ON THE ESTIMATION OF AUTOCORRELATION IN TIME
SERIES

By Z. A. LomnIckl AND S. K. ZAREMBA

Boulton Paul Aircraft, Ltd., Wolverhamplon (England)

1. Introduction. In a recent paper, F. H. C. Marriott and J. A. Pope [8] in-
vestigated, in some special cases, the bias arising in the estimation of the auto-
correlation function of a discrete-parameter stochastic process when its mean
is not known. M. G. Kendall [4] developed a general method for the determina-
tion of this bias in the case of an arbitrary Gaussian process.

The removal of the mean from a stochastic process may be regarded as a
particular case of the elimination of a polynomial trend. The object of the
present paper is to determine how the removal of this trend affects both the
biases and the covariances of the estimators of the covariances and of the auto-
correlation coefficients; it is not assumed that the process is necessarily Gaus-
s1an.

In the two papers mentioned above, the passage from the estimation of the
covariances to that of the correlation coefficients was achieved by what may be
called the method of statistical differentials. The estimator p; » of pr was regarded
as a function of certain covariance estimators and, in the derivation of relevant
formulae, the difference pr,x — o Was replaced by the first differential of this
function. The general validity of this kind of argument needs to be clarified,
as remarked by Kendall himself in the last paragraph of his note. The same
applies to the derivation of cov (8., 1,~) by Bartlett [1] in the case in which
there is no trend. In order to make rigorous this kind of argument, we prove a
general theorem conceived in the same spirit as a proposition given by Cramér
(3], pp. 353-356) for functions of sample moments, and justifying the use of
the method of “statistical differentials’” under specified assumptions.

2. Basic definitions and assumptions.

AssumprioN 1. In what follows it will be assumed that {y.} is a discrete-
parameter stochastic process composed of a determinate polynomial trend
SFm(®) of degree at most m, and of a linear stochastic process {z.}:

(21) Ye = fm(t) + T (t = 0; :bl; :!=2; . ')7
where {x,} is of the form of
(2.2) Ty = Z ha €t—s

8=0

the series D_so h: being absolutely convergent, and {e} being a wide-sense
stationary process with zero means:

(2.3) E(e) =0, E(&) =, Elae) =0 for ¢ # s.
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AUTOCORRELATION IN TIME SERIES 141

In dealing with estimation problems, some further assumptions on {e]} are
needed, and it is customary to assume that the random variables ¢, are inde-
pendent and have identical distributions. This assumption can be weakened by
introducing the following definition:

DeFmNITION 2. A stochastic process {e;} will be described as stationary up to
the order p, with the corresponding moments behaving as if the ¢’s were inde-
pendent, if all the moments up to the order p exist, if, for any integer r and for
any set of integers t1, &, --- , & (s < p), '

E(ettretgir -+ €t,40) = Eleyer, -+ e,),

and if, for any set of pairwise different integers & ,%&, -+, £, and for any set
of positive integers A1, Az, -+, A; such that A; + A2 + - + As = p, we have

E(é1a2 -+ &) = E(aHE(&2) -+ E(&Y).

AssumprioN 3. We assume that the process {e:} is stationary up to the eighth
order, and that the corresponding moments behave as if the ¢'s were in-
dependent.

It follows from (2.2) that

0
Ry = cov (@, Tix) = o? Eo he hoyr 5
8==|

moreover, in view of the absolute canvergence of ) h,, the series > 1= . R,
is absolutely convergent. The random variable

. 1 &
(2.4) Rk,N = N Z Ttttk
t=1
is obviously an unbiased estimator of R;. It is also consistent; indeed, if we
make

(2.5) h: =10 for¢ < 0,
it follows easily from (2.2) that
oo
cov (xt Tstk-y xpxq+k) = K4 Z her hc+k—r hp—-r hq+k~—r
(2.6) re—c0
+ Rt—p Rc——q + Rt—q—k RB—P+IC ’

and, therefore,

(27) Lm N cov (B n;Riy) = —Rle + Z (RgRoyit + R Ry)) = vy
N> g=—00

(Refer to [1]), and, in particular,

(2.8) lim N var By.v = = g L Z (R} + RyyiRot) = v,

N~ g=—00

where ks = E(ei) — 30",
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There is no difficulty, either, in showing that (2.7) and (2.8) retain their
validity for the alternative estimators of Ry :
1 N—k .
Ck,N = N——I:c ; TeXtpk = RIr,N—ky

which exhaust the information supplied by the sample of size N. Thus
(2.9) lim N cov (Ci,n;Cix) = vi

N>
" and, in particular,

(210) lim N var Ck,N = Vkk .
N->oo
The validity of (2.10) is obvious, while (2.9) follows easily from (2.7), if we
note that

var (Cx.v — Rix) = O(1/N?),
so that, in view of the Schwarz Inequality, of (2.8) and (2.10),

A N 1
Nlcov (Ci,n; Ciw) — cov (Bin; Riw)] =0 (W)

The following proposition, concerning the asymptotic behaviour of the fourth
moment of Ry, will be required in Section 6:

ProrosiTioN 4. Under Assumptions 1 and 3,
(2.11) lim N’E(Ri.x — R)* = 3vi,

N>

where vy, is given by (2.8). A

Since the fourth moment of Ry, involves the eighth moments of z; and ¢,
the proof is essentially based on Assumption 3. The argument leading to (2.11)
is completely elementary, but a straightforward proof is fairly laborious; a more
general proposition concerning all the moments (both univariate and mixed) of
the covariance estimators has been proved by the authors of the present paper,
and it is hoped that this result will soon be published.

3. The bias of the covariance estimators. For any fixed k smaller
than N — m, write v = N — k. Let ¢o(t), ¢1(¢), - , &m(f) be the first m 4 1
Chebyshev polynomials orthogonal on the set ¢t = 1, 2, --- , ». Of course, these
polynomials depend on »; however, in order to simplify the notations, we drop
the subscript » both here and in subsequent formulae, with the exception of
those cases in which this omission could cause ambiguity. We have (see, for
example, [5], pp. 159-161)

Sy G NG —F =D
GO 6 = 2 VT oG = e — - ¢ D
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and
, 0, if © 5 j,
(3.2) gl $:De;(t) =4 G)*
T @)@+
Expanding f.(t) into a sum of these polynomials, we find

=1 - P =), ifs =7

(3.3) Im(@) = Awpo(t) + Ash(t) + -+ + Anda(t),
where
A = 5 2 00 (i=0,1, ,m).
The least-square estimators A; of 4; are clearly
(34) 4; = QiZ Yedi(t) = Ai + ai,
1 t=l
where
1 14
(3.5) a; = 0. & ze di(t).
Similarly,

fm(t + k) = Bupo(t) + Bih(t) + -+ + Budm(d),

where

B = L3 1.0 + B0,

i t=1

and the least-square estimator B; of B; are

(3.6) B; = B; + b;,

where

3.7 b; = —1— Z Tk $:(2).
Q: =

It should be noted that, while they can be expressed by means of the
coefficients 4o, A;, -+, Am, the coefficients By, By, -+, Bn form a dif-
ferent set. Evidently,

:Zo Aidit + k) = g Bi¢:i(t) = fult + k),

but the use of the estimators {4:} and {B;} leads to two different estimators
of the polynomial f,.(¢), one based on the sample values y1, y2, - -, Y~ , and
the other on Yi41, Yra2, -+, Yn ; this is in keeping with the method applied
by Kendall [4].
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It is proposed to investigate, as an estimator of the covariance of the {r,}-
process, the expression

1 v m n m R
ot = 5[0 = 5 2w [ - E B0,
which, in view of (2.1), (3.4), and (3.6), is equal to

(3.8) Civ = ‘-} 5: [xt - g a.-dn(t)] [xz+k - g bi¢i(t):| .

t=
LemMa 5. Under the assumptions of Section 2,

3.9) Clv = Cow — 23 0:b:0:.

V i=0

Proor. According to (3.8),

1 v m v m
Civ = Chw — - 2 %z D @) — }Z z, ) bigit)
V t=l g=0 V teml 1==0

v m

+ 1503 a0

V t==l i,j=0

(3.10)

In view of (3.2), the last sum in (3.10) is equal to
1 Z a:b; Qs ,

v iz
while, owing to (3.5) and (3.7), the remaining two sums also have this value.
This completes the proof of the lemma.

LemMA 6. With © being any fixed non-negative integer, and ¢i(t) being given by
(8.1), if D= c: is convergent, and if

l 14
(3.11) v =5 2 $ldes)ens
then
+%0

(3.12) limvy, = 2, ¢.

v->00 tam—c0

Proor. Make
i) = 3 $:8)ils + a) (@=0,1,--,» — 1);d% =0,
gm]

noting that d¢? = Q. Substituting « for ¢ — s in (3.11), we find
1 =1

(313) Yy = S0) [d(g,vi)co + Zl dzz’(ca + c—a)] .
0,7 a=

Introducing the notation

8
Sﬁ= Z Ca (ﬁ=0,1,“',7—1),

am—Q



AUTOCORRELATION IN TIME SERIES 145

we can apply Abel’s Transformation to the right-hand side of (3.13), obtaining

v—1
(314) Yv ((,v) ZO [d(y) 4(1?-1 1]S

This formula shows that the sequence {v,} can be obtained from the sequence
{S.} by a linear transformation, the coefficients of which are equal to

(315) 8;'101 = d(v) [d(” f!,-l)-l.i]-

According to a well-known theorem of Toeplitz (see, for example, [6]), the
transformed sequence {vy,} is convergent to the same limit as {S,}, if the fol-
lowing three conditions are satisfied by the coefficients of the transformation:

1) if limyse , 65,0 = 0, for any fixed e,
(ii) if there exists a constant K such that, for every v,

»—1

ZIE"'“[ <K7

(iii) if imyse D om &rra = 1.
In order to prove (i) and (ii), note that
r—a—1

(316)  dl) — dlhi= — Z; 6:(8)Adi(s + @) + ¢:i(v — @)i().
According to (3.1),

$i(s) = Zf"’ S0P and ARG = 216~ D,

where
n _ ~i_ @G+ ) —j = 1! ;= N,
# = D G - i — i = D! G=01-9.

Thus, clearly,
(3.17) £ ] < 4™,
where
(@)°G@ + !
A =
ozi%: @GOGV — I

Hence

| :0) | = IZf.(") -D¥ =4 ?.:o"‘ =A@ + 1),

and, a fortiori, |p:(v — a)] £ A(Z + l)v' so that the second term in the right-
hand side of (3.16) is smaller than A%(Z + 1)%*'. On the other hand, owing to

(3.17),
y—a—1 1 r—a—1 X
2 #(s)Adils + o) ! = l Z P00 2 6= D6+ a = DT
r—a—1

< 4.. Z lzz—r—-l Z sj(s +a)l—l é A2(Z + l)zvm‘.

7 =0 sl
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Thus there exists a constant 4, such that
|de} — dddis| < 4™ (@=0,1,---,v — 1);
but according to (3.2),

) _ @) 2 2 2
do,; = WYV(V - 1) s (V —‘L),
and, in view of (3.15), this shows that lim,., 8,» = 0, and that there exists a
constant K such that Y .o |8,.] < K.
Thus Conditions (i) and (ii) of the Toeplitz Theorem are satisfied; so is Con-
dition (iii), since D w08, = 1 identically, as can be seen by summing (3.15).
Therefore,

+o0
(3.18) limy, = lim8S, = .2 ¢a.

Hence the proof of Lemma 6 is complete.

Now it can be shown that Ciy is an asymptotically unbiased estimator of
R and that, to order N %, the bias is equal to —(m + 1) X_+= . R,/N. More
precisely we have:

ProrosrTioN 7. Under the assumptions of Section 2,

(3.19) 1;:3; NE(Ciy — Ry = —(m + 1) qi R,.
Proor. According to (3.9), |
VE(Che = B) = = 3 QB(aib);
but, owing to (3.5) and (3.7)

0,1,---,m).

(3.20) QB@b) = & 3 $iDo(D R (i

7 t,8=

Applying Lemma 6, we find

Fe +o
lyirg Q:E(a;b;) = aZw Riga = qu R,,
which completes the proof of (3.19).

It will be noticed that, according to (3.19), the bias of the covariance esti-
mators based on (3.8) is negative. In the particular case when m = 0, (3.19)
shows that this bias is asymptotically equal to the negative of the variance of
the mean (see, for example, Lemma 2 in {7]), and this can be seen at once on the
basis of elementary considerations. The fact that in the general case the bias is
asymptotically proportional to m + 1 is due to the supeérposition of the effects of
fitting the successive orthogonal polynomials, each of which contributes the same
generalized mean-square error. (See Lemma, 6.)
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4. The covariance of the covariance estimators.

Since the elimination of a polynomial trend induces, in the covariance esti-
mators, a bias which is merely of the order of 1/N, one is not surprised to find
that this procedure, asymptotically, does not affect the second and the fourth
moments. The proof of the relevant propositions is based on the following:

LemMa 8. If 7 18 any fired nonnegative integer and ¢:(t) is given by (3.1), ¢f
D 1= w ¢ is absolutely convergent, and if

(1) 8= 5 2 14000 Lo,

then there exists a constant K independent of v such that 8, < K.
Proor. By making ¢ — s = « and using the same argument which led to
(3.13), we obtain from (4.1)

@) B < Q#[@ ol + 2 (el + lead 3 | :0)ouls + a)l];

but, clearly,

y—a

2 | 6i(s)sils + @) = 06**).

Hence, in view of the second line of (3.2), Q;* D_iZf |¢:(s)¢:(s + a)| is bounded
by a constant independent of »; this, owing to the convergence of Y _f2 . |cal,
completes the proof.

ProposiTioN 9. Under the assumptions of Section 2,

4.3) lim N cov (CI:N; C:N) = U1,

N->owo

where v,; is given by (2.7).
Proor. For any fixed k and [ smaller than N — m, write v = N — k, »' =
N — land

Xik =

< |-

a;b:Q;; Xp =2, Xa
=
(44) -
Xa =—l,-a$be$; X, =2 Xu
v =

where Q; , a, and b: are given by formulae obtained from (3.2), (3.5), and (3.7)
when the sequence of polynomials ¢;(¢) orthogonal on the set ¢t = 1,2, ---, »
is replaced by a similar sequence of polynomials ¥;(f) orthogonal on the set
t=12 ---,¥.

According to (3.9),

(4.4") Civ = Cew — Xa, Civ = Cix — Xu;;
hence
cov (Cin ; Ctx) = cov (Crw ; Civ) — cov (Xi; Cix)

(4.5) :
— CoV (X; H Ck,n) + cov (Xk ;Xz).
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But, substituting (3.5) and (3.7) in (4.4), we find

1 E b; (t) b: (S) T x.s-l»—k
V t,s=1 Qz

and, in consequence,

14

11
var X = P Z  $:06:(9:(P)¢:(0) cov @izers, TpTask),

or, in view of (2.6),

var Xu =53 2 s8)8:p)ol)

1 t,8,p,q=1

46) -
[Rt-—p Rs—q + Rt—q—k Ra—p—l»k + K4 Z ht——r ha+k——r h}»—-r hq+k—r] .

F==—00

This fourfold sum yields three terms, the first and the second of which are
respectively equal to

;15 [—Ql “él ¢i(t)¢’i(p)R‘—P]
and

» [ . 2;4 $:(H)¢:(9) R»«—k] [Q, ZL; ¢,(s)¢,(p)R,_,,+,,:|.

Lemma 6 shows that each of these expressions in brackets tends to the finite
limit Y 42 . R, , when » — o ; hence this part of var X is 0(1/5°).
The third sum is obviously dominated by

@7) ( 316000 | PP |)

and the fact that this expression is also O(1/+*) can be proved as follows:
If

(48) Z_ Iht—r 3—1 l = Z Iht—a—rh-—rl = (Rt—a y
the expression in brackets in (4 7) becomes
1

Obviously, the infinite sum Zaa_w Ra—x 18 convergent, while the boundedness
of (4.9) follows from Lemma 8. Thus

(4.10) var Xik =0 (-13) .
v

From the definition of X, and from the Triangle Inequality, it follows that
var X; = O(1/+") and similarly var X; = O(1/v"); by applying the Schwarz
Inequality to cov (X} ; Cix), cov (X, ; Ck¥), and cov (X, X;) in (4.5), it can
be seen that these covariances are respectively O(N %), O(N"*?), O(N"*), which,
in conjunction with (2.9), completes the proof.
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CorOLLARY 10. Under the assumptions of Section 2,
(4.11) lim N var Cry = v .

N>
LemMma 11. Under the assumptions of Section 2,

(4.12) E(X%) = O(1/NY.
Proor. Clearly

l.—a

E(X%H) = Q {Z ¢.(t)¢.(8)x¢x.+k}

t,8=1

e > 666 3:(1) D (1) e (10 s s2) b (52)e(55) 850

4
Q1 t1,82,83,84,81,82,83,84=1

* Bt @0 1415841 1,T0 461, To (1) -
Owing to (2.5), Eq. (2.2) can be written as follows:

<00
Ty = Z higeq,

gem—c0
so that
E(CL'; TjZ 1 TmTn Tp Ty xs)
(4.14) s
= Z Pi—gy Pi—gy igy hm—gy B Po—gg hr—gy h’t—-as E(eheqz e €gy)-

41+92s° * *1gg=—0%
But, in view of our assumptions concerning the moments of the ¢’s, only those
moments do not vanish which correspond to equal indices in sets obtained by
the following types of partition of the eight indices ¢1, ¢, ---, gs : (8), (2, 6),
(37 5)’ (47 4)7 (2’ 2) 4)7 (27 3’ 3)7 (27 2’ 2’ 2)'
Hence the right-hand side of (4.14) becomes:

+00
ks Z highi—ghiqhm—q Boghpghr—qhey

g=—00

+00
2 !
+ ueo 2(28) Z hi—qlhi—qlhl—azhm—czh»—qzhp—czhr—czha—az

q1,92=—%

4o
’
+ usps E(bﬁ) Z hi—h hi—qx hl—ql h'"'—az hﬂ—qz hﬁ—qz hf—az h8—412

g1,g2=—%

(4-15) 9 + ﬂ: 2(36) i, hi—ql hi—q1 hl—q; hm—ax hn—qz hp—q-_» hr—qz hc—qz

21,g2==—%
+o0

+ ﬂ4°'4 2(210) Z, hi—ql hJ'—lu hl—-ﬂz hm—qz hn—'la hp—ﬂs hf—ﬂs h‘—q:

41,92,93=—%2

+
2 2 '
+ uso 2(280) Z hig hi—q, hiq, hm—qz g, Bp—qq hr—oza hi—q:

41,92,43=—%

+ ‘fs 2(105) Z, hi—q; h:’—on hl—qz hm—qz hn—qa hp—as hr—qu hc—qu

41192:93:94=—%
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where D is extended to all the 28 partitions of the type (2, 6), D s to all
the 56 partitions of the type (3, 5), and so on, and the prime after the sign of
multiple sum denotes the exclusion of all the terms in which not all the summa-
tion indices are pairwise distinct.

Each of the multiple sums taken with respect to g1, ¢;, etc. is dominated by
an expression of the type of

(Ri—j(Rl— mmn-—pmr—a )

where ®; is defined by (4.8). The only exceptions are the sums occurring in the
third and the sixth lines of (4.15), which are dominated by products of the type
of

R J{R m—n® p—rgc2,
where 3¢ = 2| g |.

When (4.15) is substituted for E (2@ ;0@ mTnty22s), in (4.13), the contribution
of the first sum of (4.15) is dominated by
11 <
w1608 L

4

But, in view of Lemma 8, the expression in brackets is bounded by a constant
independent of », so that this contribution is O(1/»*). In a similar way it can
be shown that all the other sums in (4.15) contribute O(1/»*) when substituted
in (4.13), the only exceptions being the sums appearing in the third and the
sixth lines. But the contributions of these sums are dominated by expressions
of the type of
v 3 12
e Z 16080 (0| [ 2 2 160001 ],

1 t,8=

multiplied by usus and u3e” respectively; here the first factor in brackets is
bounded, while the second is
L3 06" = o),
i t,8=1
so that the contributions of these sums are O(1/»%).

Thus the total contribution of (4.15) and (4.13) is a sum of a fixed number of
contributions, each of which is either O(1/»*) or O(1/»%). Hence the proof is

complete.
CoRroLLARY 12. Under the assumptions of Section 2,
(4.16) E[X, — E(X)I' = O(1/N°).

Proor. According to Lemma 11 and to the Minkowski Inequality, E(X%) =
O(1/N*), and .(4.16) follows at once.
ProposirionN 13. Under the assumptions of Section 2,
lim N’E[Ciy — E(Cin)]' = 3vix .

N-»oo
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Proor. According to (4.4"),
Chy — B(CEy) = (Cow — R) — (Xa — B(Xy)

and, therefore,
N’E[Cy — E(CE) = NE(Cuw — Ri) — 4N’E{(Chw — R)'IXi — E(X)]}
+ 6N"E{(Cuw — Ri)[Xs — EXW)'} — 4NE{(Crv — Ro)[Xa — E(XW)T'}

+ N’E[X; — E(Xy))"
'The first term in the right-hand side tends to 3v%, according to Proposition 4,
and the last is O(1/N) owing to Corollary 12; by repeated applications of the

Schwarz Inequality we deduce from (2.10) and (4.16) that the remaining terms
are respectively O(N™*), O(N""%), O(N~**), and this completes the proof.

6. The method of “statistical differentials.”
TuaeoreMm 14. Let H(Y,, Y2, ---, Y,) and G(Y1, Y,, ---, Y;,) be any two
Sfunctions vanishing at the point (G, 0, - - - , 0) and having continuous partial deriva-

tives of the first and second orders in the netghbourhood of this point. Let y(ﬁr), y(‘}') ,

SN yﬁ,m be any random variables with
(5'1) lim NE(y,(N)) = C; (1: = 1’ 2, ceey p),
N->o0
and
(6.2) * Lm N cov (¥, y™) = ¢; G,5=1,2 - p)

N->oo
¢; and c;; being constants. Moreover, assume
(5.3) Ely®™ — E@M)] = 0(1/N?) =12 ---,p).

Theny 'tf H(ygN)’ yéN)’ ) ygv)) and G(Z/{N), y%N)y Tty yg'N)) are bounded uni-
Sformly with respect to N,

) 2 9H 2 9°H
4 1 (S ¢ Y] = e 1 »
(54)  lim NEH@E",y5", -,y )] ;_layic + 5';_:1 3y-30. o
and
. L 9H 3G
(5.5) lim N cov [Hu1™, ™, -+ ,y D) GWi™ 9, -+, 93" = 22 ===~ ¢,
N> %,j=1 y" ayj

the partial derivatives being taken at the point (0, 0, - -, 0). (Obviously, if we
make H = @, (5.5) yields the corresponding formula for var H).
Proor. In the first place we note that, if § is any positive number,

(5.6) Plly™ — E@D)| = 8 = 0(1/N),
which follows from (5.3) and from the generalized Chebyshev Inequality:
(5.7) By — E@™T 2 8'Pllyi™ — E@™) 2 9l.
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On the other hand, it follows from (5.1) and (5.2) that

(M ()

(58) lim NE(y®My™) = lim N[cov @™, y™) + EGME®YM)] = ¢ .

Since, according to the Schwarz Inequality, to (5.2), and to (5.3),

By — E@™)) £ EW®™ — B@™N)" (var i)™ = o),
(5.3) entails
(5.9) B(yi™) = O(1/N").

If e denotes an arbitrary positive number, make

7 = 2e/{1 + [Z:; (cﬁ)*]z} )

and let the positive number § be sufficiently small to ensure that, whenever
IY'i<5 (i=1727""p)7

the second-order partial derivatives of H and G are continuous and differ from
their respective values at the origin by less than 5. Finally, let & be the event

V| < 8 (G=1,2—-,p),

and & the complementary event. Clearly, both events depend on N and §, but
the abbreviated notation & for &y,; and & for &y, should not lead to misunder-
standings. Furthermore,

y 4
PE) = 2 Plly™| =z,
7=1

which, according to (5.9), entails
(5.10) PE) = O(1/NY.

Writing ¥y for the vector (y{™, ys™, ---, y™), and denoting by P the

corresponding probability function, we have .
(311 BlEG®™) = [ HG™) P + [ HG™) dP.
& &
However, owing to the assumptions made, and in view of (5.10),

(5.12) _/;H(y(m) dP ‘ < max |H@™) | -P(E) = 0 <ZTlﬁ> .

In the event &, clearly,

¥d P )
613 H@®™) = 3 HOw™ + 3 20 Huly™ "™,
po= 1,)=
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where
oH _ ¥H
Y’ Hy(Y) = 3Y;dY;

Y stands for the vector (Y,, Y3, ---, ¥,) and 0 < 6 < 1. Hence, owing to
(5.11) and (5.12),

EH@Y™)] = }':“;Hi(o) f yMap 4+ 3 Z f Hioy™)yPy® aP + o( )

H()) (iyj=172)""p)’

‘or
(E[H(y(’v))] _ ZH (O)E(yfm) + ; H,,(O)E(yf” x))
(514) ~ 3 HO [y ap -3 3 B [ ap

+3 Z f[Ha(Gy‘N’) - ::(O)Iy(m i dP+O<N2>

%,J=1

However, owing to the Schwarz Inequality and according to (5.8) and (5.10),

< {E™)PE) = ONT).

i
(5.15) | [ v ap
&
Similarly, owing to (5.9),

.j yOy™ dp ‘ = {f @™y 4P P(E) )"
(5.16) : .
(M4 (N) 4,1/4 o\ 2 il
= {E(y. ) E(y; ) } [P@EI”“ =0 (N2> .

Finally, by the Schwarz Inequality and in view of the definition of §,

[ 1@ - HO s ap

< { [ oy ™) — H O dP}m | [us ap]

< 1BE@M) BT

1/2

Hence

lim N

Nosoo

f [Hi0y™) — Hy;0)yMys™ ap l < (i)'’
&

and, consequently,

by

1) T 3| 3 [0 — HOW P | S ] 2 ™ <
&

N> ~ " q,y=1 tJ-=
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Now, in view of (5.1), (5.8), (5.15), (5.16), and (5.17), we obtain from (5.14)

P

ﬁawmmwm—iﬂmm—%

N->oo

. H;(0)c;;

<e,

i,j=

which proves (5.4), since the choice of ¢ was arbitrary.
An argument similar to that which led to (5.7) and (5.12) shows that

EHG™)Gy™)] = L Hy™)Gew™) dP + 0 (%)

Using the expansion of H (y™) given by (5.13) and a similar expansion of
G(y™) based on a similar notation for the derivatives, the preceding equation
can be written as follows:

(E[Hy™)Gy™)]

2 y 4
= 2 HAOGOEE" ") — 2. Hi{0)G,(0) fg y"y dp

1,7=1

+ 3 H(0) fs G0y YNy Y ap

D
4,Jk=1

(5.18) <

4
> Gi(0) f Hu(6y™)yyMyVy™ dP
2,0,h= &

+3

- . , 1
+1 2 fs His(0y™)Gua@'y™)y " 95y yi™ dP + 0 (T\f?) ’

7.5.k,

~

where again 0 < ¢’ < 1.

Multiplying both sides of this equality by N and making N — «, we obtain
(5.5). Indeed, the left-land sides agree in view of (5.1), and, owing to (5.8),
the first term in the right-hand side of (5.18), after multiplication by N, tends
to the right-hand side of (5.5). All the other terms in the right-hand side of
(5.18) can be neglected: the second is O(NV ) according to (5.16), and simple
applications of the Schwarz Inequality show that the third and the fourth
terms are O(N %), while the fifth term is again O(N ~2). Thus the proof is com-
plete.

6. The estimation of the autocorrelation coefficients.
ProrosiTioN 15. If, under the assumptions of Section 2,

t 3
Crn

6.1 : *=—————,
©.1) Py T A Be™

where Cry is given by (3.8) and
(6.2) Aoy = %‘El [’.l/z - _Z:o Aitﬁi(t)]
then
. T2 T2 9
(6.3) lim NE(otx — po) =—(m 4+ 1)(1 — p) 2 pa +2 20 (pp; — papos)
g=—20

N->oo q=—00

2 1 v . mo 2
’ B:.N = ; [yt+k - Z B; ¢,~(t)] ’

t=1 i=m
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Proor. Let

Y, + R _Re
(Y2 + R (Ys + R Ry

(6-4) H(Yl , Y, ) Ys) =

According to (6.1),

* (N) (N) (N)
PE,N — Pk = H(yl yY2 T, Y3 )1

where
6.5) yiV =Ciy—Re; ysV =A¥v—Re; " = Bix— Ro.

The assumptions of Theorem 14 are clearly satisfied; (5.3) follows from
Proposition 13, while the uniform boundedness of H(y{™, ys™, i) follows

from the Schwarz Inequality. In view of Proposition 7,
400
6= —(m-+1) 2 R,.
q=—00

Since Afy = C¥, and since By is an estimator of R, analogous to Ct., ap-
plied to tbe process {z:i+},

C = C3 = (1.
For the same reasons, Corollary 10 applies not only to 5™, but to y5™ and y§"*
as well; hence
(6.6) Cu = Uik, Co2 = C23 = Voo -
On the other hand,
~ 1 m R 1 m
Afy = Ro, — = X aiQs, Civ =Ry — n 2 abiQi,

V i=0 =0
N

. 1< 1 s 1=
B¥v =Ry, — =2 2} + - z — = 2 biQ:.
14 V i=0

=1 V ¢=N—k+1

By an argument similar to that used in the proof of Proposition 9, we find

var (1 > an.~> -0 <12> and  var (1 > b?Q,.> -0 <-12)
V i=0 14 V i=0 vV

hence, and from (4.10), by applying the Schwarz and Triangle Inequalities, we
obtain

N cov (Agx ; Ben) = N var Ry, + 0(1/¥"?),

N cov (A¢x ; Cin) = N cov (Ro,, ; Riv) + O(1/4"),

N cov (Biy ; Cex) = N cov (Ro, ; Re) + 0(1 /4.
In view of (2.7), this implies

(6.7) €2 = €3 = Vo and cm = Voo.
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Substituting in (5.4) the values of the partial derivatives of (6.4) at the point
Y, = ¥, = Y; = 0, as well as the values obtained above for ¢; and ¢;; (¢, j =
1, 2, 3), we find

) 1 =
lim NE(okx — ) = —(m + 1) &2 Z R(Ry — Ry)
N> 0 g=—o0
2 +w 9
+ 7 qu_)w (RyR; — RoR R,.1).

which is equivalent to (6.3).

Thus the bias of the estimators of the autocorrelation function is composed of
two parts: one which is due to the bias in the covariance estimators (and is,
therefore, proportional to m + 1), and another which is a result of the correla-
tion between the numerator and the denominator, and is still there when there
is no trend to eliminate. (See Corollary 17 below.)

ReMARK 16. If m = 0, (6.3) yields the bias of the estimator pix of the auto-
correlation function when the process is stationary with an unknown mean. This
result can also be obtained directly from the formulae given by Kendall [4].
It is sufficient to note that Kendall’s Eqs. (7) and (8) can be written in the

following form:
11 & . 1/1 & .
BE(4) = p — { 2 - ])Pk+j}; EB) =1 - { 2 (- m} ,
V \V j=1—» V|V j=1—v
where the expressions in curly brackets, as partial Cesaro sums of the infinite
series D1 . pie; and D 1=, p; respectively, tend to D ;12w p; .
CoROLLARY 17. If, the assumptions of Section 2 being satisfied, fu(t) = O,
and if the estimation of the autocorrelation function is based on the assumption that
there is mo trend, t.e., if we make

Cin

Prn = N—k iz N 172,
68) (1 Exf) <—1 > xf)

Vo t=1 V t=k+1

then

+
lim NE(pe.y — px) = 2 Z (Pkpz — Pq Pq+k)~

N->oo g=—00

The proof is entirely similar to that of Proposition 15, with the exception that

now ¢ = ¢ = ¢ = 0.
ProrositioN 18. Under the assumptions of Section 2,

lim N cov (ofx ; piw)

N+

(6.9) - )
= 2 (pg pari—t F PotkPa—t — 2P1Pa Park — 2Pk paPast + 2pxpP1py)-
q=—00
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Proor. Retaining the notation of the proof of Proposition 15, make

Yi+ R; R

G(Y4 ] Y5) YG) = ()75 + Ro)’(Yc + RO)* - I_B;) )

and
N)=C:N—'Rl; (N)_A —Ro; (N)-B —Ro,
where
1 z < ~r ¥ */ 1 - A >
= z; Yo — g A | ; Box = 7 ; Yer1 — ;0 Bwy:(t) |,
so that

Gy, Y5, ¥s) = piw — pi-

Then Theorem 14 can be applied if H and G are regarded each as a function of
the six variables Yy, Yy, ---, Ys.

According to Proposition 9, ¢1s = vi, and, by an argument similar to that
used in proving (6.7), we find

Cis = Ci6 = Vo , Cy = C34 = Vg, Cos, = C6 = C35 = C36 = Voo .

Hence, according to (5. 5),
lim N cov (pfv pin) = — LS (B RBusss + BERon Ro

N-»0 RO q=—00
— 2Ry RiR Ry — 2RoR. R R,1 + 2R, R R2,

which is equivalent to (6.9).

CoROLLARY 19. Under the assumptions of Corollary 17,

(6.10) Em N cov (B, brv) = Em N cov (P:,N P’lk,N)
(See [1], [2].)

Finally, it should be noted that there is no difficulty in applying, with the
necessary modifications, the same method to the investigation of other covariance
and autocorrelation estimators, e.g., to the circular estimator of the autocorrela-
tion function, or to Crx / Cox .
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