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CONSISTENCY OF CERTAIN TWO-SAMPLE TESTS

By J. R. Buum! anp LioNnerL WEIss?
Indiana University and University of Oregon

1. Introduction and Summary. Let X, -+, X, ; Y1, -+, Y, be independ-
ently distributed on the unit interval. Assume that the X’s are uniformly dis-
tributed and that the Y’s have an absolutely continuous distribution whose
density g(y) is bounded and has at most finitely many discontinuities. Let Z, = 0,
Zuy = 1,and let Z;, < --- < Z, be the values of the Y’s arranged in increasing
order. For each 7 = 1, --- , n + 1 let S; be the number of X’s which lie in the
interval [Z;_,, Z].

For each nonnegative integer r, let @.(r) be the proportion of values among
Si, - -+, Spy1 which are equal to r. Suppose m and n approach infinity in the
ratio (m/n) = « > 0. In Section 2 it is shown that

lim sup @a(r) — Q)] =0

n—o 7>

with probability one, where

*) A
Qlr) = o | —2___dy.
b fa+ @)Y
This result may be used to prove consistency of certain tests of the hypothesis
that the two samples have the same continuous distribution. Several such exam-
ples are given in Section 3. A further property of one of these tests is briefly
discussed in Section 4.

2. The convergence theorem. With @,(r) and Q(r) defined as in the previous
section we have the
THEOREM.
P{lim su%) |Qa(r) — Q(r)] = 0} = 1.

n—»0 7>

Proor. We shall first prove that lim,_.. @.(r) = Q(r) with probability one,
where r is any positive integer. The proof for » = 0 is entirely analogous. To this
endlet W; = Z; — Z; 1,1 =1,---,n + 1 and define V(r) by

1, lf S,; =7r
Vir) = fore=1,---,n+ 1.
0, otherwise
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Then

1 n+41
Qu(r) = | ; Vi)
and it follows that
P{V',(r) =1 I Wi = 'w.} = ;—!z———;-)—' (1 Wi)m_r,

(2~1) P{V;(T) =1, I’i(r) =1 I Wi=wi, Wi = wf}
! m—2r . .
= 7*'2(7n+‘2 wi wi(l — w; — w)™ " for i # j.
Let p(wi, «++, Wayr; ) = E{Qu(r) | W1 = wi, -+, Way1 = Waya} and let
u(Wy, -+, Wau; r) be the corresponding random variable. From (2.1) we
obtain
@2  wW Wosr) = — L35 ™l gy gy
’ B W3 1 = 1 & rim — 1 v

For each t = 0, let R,(¢) be the proportion among W, --:, W,,; which do
not exceed t/n, and let

1
R() =1 — fo ~0Y g(y) dy.

It was shown by one of the authors [1] that
(2.3) P{lim sup |[Ra(t) — R(®)| = 0} =

n—0 ¢

Setting m = an we rewrite (2.2) as

r—1 n+1
wWy, oo ,Wapyr) = (an)r II [1 - —] 1 Z=.: Wil — W)

=0

4 | (R

Using (2.3), (2.4), and a sbraightforward analytic argument we find that

(24)

lim w(Ws, -, Waa3n) = % [ €6 dRQ)
rlJo

- L) 1
— g_[ f I e—-t[a+a(y)] 2(y) dydt
rtJo b

2.5)

_d ! 7'
B ?Tfo re+1 PRk

. (
=a A r‘r%dy = Q(r),

with probability one.
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Next we use Chebyshev’s inequality and (2.1) to obtain

P{IQn(r)_M(Wl;"';WMl;r)l>é}
1 & r m—r i

(26)

+L———ZE{mm—

T Wﬂ—wa]-

m!
riim — r)!
m! r m—r
[Vj(r) - m Wi(l - Wj) :l}
for every ¢ > 0.

On examining the right-hand side of (2.6) we find that the first sum is
0[1/(n + 1)] since each term is nonnegative and bounded by one.

The same holds true for the second sum. This can be seen by rewriting each
term in the form

i !
E{———-—-rﬂ(mm 51 Wi Wil = Wi — W)™
m

and maximizing the sum subject to the conditions 0 < W, < 1, D 1 W, = 1.
Now we use (2.5), (2.6), and the Borel-Cantelli lemma to obtaln
27) P{lim Qu(r) = Q(r)} =

For each positive integer n, let K(n) be the positive integer satisfying
[k(n) — 1’ < n = K*(n). From the definition of Q,(r) it follows immediately
that |[*(n) + 1]@uzm(r) — (n + 1)Qu(r)| < alk*(n) — n|. From this and the
fact that lim,_., [k*(n)/n] = 1 we see that (2.7) implies

P{lim @u() = @)} =

To complete the proof of the theorem we merely note that the uniformity of
the convergence is an immediate consequence of the fact that for each integer
n we have

300 =1=3q0.

3. Applications. Most tests proposed for testing the hypothesis that two
samples come from the same continuous distribution are based on the ranks of
‘one set of observations in the combined ordered sample. In our terminology
these are the tests based on the statistics S;, - -, Ss41. In this section we give
several examples of such tests which can be shown to be consistent against wide
classes of alternatives by applying the theorem of the previous section. Through-
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out this section we make the usual assumption, valid for rank tests, that the
X’s are uniformly distributed on the unit interval and that the range of the ¥’s
is also the unit interval.

As a first example we consider the run test proposed by Wald and Wolfowitz
[2]. Let U be the number of runs of X’s and Y’s in the combined ordered sample.
The hypothesis is rejected when U/m is too small. From the definition of Q,(r)
it follows easily that

U n—+1
-0

m

Thus if ¢g(y) is any density satisfying the assumptions of Section 1 we find that
U/m converges with probability one to

é[l‘f ai(?(y) ] f i@(y) y

and the test is consistent against all such densities for which

1 )
a+1>fa+«w@
From a simple variational argument it follows that this holds for all such densi-
ties which are positive almost everywhere and differ from one on a set of posi-
tive measure. This result was obtained in [2].

Let k& be a positive integer and let U; be the number of intervals [Z;_,, Z,]
containing at most £ X’s. Consider the class of alternative densities g(y) for
which

Y og(y) 1
| ahemm® < @sm

By an argument similar to the one given in the last paragraph it follows that the
test which rejects when Uy is too large is consistent against alternative densities

in this class.
As a third example we consider the test which rejects when V* =

[ / n + DS = Drner’Q.(r) is too large. We note that V? =
m*/(n + DIC* + 1 / (n + 1)]} where C” is the statistic first proposed by Dixon
[3]. Dixon computed the mean and variance of C* under the assumption that
the hypothesis is true. Using these results we find that

m(n + 2m)

EVY = ¥ Dm+ D
and

0%=Mmm—Dm+n+Dm+n+m
Y (n + D%n + 2)*(n + 3)(n + 4)




246 J. R. BLUM AND LIONEL WEISS

when the hypothesis is true. It follows that under this assumption V* converges
stochastically to 2o° + a. Now if g(y) is any density satisfying the hypothesis
of our convergence theorem it is easily verified that

lim inf Z 7°Qu(r) = 24° f Y +

n-»00 r=0

with probablhty one. Thus the test is consistent for any such density for which
1< fody/g®).

4. A further property of a test. In this section we discuss briefly another
aspect of the last test considered in the previous section. Let {g.(y)} be the
class of alternatives defined by g.(y) = 1 + c(y — %) where 0 < |¢| < 2. Let
(i, -+, tuys) ben + 1integers with 0 < #; < -+ < t,y1 and D1t = m,
and let U be the set of (n + 1)-tuplets (s, - -, s.41) of nonnegative integers
which, when reordered according to size, yield the numbers ¢, , - - - , t,41 . Fur-
ther let P.(U) be the probability of the set U computed under the assumption
that g.(y) is the density of the ¥’s. P,(U) can be written down in the form of an
integral over the n-dimensional unit cube. After appropriate integration it turns
out that

ch(U) _ dch(U) - £ 2
dc c-o—o and dc? c-o—agltz-l_b’

where a and b are positive numbers depending only on m and n. As a conse-
quence we find that if we restrict ourselves to tests which are symmetric in the
variables S;, -+, Su41 then the test which rejects the hypothesis when V? is
too large maximizes the slope of the power function at ¢ = 0. In the Neyman-
Pearson terminology, the test is of type A among the class of symmetric tests
of the hypothesis.
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