ON A CHARACTERIZATION OF THE NORMAL DISTRIBUTION
FROM PROPERTIES OF SUITABLE LINEAR STATISTICS

By R. G. Lana
Indian Statistical Institute

1. Introduction and Summary. In recent years, problems related to the
characterization. of the normal distribution from the property of stochastic
independence of linear functions of independent random variables have been
investigated by various authors. The most general result in this direction is
that obtained independently by Darmois [4] and Skitovich [14], who proved
that if there exist two linear functions

X =>rtuax; and Y =D 1 ba; with ab; =0

(7 = 1, 2,---n), such that they are stochastically independent, where z; ,
%2, -+, T, are n independently (but not necessarily identically) distributed
proper random variables, then each x; is normally distributed. Their methods
of proof are similar in nature, both being based on the use of characteristic
functions, without any assumption about the existence of moments. The same
theorem has been proved independently by Basu [1], under the assumption
that the random variables are identically and independently distributed and
have finite moments of all orders. This result is also obtained independently by
Lukacs and King [11], under the assumption that the random variables are in-
dependently (but not.necessarily identically) distributed, each having finite
moments up to order n, and by Linnik [10], under the assumption that the
random variables have only finite variances. The special case of this theorem
for n = 2 was proved earlier independently by Kac [6], Gnedenko [5], and
Darmois [3], without any assumption about the existence of moments.

Thus we see that the problems on the consequences of stochastic independ-
ence of linear statistics have been exhaustively studied. Hence the question
that naturally arises is whether similar investigations into the distribution
laws of the random variables are possible under the assumption of a suitable
type of stochastic dependence of the linear statistics. In this direction, the
author [8] has derived a characterization of the stable law with finite expecta-
tion from the property of linearity of regression of one linear statistic on the
other for the case n = 2. The author [7] has also obtained some characteriza-
tions of the normal distribution from the consequence of the linearity of the
multiple regression of one random variable on several others, when the vari-
ables have the linear structural setup as in the case of the bi-factor theory of
Spearman.

For the formulation of the problem investigated in the present paper, we re-
quire a precise definition of the terms conditional distribution, linearity of re-
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gression, and homoscedasticity. Let F(x, y) and Fo(z) denote respectively the
distribution function of the two-dimensional random variable (z, ¥) and the
marginal distribution function of z. Then we define the conditional distribution
function of y for fixed x by F.(y) so that it satisfies the relation

(LD [ w Fi(y) dFo® = Fl, ).

In the present investigation, the following assumptions on the distributions
of the random variables will be made:

Assumption 1. The conditional distribution of y for fixed = as defined in
(1.1) is assumed to exist, wherever needed.

Assumption 2. Each of the random variables concerned has a finite second
moment. This assumption allows us to take derivatives of the characteristic
functions of the corresponding random variables up to and including the second
order.

Assumption 3. Without any loss of generality in the proof, it is assumed
that the expectation of each of the random variables concerned is equal to zero.

The role of these assumptions is to ensure the existence of the expectation
and the variance of the conditional distribution of y for fixed x, which may be
defined respectively as

(1.2) E.(y) = [: y dF.(y),
V.(y) = fw ly — E.()}* dF.(y)
1.3 N
= S.@) — ()},
where

s = [ v ar.

In this case, the regression of y on z is said to be linear, if the relation
(1.4) E.(y) = Bz

is satisfied for all z, except for a set of probability measure zero, as the expec-
tations of both the random variables x and y are already assumed to be zero.
The constent, 8 in equation (1.4) is called the coefficient of regression of y on z.
Similarly the conditional distribution of y for fixed z is said to be homoscedastic,
if the conditional variance V,.(y) as defined in (1.3) is a constant o5 not involv-
ing z. Thus if the regression of y on z is linear and given by Bz and the condi-
tional variance of y for fixed z is a constant og , we have the relation

(1.5) S.(y) = o0 + B2

to be satisfied for all z, in addition to the condition (1.4). For simplicity in
notation, throughout the present paper we shall use the term the conditional
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distribution of y for fixed = is L.R.H. (8, o;), meaning thereby that the regres-
sion of y on r is linear and given by Bz and that the conditional variance of y
for fixed z is o} , being free of z, i.e., equivalent to the statement that both the
relations (1.4) and (1.5) are simultaneously satisfied.

In the following sections we shall derive some characterizations of the nor-
mal distribution from the property of linearity of regression and homoscedas-
ticity of suitable linear statistics. The main theorem (Theorem 3.2) is given in
Section 3. The proof of this theorem uses as a starting point a very simple set
of necessary and sufficient conditions for the linearity of regression and homo-
scedasticity (Lemma 2.1) and finally a theorem of Linnik (Lemma 2.3) on an
analytical extension of Cramér’s theorem [2] on the normal law. Several im-
portant corollaries are deduced in the subsequent section.

2. Certain useful lemmas. We shall now give some important lemmas which
are instrumental in the proof of the theorems.

Lemma 2.1. (Necessary and sufficient conditions for the linearity of regres-
sion and homoscedasticity). Let x and y be two proper random variables each
having a finite variance. Then the necessary and sufficient conditions for the con-
ditional distribution of y for fixed x to be L.R.H. (8, o3) are that the equations

a¢(u; U) dtp(’u 0)
(2'1) v ]v—o 6 du
and )
(22) el ] = —diotu,0) + 5 220

are to be satisfied for all real u, where o(u, v) and ¢(u, 0) represent respectively the
characteristic functions of the distribution of (x, y) and the marginal distribution
of z.

This lemma helps us in introducing the differential equation connecting the
characteristic functions of the variables concerned and has been proved in-
dependently by Rao [12] and Rothschild and Mourier [13].

LemMa 2.2. Let x and y be two proper random variables each having a ﬁm'te
variance. Then if the conditional distribution of y for fixed z 7s LR.H. (8, ao),
the conditional dzstmbutzon of by(b # 0) for fired ax(a = 0) 7s LR.H. (8, o
where B’ = bB/a and ool = blop.

LemMma 2.3. (Analytical extension of Cramér’s theorem on ‘the normal law).

Let X1, X2, ---, Xa be n independent proper random variables and let further
¢;(t) denote the characteristic function of the distribution of X;(j = 1,2, ---, n)
If now the functions ¢;(t) satisfy the equation
(2.3) Hl {es®)}* = €,

J=

for all real t in a certain neighbourhood |t | < 6, (8 > 0) of the origin, where aj's
are some positive numbers and Q(t) a quadratic polynomial in t, then each X ; is
normally distributed.



CHARACTERIZATION OF NORMAL DISTRIBUTION 129

Proor: We give below a short proof of this very interesting lemma which is
due to Linnik [9].!

Without any loss of generality in the proof, we can take the quadratic poly-
nomial Q() to be of the form Q(f) = sat — 1#* and work with the characteristic
functions 6;() of the symmetric random variables z; = X; — X;(j = 1,2, - -+,
n), where X7 is distributed independently of X; and has the same distribution
as X;. Then it can be easily shown that the characteristic functions 6;(t) sat-
isfy the equation

n

(2.4) IT 6:;03% = ¢

=1

for all real ¢ in a suitably chosen neighbourhood of the origin. Again noting
that each of the characteristic functions 8,(¢) is real, we have

o

@w=[cmmmw
@2.5) —1-2 _[ : sin”;dp,-(m)

< exp{— Zf sinzt—;dFj(m)}, i=12--,m,

whence, using the equation (2.4), we get

n ) 2
(2.6) > o f sin & dF;(z) £ t—,
j=1 l— 0 2 2
thus yielding for every j, the inequality
o . 2
@27) [ sin (@/2) jp@) < L
w t 205

holding for all real ¢ in a certain neighbourhood of the origin. Then by using
Fatou’s theorem, it follows from (2.7) that the second moment of each x; exists.

Next we shall show by induction that each z; has finite moments of all orders.
Let us suppose that each z; has finite moments up to an even order 2k. Then
differentiating both sides of the equation (2.4) with respect to ¢, 2k times we get

(2.8) Si(®) + Sa(®) + Ss(t) = Gu(t)e ™™,

where S;(¢) contains all the derivatives of order 2k of the functions 6;(¢), Sa(¢)
contains all the derivatives of only odd order not greater than 2k — 1, S;(¢)
contains only derivatives of even order not greater than 2k — 2, and ®x(¢) is a
polynomial of degree 2k in ¢{. We also note that S,(0) = 0.

We should further note that for each term on the left hand side of (2.8) which,
except for a constant coefficient, is a product of the derivatives of the func-

1 The proof of this lemma is given in ““A. A. Zinger and Yu. V. Linnik—On an analytical
generalization of a theorem of Cramér and its application, Vestnik Leningrad Univ., Vol.
10 (1955), pp. 51-56.” In this paper the authors have also given an alternative proof of
Darmois-Skitovich theorem using this lemma.
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tions 0;(¢), if p;. is the order of the derivative of 6;(f) and g¢;- the corresponding
power with which it appears, then

2.9 2 pirgir = 2K,
T

where 6;(¢) i*self is to be considered as a derivative of the order zero.
Now from (2.8) we get easily

S:(t) ; S.(0) 4 S«_;gt) n Ss(t) :2 S;(0)
210 Gu(t) — ©u(0) 1 —¢"
= ——tz— e - @25(0) —t—2—~ .

Then it is easy to verify that as ¢ — 0, the expression on the right-hand side
as well as each of the second and third summands on the left-hand side of Eq.
(2.10) tends to a finite limit. Consequently [Sy(t) — 8;(0)]/# must also tend to
a finite limit as ¢ tends to zero.

Moreover, noting that

fI {0.(t)}*

2.11 = r—
@10 $i) = 32 a0 P,
it can be shown from the above result that
ok sin2 t;-l:
@12) % Z: L0 - 60 _ Z} o f°° e 2 ar,(z;
I= Jj= I~ o0

has a finite limit as ¢ — 0. Agaiii proceeding in the same way as in (2.6) and
using Fatou’s theorem, we prove that each x; has a finite moment of order
2k + 2, thus completing the induction.

We shall next show that each 6;(f) is an entire function of ¢. Without any
loss of generality in the proof, we can, by making a suitable change of scale of
the variables if necessary, take each of the indices @; = 1. Now raising both
sides of Eq. (2.4), to the power 2k, we differentiate 2k times with respect to ¢
and then put ¢ = 0, thus obtaining
0 (2k)!lc’°2".

(2.13) 81(0) + 85(0) = (-1 A

Denoting by ug; the moment of the order 2k of the random variable z;, fve
have '

(2.14) St0) = (=1)* Zl 2katj paes
]=

while S3(0) consists of terms, each containing the moments of even order (the
order being at most 2k — 2) with a positive coefficient having the same sign
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(—1)* by virtue of (2.9). Then noting that a; = 1 and k* < €'k!, we get easily,
using (2.13) and (2.14) together, the inequality

(2k) 1 "2
k!
whence it follows that each 6;(t) has a power series development about ¢ = 0

with a radius of convergence not less than 1/4/2e, the series representation
being of the form

(2.15) pak; < Z; 2kaj[l.2kj < < (2k)!(2€)k,
J=

. = 5 - k  Mokj 2k P = e
(2.16) 0;(t) ;_0 (—1) ool £ i=12 -, n
We now consider the behaviour of each of 8;(t) for purely imaginary values
of ¢. Substituting ¢ = 4 (v real) in (2.16) and then making the variable trans-
formation w = v*(w = 0), we can easily verify that the functions &;(w) which

reduce to 8;(¢), if we put w = —¢, satisfy the equation
(2.17) IT ()} = e
J=

and have the power series development

Ei(w) = Do [(uers)/ (2k) Jw*

about w = 0, the radius of convergence being not less than 1/2¢ and the coefficients
being all positive. Now let wy > 0 be a point within the radius of convergence of
each of the £;(w). Then taking #;(W) = &;(wo + W)/£;(wo), it is easy to verify
that the functions 5;(W) satisfy the equation

n

(218) IT (m(w)yi = &,

J=1
which is completely analogous to the equation (2.17) and has the power-series
development

£ (wo) W*
kgﬂ f:(wO) k'

in a certain neighbourhood of W = 0, the coefficients being all positive.

Then proceeding exactly in the same way as above, we can show that the
radius of convergence of each of the series development for #;(W) is not less
than 1/2¢. Hence each £;(w), having no singularities for 0 < w < wy+ 1/2¢, has
a power-series development with radius of convergence not less than w, + 1/2¢
(¢;(w) is a series with positive coefficients). This fact evidently leads to the
conclusion that each of £;(w) and hence each of () is an entire function. The
remainder of the proof is exactiy similar to that of the theorem of Cramér [2].

(W) =

3. The theorems. We are now in a position to prove the following theorems:
TueoreM 3.1. Let (z;,y;)j = 1,2, -+, n be n independently (but not neces-
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sarily identically) distributed two-dimensional proper random variables each having
a ﬁmte variance such that the conditional distribution of y; for fized z; ¢s L.R.H.

B, dh) forj =1,2, --- , n. Let X = E:=1 a;z; and Y = D71 by; be two
linear functions with a,-bj ;é 0(=1,2 , 1), then the conditional distribution
of Y for fixed X is always L.R.H. (8, aﬁ), whenever the relation '
BB _ b _ . _baBe_ g
a (023 an

18 satisfied.

Proor. For convenience in procedure, let us substitute £; = a;z; and 9; =
byyjforj = 1,2, , n. Then we can write X = > j.¢(and ¥V = Siami,
and further using Lemma 2.2, we get that the condltlonal distribution of 7; for
fixed £; is L.R.H. (8} , o73) where 8; = b,8;/a; and oj; = bjo% ;5 = 1,2,

Let ¢;(u, v) and ¢;(u, 0) denote respectively the characteristic functlons of
the distribution of (£;, ;) and the marginal distribution of £;( = 1,2, --- , n)
and similarly ®(u, v) and ®(u, 0), those of the distribution of (X, Y) and the
marginal distribution of X respectively.

Then we can write

®(u,v) = E{exp ((uX + wY)}
= Ef{exp (iu ZJ: g+ @ 2 )

= IiI ¢j(u7 U).

Aga.m it is given that the conditional distribution of ; for fixed £; is L. R.H.
(87, ’%), forall j = 1, 2, ---, n. Hence applying Lemma 2.1 and using the
conditions (2.1) and (2. 2), we get

(3.1)

dei(u,0) 1 _ o dei(u, 0)
@ ] g tend,
2 .
j od .
(33) ‘-9“’—’6(;—2—”)] = —oieiw,0) + 67 “’é;‘z O =12 -,n

Now differentiating both sides of (3.1) with respect to v, r times (r = 1, 2)
and then putting » = 0 and using the relations (3.2) and (3.3), we get

(34) 99%_"_)]_0 ; 5 des(, 0 d¢,(u 0) I1 00,0,
: CI);:;’ v)]v:o = _H ¢i(u, 0) Z s
(35 +3 gip L0 I ou(u,0)

Y7 /dw('l; 0) dex(, 0) 1T o, (u, 0).

du 1=k
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Again putting » = 0 on both sides of (3.1) and then differentiating both sides
with respect to u, r times (r = 1, 2), we get

du j=1 du k;ﬁ]
d’®(u, 0 d 0
éZz ) Z ¢J(u ) I'I ¢k(u, 0)
(30 de;i(u, 0) dew(u, 0)
i\u, L\ U,
§k du du zgk ei(, 0).
Now under the conditions of the theorem, we have 81 = 8; = --- = 8, = 8.

Then substituting this in (3.4) and (3.5) and finally comparing with (3.6) and
(3.7), we get,

38) 8% (u, v)] - dd(u, 0),
w v=0 du
, ' (u, , d’®
(39) 0] = a0 Eoi + 2 200,
v =0
Then the proof of the theoieus follows at once using Lemma 2.1 to (3.8) and
(3.9).

From the above theorem, it follows easily that if there exist two linear func-
tions X = Druaw;jand Y = D i bw;, withad; #0(G =1,2, -, n)
where z;, 2;, ---, 2, are n independently (but not necessarily identically)
distributed proper random variables each having a finite variance, then the
conditional distribution of Y for fixed X is always L.R.H. (8, ¢5) whenever the
relation bi/a; = by/ay = --- = b,/a, = B is satisfied.

In the following we shall establish the normality of the random variables
z;’s from the property of the linearity of regression and homoscedasticity of the
conditional distribution of Y for fixed X as introduced in Theorem 3.1, under
some conditions. For this purpose let o; denote the variance of the random
variable z; (j = 1, 2, -+ -, n). Then the coefficient of regression of ¥ on X will
be given by 8 = >_ a;b;8;0:/ Z ajo; , the summation extending over all the
indices j for which (b,8;)/a; # 8. We now state the following theorem.

TurorEM 3.2. With the same notations and assumptions as those used in theorem
3.1, the necessary and sufficient condition for the conditional distribution of Y for
fized X to be L.R.H. (8, o) is that -

(i) each x; for which (b;8;)/a; # B is normally distributed, while each y; and

the other x;’s have arbitrary distributions.

(ii) B =2 abBii/2 ajo;
and
2
- oo+ T (2 - ) aiel,
=1

where Y stands for the summation over all the indices j for which (b;8;)/a; # B.
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Proor.

Necessity: First of all, substituting £, = a;z; and 5, = b,y; as in Theorem 3.1,
forj=1,2,--- ,n,weget X = D i g;and Y = D iy

Since it is given that the conditional distribution of ¥ for fixed X is L.R.H.
(8, o5), we get on using the conditions (2.1) and (2.2) of Lemma 2.1,

9% (u, v) _ ,d®(u,0)
(3.10) Tl_o - p R0
2 2
(3.11) 0@;:2,1))]_0 = —-a'o@(u 0) + ﬁqu’(u 0)'

Next using the relations (3.1), (3.4), (3.5), (3.6), and (3.7) together in the
equations (3.10) and (3.11), we have

(3.12) E Bi d%(u 0) H eu(u, 0) = 8 [Z de,(x, 0) H AR 0)]
I o, 0 35 ot + 3 67 PO T 4y, 0)

(13)  + T ga 20008l 0) 7 0 2 ot 1T i, 0)

du U5k

+ 8 [Zd¢1(u O)IH (u 0) +Z d‘PJ(u O)dgp;,(u O) g ¢l(?t 0)]

=1 I#k u

Now noting that each of the characteristic functions is continuous for all real
u and equal to unity at the origin, we restrict the values of u to a suitably chosen
neighborhood |u| < & (8 > 0) of the origin, such that each of the factors oc-
curring in the product []7-i¢;(u, 0) is different from zero, and then divide
both sides of (3.12) and (3.13) by J]7: ¢;(%, 0), thus obtaining

1) T2 0 [0 -4 > 2680 /o ,0)
- ; i+ 38 L0 /0
+ 2 6 ﬁé{d"’(“ Ry 0)} [#00) /., 0)}

= —a + 6 [Zd“”(“ 0)/«:,(u 0)

dﬁﬁj(M, 0) d‘pk(u) 0)
+ {20 /{280 /0

Then using the transformation ¢;(u) = Ing;(u, 0) forj = 1,2, ---, n and
expressing (3.14) and (3.15) in terms of the derivatives of ¥ ;(u), we have

(3.15)
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(3.16) oM _g5a,
: j=1 aU
3 2 dY; r dy;
. -2 o +ZB,d,+<Zﬁ,du>

= —d+ 6 [Z“’+<Zd‘b’)].

=1 du? =1 du

Using (3.16), (3.17) further simplifies to

n , PR d2 X
(318) S IR I R
=1 du i=1du
Again differentiating both sides of (3.16) once more with respect to u, we get
/ d 'kr — d '//J
(3.19) Z Bi 7 ; e

Then using (3.18) and (3.19) together, we have
> 6 - o T Zﬂ”d—"i - 2323"”’ + 6 };13;’

J d2 .’Idg
_ g d¥i _ gy Ay
(3.20) = Zﬁ, Pl Y

- _(az S a;.z) e (say).

Jj=1

Finally integrating Eq. (3.20) with respect to u, we get
(3.21) IT {eitu, 07" = &,
j=1

which holds for all % in the interval |u| < & (86 > 0) where @(u) is a quadratic
polynomial in u.

Then using the theorem of Linnik (Lemma 2.3), it follows at once from (3.21)
that each £, , for which 8; # 8, is normally distributed. Thus each x; , for which
,8;)/a; ¥~ B, is normally distributed.

Sufficiency: Without any loss of generality, we assume that for the first r
pairs (r < n) of the random variables (z;, y;), the relation (b,3;)/a; # B is
satisfied so that for the remaining n — r pairs, b;8,/a; = (8. Then from the
conditions given in Theorem 3.2, the distribution of each xz; is normal for j =

1,2, ---, r and arbitrary for j = r 4+ 1, ---, n. That is, putting £,~ = a;
and n; = b;y, , we get the distribution of E, as normal forj=1,2, ---,rand
arbitrary for j = r + 1, r + 2, ---, n. We are also given tha.t ﬁJ # B
(j=1,2,"',7'),Whileﬁ:+|=B:+2=“ _Bn_ﬂ

Letuswrite X = Xo+ &+ -+ &and Y = Yot gen + -+ + 1,
where Xo = > jaé;and Yo = D 7 q;.
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Let ®o(u, v) and ®(u, 0) denote the characteristic functions of the distribution
of (Xo, Yo) and the marginal distribution of X, respectively and further ¢}
the variance of ¢;forj = 1,2, --- , n.

Then it can be shown, proceeding exactly in the same way as in (3.4) through
(3.7) above, that

(3.22) e L
v v=0 j=1
’® Ny N e s
(3.23) —%ﬂ]/@mm=—}d—2M#+M@M”>;
v r=0 j=1 j=1 N
(3.24) (v, 0) / ®o(u,0) = —u ) o7
du i=1
2 r T 2
(3.25) M} / ®o(u, 0) = — 2 of* + u2< aﬁ-?),
du? i=1 j=1
‘where

®(u, 0) = exp{ -1’ ) o?} .
. =1

Then using (3.22) and (3.24) together, we get

g@_o(u,_v)] _ Bd«bo(u, 0)
v=0 N

(3.26) . du

where 8 is given by
ﬁ=2m#/2#
j=1 j=1

Again eliminating %’ from both the equations (3.23) and (3.25) and using the
value of 8 as obtained in (3.26), we have \

.2
ﬁ¥ﬁﬂ /%Wm - om—ZE“Z
v ve=0 =1
(3.27) o0 ,
2 o\ U, ’ 2
+B[“EF— %erfgw],
which after a little simplification reduces to
2

(3.28) ‘2%)_)] . = —gyg ‘I’O("I 0) + 32 d‘I)o(’u 0) ’

where

$=Zﬁ+§%—W&

j=1
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Then using Lemma 2.1 to (3.26) and (3.28) it follows easily that the con-
ditional distribution of ¥, for fixed X, is L.R.H. (8, 0o>), where 8 and ¢’ are al-
ready defined in (3.26) and (3.28) respectively.

Again since B741 = Brys = -+ = B4 = B, it follows by applying Theorem
3.1 that the conditional distribution of ¥ for fixed X is L.R.H. (8, o5) where 8
is the same as that defined in (3.26) and

n 7
SR R A
i= i=

Hence the proof of the theorem.

4. Some Corollaries. We shall now deduce some important corollaries in
this section.
CoOROLLARY 4.1. Let there exist two linear functions

X = Z;“=1 a;x; and Y = Z]"‘=1 b,a:j with a,-bj #0 (] = 1, 2, crty n)

where Ty, T2, ** , Tu are n independently (but not mecessarily identically) dis-
tributed proper random variables each having a finite variance o> and zero expecta-
tion. Then the necessary and sufficient condition for the conditional distribution of
Y for fived X to be L.R.H. (8, o3) ¢s that
(1) each x; for which b;/a; # B is normally distributed, while the remaining
x;'s have arbitrary distributions

(ii) B = D'aho}/ D! ao;

and
+ (b; 2
=3 (- 8) e,
a;

the summation extending over all the indices j such that b;/a; #~ B.

CoRrOLLARY 4.2. Let (x;,y;)j = 1,2, -- -, n be n independently (but not neces-

sarily identically) distributed two-dimensional proper random variables each having
a finite variance and zero expectation, such that the conditional distribution of y;
for fized x; is LR.H. (8;, o) for j = 1,2, -+ -, n. If there exist two linear func-
tions X = 3 7 aaw; and ¥ = 3 71 by; with ab; %0 (j = 1,2, -+, n) such
that they are stochastically independent, then each x; for which B; # 0 ts-normally
distributed, while the remaining x;’s and each y; have arbitrary distributions.
- CoROLLARY 4.3. Let (x;, y;)j = 1, 2, be two independently (but not necessarily
identically) distributed two-dimensional proper random variables each having a
finite variance such that the conditional distribution of y; for fixzed x; vs LR.H.
Bj, 0%),7 = 1, 2. If there exist two linear functions X = oz + sz and ¥ =
biyr + bays with ab; % 0 (5 = 1, 2), then the necessary and sufficient condition for
the conditional distribution of Y for fized X to be L.R.H. (8, 05) is that each z;
s normal whenever biB1/a; # byBa/as .
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Proor.

Necessity: First of all we substitute £; = ax; and n; = by, (j = 1, 2) and
then proceed in exactly the same way as in Theorem 3.2. Then the equa-
tion (3.12) reduces to

d¢1 (u 0) des (u 0)

(4.1) B1 = B) =22 a(u, 0) + (B2 — Ben(u, 0) FE = = 0.

Now we shall show that under the conditions §; # /5: , neither g; — 8 nor
B — B can be equal to zero. Forif 8; — 8 = 0, while 8, — 8 = 0, the eqgua-
‘tion (4.1) becomes

des(u, 0)

du =0

(42) ®1 (u, 0)

Thus in a suitably chosen neighbourhood ju| < & (5 > 0), of the origin where
e1(u, 0) % 0, we have

43) s (1, 0} _
du

thus leading to the conclusion that the distribution of & is improper, the whole
mass being concentrated at the origin. Siniilarly if £, — 8 = 0, while 8; — 8 = 0,
it can be shown in an exactly similar manner that the distribution of & is im-
proper. Hence the only alternative left is when both 8] — 8 = O and 8, — g = 0
simultaneously, but in this case we have 8; = f, which is contrary to the
conditions of the theorem. The rest of the proof is as in Theorem 3.2.
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