SOME USES OF QUASI-RANGES!
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1. Summary. Confidence intervals for, and tests of hypotheses about, the
interquantile distance are obtained, using one or two properly chosen quasi-
ranges. Consistency (of the estimates and tests) is proved. Applications are also
given to making inferences about the standard deviations of distributions whose
cdf’s are of the form F((x — g)/N).

2. Introduction. Let F(x) be the cdf (cumulative distribution function) of a
given distribution. For a fixed p, 0 < p < 1, any £, satisfying

(1) F(¢ —0) = p S F(gy)

is called a quantile of order p (or p-quantile) of the given distribution. If there
exist two—and hence infinitely many—such £,’s, then one of them is chosen
as the p-quantile. Let £, be the ¢-quantile, where p < ¢ < 1. The difference
£, — &, is called an interquantile distance. For two reasons we are interested in
methods of inference about £, — &, . First, the quantity itself is sometimes used
as a measure of dispersion of the distribution. (An example is £7 — £.95, known
as the interquartile range.) Secondly, for many familiar distributions, ¢ — £,
differs from the standard deviation of the distribution only by a constant factor;
consequently any inference about the former can be readily transformed into
one about the latter. (See Section 4C.)

Let a random sample of size n be drawn and z;, %2, - -+, «. be the corre-
sponding order statistics (in ascending order of magnitude). For any integers
r and s where 1 < r < s < n, the difference 2, — 2, is called a quasi-range.
(Conventionally, x, — z; is called a range and z, — z,, a quasi-range, only if
s=n—r-+ 1,wherel < r < s. See, for example, [1].) Symmetric quasi-ranges
(Zn—ry1 — ) and their linear combinations are useful in statistical inference.
In fact, many uses of them are well known. (See, for example, [1], [5], and the
references cited there.) In this paper we shall see some distribution-free methods
of using quasi-ranges (not necessarily symmetric) in making inferences about
¢, — &p. Confidence intervals for § — £, are obtained of the form
(xy — Zu, ;. — z,). To test the hypothesis, say £, — £, = d, we may then use
as a critical region: z, — z, < d or x, — x, > d. If the integers r, s, u, and v
satisfy respectively B.(s — 1,9) — B.(r — 1,p) =21 — aand — B.(v — 1, q) +
B.(u — 1, p) = 1 — a, where B.,(r, p) is the binomial cdf defined by (2), then
the corresponding confidence interval is with confidence coefficient at least
1 — 2a, and the test is of significance level at most 2«. If there exists more than
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one set of integers satisfying the inequalities, two optimal methods of selection
are suggested. For large samples, however, these methods are shown to be
equivalent, assuming that the parent cdf F(z) is continuous at x = £, or &.
Furthermore, it is shown that if F(z) meets some additional continuity require-
ments, then the statistics z, — z, and z, — z, , obtained by the optimal methods
of selection, are consistent estimates of £, — £, ; and the corresponding test is
consistent with respect to the alternative &, — &, #= d.
Some applications are given in Section 4.

3. Consistency. Let F(z) be the cdf of a given distribution. Suppose that for
given p and ¢, where 0 < p < ¢ < 1, £, and £, are uniquely defined. Let x; , z,,
.-+, Z, be the order statistics of a random sample of size n.

Lemma 1. If r, s, u, and v are integers such that 1 = r < s <nandl = u =
v'S n, and

@ Birp) = 3 (7) - o,

=0
then
@) Pl —2 2 f—£) = Bus — 1,9) — Blr — 1, p) = L,
4 P, —z, S & — &) = —Ba(v — 1,¢) + B.(u — 1,p) = L/,

where P(A) 1s the probability of the event A.
If F(x) is continuous at x = &, or &, , then

3 Pz, —z, =t —¢8)<L+1=1U,
(4,) P(x"_xuéfq_fp)§L,+l=U'.

Proor. Let P(A, B) denote the probability of simultaneous occurrence of
the events A and B. Clearly P(x, — z, = & — &) = P(x, = &, 2 < &) =
Pz, 2 &) + Pz < &) —1. Now P(z, 2 £) = Ba(s — 1, F(¢,, — 0)) =
B.(s — 1, q), since for fixed n» and r, B.(r, p) is a decreasing function of
p((3], p. 127). Similarly P(z, < §,) = 1 — B. (r — 1, p). Therefore we have (3).
To prove (3'), apply the same method to P(x, — z, < & — ;). Likewise we
obtain the other inequalities.

It can be shown easily (by (11)) that if n is sufficiently large, then for any
o where 0 < a < 1, there exists at least one set of integers r, s, w, and v for
which
%) LandL' =21 — a.

The corresponding x, — x, and x, — z. are then respectively confidence upper
and lower bounds for &, — &, with confidence coefficients at least 1 — «. If there
are two or more sets of integers satisfying (5), the following methods of selection
may be used. (i) Select the pair of r and s which minimizes s — r, and that of
u and v which maximizes v — u. This method has some-intuitive appeal. But
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quite often there exists more than one pair of r and s and one pair of u and v
which satisfy the requirements. In such cases, selection perhaps should be made
in accordance with practical consideration. (See a similar case in [7], p. 15.)
Further, in the case of ¢ = 1 — p, the quasi-ranges selected by this method
are, in general, not necessarily symmetric or nearly so. But if « <-5 and = is
large, then at least one z, — z, and one z, — z, are symmetric or nearly so. (See
Section 4B.) (ii) This method, to be described later, determines the integers
r, - -+ , and v uniquely for given p, ¢, n, and o. It is more or less a natural general-
ization of the method of using symmetric quasi-ranges for the case ¢ = 1 — p.
These two methods are not identical in general, but become equivalent (in the
sense of (16)) when sample size increases indefinitely.
LemMA 2. For integers t and w, where 0 = t,w = n — 1, and

(6) c=qg—p

choose

) r=[mn—-0p/1 —0)]+1, s=r+t,
®) u=[n—-wp/A-0l+1, v=u+w,

where [a] denotes the integral part of a. Then L and L', defined in (3) and (4), are
respectively non-decreasing and non-increasing functions of t and w. Further, let
crand cobe suchthat 0 < ¢; < ¢ < ¢ < 1. Ift = [n ¢3) and w = [n ¢1], then

) Lim L = Lim L’ = 1.
On the other hand, if t = [n ¢i] and w = [n ¢}, then
(10) Lim U = Lim U’ =0,

provided that F(x) vs continuous at x = £, or &, .

Proor. From (7) and (8), it can be seen that 1 = 7, s, u, ¥ = n. For example,
s<nbecauses < (n —t) p/(1 —¢)+t+ 1 < n+ 1. Hence L and L' are
well-defined functions of ¢ and w. Now r is a non-increasing function of ¢. But if
t is increased by 1, r is decreased at most by 1. Hence s is a non-decreasing func-
tion of ¢, consequently so is L. In a similar way we show that L’ is a non-increas-
ing function of w.

It is well known (2], p. 200, and [4], p. 193) that as n — oo,

(11) Bu(r, p) — ® (z) — 0,
uniformly in , 0 < r < n, where x = (r — np)//np(1 — p) and
(12) ®(z) = [ @m) ™2 2 gy,

Asn — o, it can be shown that if £ = [n ¢.], and r and s are defined by (7),

(r =1 —np)/n'" — —w,

(13) s—1= nq)/n”z—» ®,
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forr —1 —np=nlc—e)p/1 —c) +0(1)ands — 1 — ng =nb+ 0 (1),
whereb = (1 —¢)p/(l —¢c)+c2—q=(czc—¢) 1 — ¢)/(1 — ¢) > 0. Com-
bining (3), (11), and (13), we obtain Lim,_.., L = 1. Likewise we prove the
rest of (9) and (10).

Lemma 3. Corresponding to given n and a (0 < a < 1), let 1y and 8 (w1 and vy)
be a pair of integers which minimizes s — r (maximizes v — u) among all pairs of
integers r and s (u and v) such that 1 = r(u) S s @) Enand L(IL') =1 — a.
Let ty(ws) be the least (greatest) integer among 0, 1, --- , and n — 1 such that if
re and sx(up and v) are defined accordingly by (7) (8)), L(L') =2 1 — a. (From
Lemma 2, such r;, s;, u; and v; , 1 = 1, 2, exist for any o if n is sufficiently large.)
For fixed p;and q; , 1 = 1, 2, wiwrepl <p<pandq < q < gz, define

(14) k,; = [n pz] + 1, m; = [n q,] + 1.
Assume that F(z) is continuous at x = &, or &, . Then for sufficiently large n and
i=1,2,

ki Sri,ui £ ke,

(15)
my = 8,0 S mg.

As a consequence of (15), we have
(16) T~ Ty, 81~ 8, U ~ Ug, and v~y

(r1 ~ r, means Lim, . r1/re = 1.)

Proor. By (9) and (10), [n ¢1] < & = [n ¢] for any fixed ¢; and ¢, for which
¢ < ¢ < ¢, provided that n is sufficiently large. Choose ¢; and ¢, sufficiently
close to ¢, then 7, = n(l — ¢z) p/(1 —¢) =2 npr+ 1 = ky and

= n[(1 — e) p/Q1 "‘C)+02]+0(1) = ngs E M.

Similarly we have r, < k; and s; = m; . In the same way we show that u, and
v, satisfy (15). Further, from (11), 8; = m andr < kz for large n. Suppose that,
81 > my for some 7 however large. Let p1 < p < ps a.nd q < e < ¢; and 1
and ps , and ¢z be respectively so close to p and ¢ that g —p1 < Q2 - pz Let
= [npi] + 1, z =1,2 and ms = [nqs] + 1. Thenforlargen n<ky, =
lc1 ,and s; = ms . Therefore s — 1> mg — ky > ms — ky = s, — rg. This,
however, contradicts the definitions of r and s;. Hence s = mg . Similarly
we show that r, = k; and the rest of (15).
The following lemma. is a known fact ([2], p. 369). We state it without a proof.
LemMa 4. Let a continuous distribution be given with cdf F(z) and pdf (prob-
ability density function) f(x). Suppose that for 0 < p < q < 1, &, and &, are uniquely
defined; f(£,), f(&) #= 0; and f'(z), the derivative, s continuous in some neighbor-
hoods of x = & and &,. If k = [np] + 1 and m = [n ¢] + 1 (we assume that
n p and n q are not integers), and x and T are the corresponding order statistics
of a sample of size n, then as n — », ., — i has an asymptotically normal dis-

tribution with mean &, — £, and variance O(1/n).
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As a consequence of the previous lemmas, we have

THEOREM. Let a continuous distribution be gien whose cdf and pdf satisfy the
continuity conditions stated in Lemma 4. For given n and a, let r;, s;, u;, and
vi, 2 = 1, 2, be the integers defined in Lemma 3. If :c,,. , etc., are respectively the
rith, etc., order statistics of a sample of size n, then x,; — x,, and z,;, — Ty, , 1 = 1,
2, are conszstent estimates of &, — &,.

Proor. Following Lemmas 3 and 4, for given §, ¢ > 0, if p1, ¢ and & are
properly chosen, ky = [n p1] + 1, and m: = [n g] + 1, then, for sufficiently
large n, P(zsy, — 2y, > §¢ — ép+ 0) S P ®my — 2, > & — & + 8) =
P(zm, — x4, > E4y — Ep, + &) = €. In a similar way, we easily complete the proof.

4. Applications.

A. Confidence intervals and tests of hypotheses. In Section 3 we proved, for
given a and sufficiently large n, the existence of the integers r;, s;, u;, and
vi, % = 1, 2, defined in Lemma 3. To actually find these integers, we may use,
for example, [6] and (8]. Then z,; — z,; and z,; — z., are respectively confidence
upper and lower bound for £, — £, with confidence coefficients at least 1 — «,
and (z,; — Zu; , T,; — Z»;), & confidence interval with confidence coefficient at
least 1 — 2a.

Let Hy:£; — £, = d. Then the tests, using as critical regions: z,; — z,;, < d;
Ty, — ZTu; > d; and z,;, — z,; < d or x,, — x4, > d, ¢ = 1, 2, are respectively:
(i) of significance levels at most «, «, and 2«, and (ii) consistent with respect to
the alternatives §, — &, < d; £, — & > d; and § — £, # d, provided that the
continuity conditions of Lemma 4 are satisfied. A test, for testing a given hypoth-
esis, is said to be consistent with respect to a certain alternative, if, whenever
the alternative is true, the power of the test tends to unity as sample size tends
to infinity.

As an example, let us find confidence upper bounds for £.¢ — £.5 with confidence
coefficients at least .95, using a random sample of size 50. It is easy to see that
L =21 — aof (5) is equivalent to

(17) Bn(ir p) + Bﬂ(j’ 1- Q) = Q,

where 7 = r — landj = n — s; and s — r is minimized if 7 + j is maximized.
Nown = 50,p = 3,9 = 6,1 — q = 4, and o = .05. The largest integers ¢
and j for which By (¢, .3) and By (5, .4) < .05 are 9 and 13. For n = 50, and
1 = 9, 8 respectively, the largest integers j’s for which (17) holds are 11 and 13.
Therefore 7 + j is maximized if 7 = 8 and j = 13. Hence r, = 9 and s, = 37.
Further, if ¢t = 28, then by (7), r = 10, s = 38,7 = 9, and j = 12 for which
(17) does not hold. But if ¢ = 29, then r = 10, s = 39,7 = 9,7 = 11, and (17)
holds. Hence r = 10 and s; = 39.

B. A special case. To make inferences about ¢, — £, when ¢ = 1 — p, it seems
most natural to use symmetric quasi-ranges (Zp—r41 — ). If g =1 — p, s =
n—r+1,andv = n — u + 1, then (5) becomes

(18) B.(r —1,p) = a/2,Ba(u — 1,p) 2 1 — a/2.
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TABLE 1
Values of v’ and w
p = 25and q = .75

a

.25 .10 .05 025 01 005

10

10 | 1(") | 5(u")
20 3

2 1 1 —
30 5 11 4 13 13 3 14 2 15 2 —
40 7 14 6 16 17 4 17 4 18 3 19
50 9 17 8 19 20 6 21 5 22 5 23
60 11 20 10 22 23 8 24 7 25 6 26
8 29

80 16 25 14 27 29 12 30 1 31 10 32
90 18 28 16 30 32 14 33 12 34 12 36

2
3
5
7
9
70 13 23 12 25 11 26 10 27 9 28
13
15
100 20 31 18 33 17 35 16 36 14 38 14 39

Let »” and «’ be respectively the largest and smallest integers r and « for which
(18) holds. Let & = n — v 4+ 1land v’ = n — w + 1. Then 2o — 2, , 2y —
Zu , and (z,, — X4, sy — ) are confidence upper and lower bounds, and
interval for &_, — &, with confidence coefficients 1 — @, 1 — @, and 1 — 2a.
To find " and %/, we may use [6] and [8]. Table 1 below is obtained in this way.
There p = .25 and ¢ = .75. If, for example, n = 30 and o = .05, then ' = 3
and n — r’ + 1 = 28. Therefore P(xs — 3 = £35 — £2) = .95. Likewise,
P@is — 213 S E5 — £ S Tos — 23) = .90.

A question then follows. Are the quasi-ranges, obtained by applying the
general methods (in Section 4A) to this particular case (¢ = 1 — p), symmetric
and identical to the corresponding ones obtained by the methods just described?
More precisely, if ¢ = 1 — p, are the integers r; , s;, u;, and v;, 7 = 1, 2, (defined
in Lemma 3) equal respectively to r/, s’, u/, and ¢’ (defined by (18) with the
same n, a, and p)? We have the following answers. (i) v’ = r,orr, — 1, 8 =
82, % = Uy, and v’ = v, or v» — 1. In other words, z,, — 2., and z,, — z,, are
either identical to z,» — z,» and z,» — x,, or only slightly different from them.
(ii) Generally, no similar relations exist between r’ and r; , ete. In the first place,
the integers r1, 1, w1 and »; are not always uniquely determined. Sometimes
none of the corresponding quasi-ranges is symmetric or nearly so. (For example,
ifn=100,p = .1, ¢ = .9, and o = .99, then, following (17), r, = 4, 5, 6, 15,
16, 17; and s; = 84, 85, 86, 95, 96, 97.) If, however, o < .5 and n is sufficiently
large, then it can be shown that one set of 7, - - - , and »; coincides with re, - - -,
and v, . Therefore for a < .5 and large n, at least one z;, — 2,, and one z,, —
z,, are either identical to z,» — z,» and xz,» — z, or only slightly different from
them.

We shall now prove (i) and (ii). If ¢ = 1 — p, then from (7), r = [(n — ¢)/2] +
1. If, corresponding to given n and «, (n — 1)/2, where #, is defined in Lemma, 3,
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is not an integer, then s; = n — r; + 1. Otherwise s = n — (r; —1) + 1. In
the first case, we see that (18) holds for » = 7, but not for r = r, + 1. (This is
because (5), L = 1 — a, holds for ¢t = t,,r = r;, and s = s;; while L < 1 —
aholdsfort =1t — 1, r =r 4+ 1, and s = s,.) Hence v’ = r, — 1. In the
second case, (18) holds for r = r, — 1, but not for r = r,. Hence v’ = r, — 1.
Furthermore, if @ < .5 and = is sufficiently large, then no 7 and j satisfying (17)
can be greater than np..Using the fact that (?) p’(1 — p)”* is an increasing
function of ¢ for all 0 < ¢ < (n + 1) ¢, it is easy to see that one of those pairs
of 7 and j for which (17) holds and ¢ + j is maximized must be such that 7 = j
or ¢ = j + 1. The integers r; and s;, corresponding to this pair of 7 and 7, are
equal respectively tor,and s;. (m =7+ 1, s =n —nrn + lorn —r + 2.
Lett =8 — rin (7),thenr = r,and s = s;. Hence tp = s, — 1, = 1y,
and s, = s;.) Finally, in a similar way, we show the statements concerning
u;, v;, %, and v’.

C. The standard deviation. Let f(x) be a pdf of the form (1/b) fo ((x — a)/b),
where —®o < z < »,and a and b > 0 are the parameters. If m, m,, o°, and
g are respectively the means and variances of f(z) and fo(z), then m = a +
bmo and ¢® = b’o; . If £, and £} are the p-quantiles of f(z) and fo(z), then &, =
a + bg, . It follows that &, — &, = bty — £5) and

(19) o= (&, — &)/co,

where ¢, = (£ — £5)/00 depends on p, ¢, and fo(z), but not on @ and b. Therefore
for given p, ¢, and fo(x), any inference about £, — £, can be readily transformed
into one about ¢. Thus if , — x, is a confidence bound for £, — £, , then (z, — z,)/
¢ is a confidence bound for o.

For each of the following types of distribution, Table 2 gives their standard
deviations, the cy’s defined by (19), and the values of the ¢y’s corresponding to
p = .25 and ¢ = .75. The pdfs f(x) are
(20) Normal: (1/o A/2x) exp [—(x — u)*/26°], —wo <z < »;

(21) Laplace: 1/2\) exp (— |z — u | /N), —w <z < o;
(22) Triangular: (1/A)[1 — |z — | /Al |z —u| SN
(23) Rectangular: 1/2h, |z —al| = h;

(24) Exponential: (1/A) exp [—(x — u)/A], T = pu.

TABLE 2
s.d. ) ¢o(.25, .75)
b £ — £ 1.35
W2 (1/+/2)lxlog p1 — log 1] 0.98
MVE VB - V) — =1 — V)l 1.44
/'3 2/3(q ~ p) 1.73
A log1—-p)/0 -9 1.10
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For the normal distribution of (20), ¢, is not explicitly given in terms of p
and ¢, but £5 (and similarly £) satisfies ®(¢}) = p, where ® is given by (12), and
can be found by a normal probability table. Further, in the formulas for the
¢y’s corresponding to Laplace and triangular distributions; p: (and similarly ¢:)
is defined tobe 1 — |1 — 2p | ; and the + or — sign associated with p, should
be used according as p = % or < 3. Finally, as an example, let a sample of size
50 be drawn from the exponential distribution of (24). Let p = .25, ¢ = .75,
and « = .025. From Table 1, 7 = 6 and v’ = 21. From Table 2, the standard
deviation is A and ¢ = 1.10. Therefore ((xz — 22)/1.10, (x5 — x)/1.10) is a
confidence interval for A with confidence coefficient at least .95.
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