniformly as good as A’.
It remains to consider tests A’ and A” in V; such that

ra(l’) # ra @)

Assume 74 (¥%) < 74.+(¥"). Then A’ — A” has positive measure. The proof given
above for the case r,/(y’) = r4..(¥°) then shows that there exists a ¢ & ¥ such
that r,.(¢) > r4.+(¢). Similarly if 7, (°) > r4-(}°), we can show that there
exists a ¢ ¢ ¥ such that r. (y) < ra (). Q.E.D.

The method of proof of Theorem 3 can be applied directly to prove that no
test not in V is uniformly as good as any test in V; . Hence we have

CoROLLARY 2. If Assumptions 1 and 2 are satisfied and T is bounded, then V is
the minimal complete class.

These results are used in connection with Example 1 in section 10, below.

6. Characterization of a minimal essentially complete class.

Cask 2. The General Case. AssumpTioN 3. Let T’ be the common part of T
and any half-space, that is, 77 = {t| D ad: + ao < 0, t £ T}, for arbitrary
a’s subject to _ ai = 1. Let ¢ be any point in T — 7. Then there exists a
sequence of points ¢* in «’ such that, uniformly in some neighborhood of ¢,

im[2t) / [ g0t = .

TureoreMm 4. If Assumptions 2 and 3 are satisfied, V' is a minimal essentially
complete class.

Proor. By Corollary 2 of Theorem 1, V’ is essentially complete. It remains
to show that, of any pair of distinct tests A’ and A” in V’, neither test is uni-
formly as good as the other.

Given any such pair of tests, at least one of the sets A’ — A” and A” — A’
has positive measure. Assume A’ — A” has positive measure, and let * be any
interior point of A’ — A”. Let A(t) = Y. ai: + ao. Let

we=f

Then for some ¢, with 0 < ¢ < 1, we have by Assumption 3 that for arbitrarily
large M, there exists 7x such that for all ' £ AT,

pui(t') / fT pyi(t) dt > M, i

Let p = infi.as pyiu(t). Let L(AY) be the measure of A¥ . Then

k

Dt —tH = A te A’}.

i=1

v

iu.

p= M- j;l Dyiu(t) dt.
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Now
o™ 2 [ o)z AN,

ran(@™) < fT () d.

Hence ro*™™) = M-L(A¥)-r,-(0*™). But M may be chosen arbitrarily large,
in particular so large that M > 1/L(AY), in which case we obtain

ra(W) > ra(PH).
Thus A’ is not uniformly as good as A4”.

If roo(°) = ra(y°), we have that A” — A’, as well as A’ — A”, has positive
measure. By interchanging A’ and A” in the preceding discussion we conclude
also that A” is not uniformly as good as A’. If r, (¥°) < r4+(¢°), then A’ — A”
has positive measure and as above we conclude that r,-(¥) > r4/+(¥) for some y.
Similarly if 7. > ra ("), we conclude as above that r..(¢) < ra(¥) for
some ¥. Q.E.D.

The method of proof of Theorem 4 can be applied directly to prove that no
test not in V is uniformly as good as any test in V'. Hence we have

CoROLLARY. If Assumptions 2 and 3 are satisfied, then V is the minimal complete

class.
ExampLE. Let py(t) = (1/27) exp {— D 1 3(z: — m)’}, and let H, specify
(w1, m2) = (0, 0). For any a; , a;, and ao such that af + a3 = 1, let

T = {(x1, 72) | amz + sz + a0 = 0},
y=y@) = ),y = (@21 + a2, —az1 + W),

Then we may write py(f) = (1/27) exp {—3D 3 (y; — )}, with Ho : (n, ») =
0,0), and T' = {(y1,%2) |y1 £ —ao}. Let ¢ = (41, y2) be any point not in
T'; that is, y1 > —ao . Let

) = pu(t)
fT pu(t) dt
_ (1/2x) exp (34t — w)* + (W5 — w)l)
/e [ [ [ o (~3n = ) dun | exp (=300 = )

Proceeding as in [8], we set

=0 u=—a—n, A=yi+a, h=0n""exp(—}y).
Then v = h exp [—3(u + A)’] / [: exp [—1r7] dr.

Now for » > 1,

u= —a—n<u+ A0, w'> (u + A,

so that exp [—3(u + A)’] > exp [—347).
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Similarly for », = 0 and » > y1,
v > h-(y1 + a), lim, ;e v = o0,

Thus Assumption 3 is satisfied, and by Theorem 4 we conclude that the open con-
vex sets in the (z;, z.) plane constitute a minimal essentially complete class of
acceptance regions (tests) of H .

7. Other cases. While Theorem 1 shows that B C V holds without restrictions
on ', an example above showed that even with k' = 1 we do not have B = V
unless o’ is sufficiently inclusive. For k > 1, when «’ does not satisfy Assumption
1 it is possible in some cases to use the methods of the preceding sections to ob-
tain characterizations of minimal complete classes or at least characterizations
of smaller complete classes than V.

Such possibilities will be illustrated in a special case in terms of Example 1
above. Let o’ now be

{('pl ) \(’2) | 'pl = \Oy ‘1’2 = 0’ 'l’l+¢2 > 0};

that is o’ is the closed first quadrant with ¢’ = (0, 0) deleted. Then the method
of Theorem 1 can be extended to show that every Bayes’ acceptance region A;
has the property that if (t ) € A;and & < &, and & < t,, then (f1 ,8) € A;,
with exceptions on sets of measure zero. The method of Theorem 3 can be adapted
to prove that tests having the preceding property constitute the minimal com-
plete class.

For cases in which «' is bounded, in general no simple characterization of the
minimal complete classes can be given. By extending the method of Theorem 1
it can be shown that when ' is bounded the Bayes’ acceptance regions A; can-
not approximate arbitrarily closely any bounded convex hyperpolygon. Thus a
minimal essentially complete class consists of a proper subset of ¥V’ which can
be described roughly as excluding all hyperpolygons with finite vertices and
edges, and all acceptance regions which closely approximate such hyperpoly-
gons; as the bounds on «' are narrowed, more elements of V' are excluded.

For some common distributions of the form py(t), Assumption 1 fails. Examples
are py(t) as determined by either

(a) gule) = m exp {;—é 2 (@i — %)2},

J=1

_ 1 -1 X1 xg" }
(b) R ORAL exp{ 2 Z_;( %)

For the problem of testing a simple hypothesis in (a), the density of a sample
from a normal population with unknown mean and variance, Stein (in a private
communication) has constructed a test which is in V, but which can be strictly
improved on, showing that for this problem V is not a minimal complete class.
For this testing problem, Walsh [9] has investigated the operating characteristics
of three tests of Hy as a basis for selecting tests for quality control and other
applications. Only one of the three tests considered, that one whose acceptance
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region is a rectangle in the (> 7, Y z.)-plane, is contained in ¥ and hence
may be admissible; the remaining two tests are inadmissible.

For the class of problems considered in this paper, no general method is yet
known for constructing a test which is uniformly better than a given inadmissible
test. On the other hand, when some possible tests for a given application are to
be examined on the basis of their operating characteristics, it seems advisable
to restrict consideration to the smallest known complete class of tests, except
possibly where computational difficulties make this impractical.

8. Tests of composite hypotheses. The methods of proof of the theorems and
corollaries above can be used to reach certain conclusions concerning tests of
composite hypotheses on distributions of the form of py(f). Let Hy now specify
¥ & o, where o’ consists of two or more points.

From the proof of Theorem 1 we conclude that V contains at least all of the

Bayes’ acceptance regions for H, corresponding to £’s such that f \ di(y) is

equal to the saltus of ¢ at some point y in «’; that is, V-B # 0.

From the proof of Theorem 2 we conclude that, when Assumption 1 is satis-
fied with y° some point in «’, then V < B.

For any &, r,(¢) is a continuous function of ¥, except at ¢’. Suppose that &
is admissible for testing {y°’} against o’ = ¥ — {¢’}. Let «* be a subset of
' having k-dimensional Lebesgue measure zero. Then § remains admissible
for teosting {(¢°} against ¥— {y’} —w*, and also for testing {¢’}4w* against
v—{y}—w*

Theorem 3 is valid when H, is composite. The proof of Theorem 4 shows that
when Assumptions 2 and 3 are satisfied, neither of any pair of distinct tests in
V' is uniformly as good as the other; hence when H, is composite, any essentially
complete class will contain ¥’ or an equivalent class.

Lehmann [10] has defined a class of ‘“monotone critical regions.” As some exam-
ples in the following section will show, when Assumptions 2 and 3 are satisfied
these tests are admissible and in some cases are also likelihood ratio tests.

9. Likelihood ratio tests. A likelihood ratio test of a (simple or composite)
hypothesis Ho : ¢ ¢ ° against an alternative H; : ¢ ¢ o’ has the following form:
Reject H, if and only if A(f) < K, where

o) = sup py(t)/ sup  py(t)
Yewod Ye(wltw’)

and K is a constant, 0 < K < 1. Let Ax(wo, o + «') denote the acceptance
region of such a test. Then

Ax(o’, o + o) = {t| sup py(t) = K- sup pu(t), teT}
Yewd ye(wl4w/)

U {t|pyr(t) =2 K- sup ), teT}
¥/ ewl Yve(wl4tow’)

= U N {tlpy () = K-pp(t), teT).

V''ewd Yle(wltw’)
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[These relations are independent of the form of py(z). They generalize a remark of
Neyman and Pearson ([11], p. 282). They provide a convenient construction of
likelihood ratio tests in some cases in which the usual calculus methods fail or are
cumbersome, as will be illustrated in an example below.]
Assume now that py(¢) has the form assumed above. If «” consists of the point
¢° then
Ax(o’, o + o) = n {t|ppo(t) = K-py:(t), teT)}

¥re(edte”)

= N tlZ(w,—wotz_logK (o — ), teT).

%'e(wo-{ww') =1

Thus Ax(e’, @ + ') is a set-theoretic product of T and a set of “linear half-
spaces” of T. Hence Ax ¢ V. Hence we conclude that the likelihood ratio tests
of simple hypotheses are admissible if Assumption 1 or Assumption 2 holds.

For certain cases in which H, is composite it will again turn out that

Ax(wo, wo-l-w') eV,
so that the likelihood ratio test is admissible under the appropriate assumptions.
ExampLe 1. Let py(f) = (1/2x) exp [—3D 3 (t: — ¢:)*]. If Ho and H, are
simple and (¢, ¥3) = (0, 0), then

Ax(o, & + o) = {(tl, tz) };1 (—¢it) = log K — 3 + ﬁ)}.

This is a ha]f-plane bounded by a line whose directed distance from the origin is
d = [log K — 3" + l//i»2 V/AVUE + ¥ If now we take

(@, ¥0) | V1 + 3 = 9i* + ya7),

according to the relations above Ax(«’, »’ + «’) will be the common part of all
half-planes whose boundaries have directed distance d from the origin; that is

Ag(o’, & + ') = {(t, ) | & + 8 < d).

If next we take o’ to be ¥ — «°, where ¥ is the (¢, ¥2)-plane, Ax(e’, * + o)
will be the common part of a family of sets of the form {(tl JB) |+ 6 < d)
and so will itself be a set of this form. If finally we take «’ as any set i 1n ¥, with
o’ its complement, we obtain that in this general case Ax(w o + o) =
Ax(o’, ¥), the set of points (& , t,) Whose distance from the set «’ does not exceed
a certain constant c.

For example, if o’ = {(1, ¥») | one or both ¢; < 0}, then Ax(o’, ¥) = {(t,
) | one or both ¢; < ¢}.

If o = {(¥1, ¥) | both ¢; < 0}, then Ax(c’, ¥) = (tl, L)|[hse, & =0),
ort1 =0, h=Zc),or(h>0, >0, VE+ & =¢)}.

A sufficient (but not necessary) condition that 4 x(w ¥) be convex is that o’
be convex. If «’ is any convex set the methods of sections 7 and 8 show that the

likelihood ratio test of H, is admissible.
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ExampLE 2. Consider the problem of testing whether a given ranking of the
means of k normal populations with known variances is correct. Let

1 1< 2
p‘p(t) = WeXp [ 3 E (t: — ) :|
Let H, specify that y; = y» = -+ = ¥ . For simplicity, let

k=3, n=(—t/V2 p=(—t/V2

Then, as y = (y1, ¥2) is a sufficient statistic for v = WY1—ya, Ya—ys), We
may take

»@) = 347) exp [—3u — w)' — W — W)@z — ) + @ — »)l],

and write Hy : v; = 0 for ¢ = 1, 2. Using the expressions above, it is easily seen
that Ag(w’, ¥) is the set of points (y1 , Y2) swept out by an ellipse of the form

i — w) — (1 — »)(ye — ) + (12 — )’ = ¢,
as its center (v, v2) sweeps throughout the first quadrant; that is
Ag(’, ¥) = {(y1,y2) | forsomen; 2 0, » =0,
(1 — ) — G — v) (@2 — ») + 2 — »)’ < ¢}
={W, 1|2 -Ve, 1220),0r = —-Ve, yz0),
or (1 <0, 1%2<0, i —yw.+y: <c)}.

As in the preceding example we see that the likelihood ratio tests of H, are admis-
sible. Since this test’s maximum Type I error & is attained when »; = », = 0,
by use of tables of the bivariate normal distribution the constant ¢ can be se-
lected to give & any desired value.

10. The discrete case. The developments of the preceding sections can also
be carried through in the main when p,(t) is a discrete probability distribution
function. Regular convergence in the general case is defined (as in [6], p. 134) as
follows: lim; .. 8; = & in the regular sense if, for every bounded subset R of T,

tim [ 5.0 du(® = [ 80 duc@).
The proof of Theorem 1 above, with py(t) taken to be discrete, gives
THEOREM 1*. Every essentially unique (in & measure) Bayes’ acceptance region
18 contained in V.
We define the class of tests V* as follows: § ¢ V* if and only if there exists an
open convex set S such that

0 ¢ an interior point of S,

5(t) = {

1 ¢ an exterior point of S.
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Then the proof of Theorem 1 above together with Theorem 5.5 of [6] gives

CoOROLLARY 1*, If o’ s closed and bounded, V* is a complete class.

Since V* is closed in the sense of regular convergence, from Theorem 5.7 of
[6] we obtain

CoROLLARY 2*. V* is an essentially complete class.

From the methods of proof of Theorem 2 above we obtain in the discrete case

THEOREM 2*. V' is contained in B if Assumption 1 is satisfied.

In the discrete case Assumption 2 is always satisfied trivially unless T' con-
tains at least one convergent sequence and its limit point. From the methods of
proof of Theorems 3 and 4 above, we obtain

TrEOREM 3*, If Assumptions 1 and 2 are satisfied, and if A’ and A” aredistinct
tests in Vs , then neither test is uniformly as good as the other.

A modification of Assumption 3 is necessary for the discrete case

AssumprioN 3*. For any T” and ¢ as defined in Assumption 3, «’ contains a
sequence of points y* such that .

B e i (¥)/ Doters Pyst) = oo.

THEOREM 4*. If Assumptions 2 and 3* are satisfied, then neither of any pair of
dustinct tests in V' 1s uniformly as good as the other.

Finally, using the methods of proof of Theorems 3 and 4, and defining V5 as
the subclass of V* consisting of those tests § for which the set {t|d(t) < 1} is
bounded, we obtain

Tueorem 3a*. If Assumptions 1 and 2 are satisfied, then neither of any pair of
distinct tests in Vi , at least one of which is in Vi, is uniformly as good as the
other.

CoroLLARY. If T is bounded and Assumptions 1 and 2 are satisfied, every test in
V' is admissible.

THEOREM 4a*. If Assumptions 2 and 3* are satisfied, then neither of any pair of
distinct tests in V*, at least one of which is in V', is uniformly as good as the other.

CoROLLARY. If Assumptions 2 and 3* are satisfied, then every test in V' is ad-
massible.

ExampLE 1. Let 6 = (p1, p2), and

A = Mepr = g = g h=01 - (n=t),
¢ t[!tz!(n - tl - tg)! ’ t2 = O’ 1’ e N,
We may write
_ nlexp {yah + Yuts — nlog (e¥* + €*?)}
filt) = py(8) = 6l (r — b — 8]

where y¥; = log [p;/(1 — p1 — p2)] for ¢ = 1, 2. For
H,: (plspZ) = (p(l):pg)y p(l) >0, pg > O: p(1’+pg <1,
T is bounded, and { is, trivially, continuous on

T= {(t17t2)|t1=0:1y"'y(n_tl); t2=0,1,---,n}.
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Hence Assumptions 1 and 2 are satisfied, and from the Corollary to Theorem
3a* we conclude that an admissible acceptance region for H, is given by the
common part of T and any convex set.

ExampLE 2. Let z, and z, have independent Poisson distributions, with un-
known respective means \; and X\, . Let { = (x1, x2), and consider

Ho: 6= (\, M) = A1, N, A>0 =1,2.

Let T = (o1, x) withz; = 0,1, --- , for 7 = 1, 2. Let A be the common part
of T and any convex set. Then as in the preceding example we conclude that A
is admissible.
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