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and for some o > 2 and constant C,
(3.12) E|Xu(t) — EXu(@®)|* = Cs for all ¢.

For M large enough, (3.11) follows from (3.1), (3.10) and (3.5). By Minkowski’s
inequality, (3.12) follows from (3.2) and (2.4). The proof of the theorem is now
completed.

4. A remark on applications. One use of the foregoing central limit theorem
is to provide conditions, without any further ado, for the asymptotic normality
of various estimates of the spectrum of a stationary time series that have been
considered by us (see [4]).
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ON THE ENUMERATION OF DECISION PATTERNS INVOLVING
n MEANS!

By R. L. WinE? anD Joun E. Freunp

Virginia Polytechnic Institute

1. Introduction. The purpose of this paper is to provide a mathematical
treatment for the enumeration of decision patterns obtained in the pairwise
comparison of n sample means. In the comparison of n means, there are altogether

(2> pairwise comparisons, and each individual comparison between two means,

say m; and m, , must result in the decision that m; is significantly less than m, ,

that m; is significantly less than m,, or that there is no significant difference.

Symbolically, these three alternatives are written as m; < m,, my < m;, and
my = my, respectively.

There are, thus, altogether 3(3) possible decision sets in the comparison of
n objects, a decision set consisting of the (g) pairwise comparisons. However,

for the comparison of » means, there are fewer decision sets since circularities are
“automatically ruled out.
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A decision set involving n means can be represented symbolically with the
use of the following scheme:

If m; < my, the letter m, is written to the left of m. ; if m; = ms, the letters
my and m, are underlined with what we shall call an indifference line and it does
not matter whether we write m,m, or mym, . We shall also write m;mym; to ex-
press the fact that m; = m,, my =-mz, and m; = m; . In general, the fact that
m; = m; will be expressed by an indifference line common to m; and m; .

The following are two simple examples illustrating this representation of de-
cision sets:

(i) The decision set m; < my, my < mz, my < My, My = m3, my < My, and
ms = my is written as

m;, Mg My my,
and
(i) the decision set m; = my, my = mg, my < My, My = mz, me = my, and
mg = my is written as

m Mma Mz M4.

If the only difference between the schematic presentation of two decision sets
is a permutation of the means m;, ms, ms, - - - , m,, they are said to belong to
the same decision pattern. A decision pattern is, therefore, characterized by the
number of means and the number and the arrangement of the indifference lines.
The decision pattern corresponding to a given decision set will be indicated by
replacing the mean with dots. The decision pattern corresponding to the first
example above is

and that of the second example is

An important point which must be observed in the construction of decision
patterns is that no indifference line is completely covered by another indifference
line.

Having defined decision patterns and decision sets, one may now ask

(a) What is the total number of distinet decision sets in the pairwise com-
parison of n means?

(b) What is the total number of distinct decision patterns in the pairwise
comparison of 7 means?

In this paper it will be shown that the number of decision patterns involving
n sample means is

(1.1) fn) = n—_}_—1<2:>

Although question (a) can, of course, be answered by direct enumeration for
small values of n, the general problem is as yet unsolved.
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2. Derivation of formula for number of decision patterns. In order to derive
formulas giving the total number of decision patterns, consider the last k& dots
on the right in a pattern which has n dots, n = k. Beneath each pair of dots, a;
and @;41, where7 = 1,2, --- | k — 1, 7 line segments,j = 0, 1,2, -- - , may be
drawn, each line being part of an indifference line, or a whole one. The step from
a; to a;41, called the “¢-th step,” may be made in many ways, as indicated by
the number of line segments underlining the pair of dots. Let s; denote a step
with 7 line segments. It should be noted that each line segment under dots a; and
a;+1 may or may not be part of an indifference line including several other dots.
A dot a; is called a “‘right terminal dot”’ (“left terminal dot”) of an indifference
line whenever the indifference line does not extend to a;yi(a;_1).

Let fi(k),7 = 0, 1, 2, - - -, denote the total number of decision patterns pos-
sible when the first step of &k dots is s; .

It can be seen easily that

(2.1) fo(k) = fo(k — 1) + fu(k — 1), k 2 3,

since the number of decision patterns for k& dots with first step s, is the same as
the sum of the number of decision patterns for k¥ — 1 dots with the first steps
‘s and §; (k cannot be <2, since fi(k — 1) would be undefined).

A general recursion formula for f.(k) with e = 1, 2, 3, - - - may be written as

(2'2) fc(k) = fc—l(k - 1) + 2fc(k - 1) +fe+l(k - 1)7 k g 3.

To prove (2.2), assume that s, is the first step, in which case it is necessary that
n = k + e — 1. It must be large enough so that no two of the e indifference lines
of the first step have g, or any dot to the left of a; as a common left terminal dot.
At least e — 1 of the indifference lines in step one must be continued beyond a; ,
since two indifference lines can not have a common right terminal dot at a, .
The second step, thus, has at least ¢ — 1 indifference lines. On the other hand,
not more than e + 1 indifference lines are possible in the second step, since two
indifference lines would otherwise have a; as a common left terminal dot. Thus,
if the first step is s, and only one of its indifference lines terminates at a;, the
second step is s,—; or s, ;if the first step is such that no indifference lines terminate
at a,, the second step is s, or se4; .

For certain values of k, s, is an impossible first step, and f.(k) is equal to zero.
(It will be assumed here that n is sufficiently large so that not more than one in-
difference line has a left terminal dot at a, .) If k is an arbitrary positive integer,
say r, then s, is a possible first step since each a;, wherez = 2,3, --- , r, may
be a right terminal dot for exactly one indifference line. If the first step were s, ,
then some point a; would have to be a common right terminal dot for two in-

difference lines. Thus f,(r) = 0, whene = r,r + 1, - - - , and, in general,
(2.3) fk) =0,
where

e=k>1.
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Let f(n) denote the total number of decision patterns for n means. Clearly,

(24) fn) = fo(n) + fi(n),

since so and s; are the only possible first steps.
Since f(n) depends only on fo(n) and fi(n), equations (2.1), (2.2), and (2.3),
together with the boundary conditions

(2.5) fo(1) = fo(2) = f1(2) = 1,

will lead to (1.1).
Using standard techniques for solving difference equations, it can be shown
that’
_2e+1( 2k—2
(26) fo(k) = “TE (k Toe— 1).
This result can be verified by substituting (2.6) into equations (2.1), (2.2),
(2.3), and (2.5). It follows immediately that

o) = o) + i) = e (%),

o

PERCENTILES OF THE w, STATISTIC!

By B. SHERMAN?
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If n points are selected independently from a uniform distribution on a unit
interval there arise n 4 1 subintervals, each of expected length 1/(n + 1). If
L, is the length of the kth interval from the left, then

AT
o= b | D)

The distribution function of w, is 0 for x < 0, 1 for . > n/(n + 1), and for
0z=n/n+1)

Fo(z) = byz" + bpgz™™ 4 «o+ + b + by + 1,

B ()R

" 3 The authors are indebted to Dr. Leo Moser of the University of Alberta for suggestions
leading to a simplification of part of this proof.
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