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1. Introduction and summary. Group divisible incomplete block designs
form an important class of incomplete block designs useful in a wide variety of
experimental situations. Their properties, construction, and analysis have been
thoroughly discussed in statistical literature, and we cite only several recent
references [1], [2], and [3] to work of Bose and his co-workers dealing with par-
tially balanced designs with two associate classes with which we shall be con-
cerned. )

The utility of incomplete block designs would be increased with means of in-
corporating factorial treatment combinations in them. The use of factorials is
widespread and stimulated by the concepts of confounding, partial confounding,
and fractional replication. A mathematical summary on factorials is given by
Kempthorne [4]. Kramer and Bradley [5] considered factorials in near-balance
incomplete block designs, and here we generalize to the wider class of group
divisible designs with two associate classes. Harshbarger [6] used a 2% factorial
in a Latinized rectangular lattice and this seems to be the first use of a factorial
in a partially balanced incomplete block design.

We obtain the intra-block analysis of variance for two-associate class group
divisible designs with the .adjusted treatment sum of squares in a modified form
that more clearly indicates the structure of that quantity. Factorial treatment
combinations are then identified with basic treatments through the association
scheme of a design. This identification is effected in such a way that the factors
are divided into two groups. For example, the design for 18 treatments (see [2],
Design $60), divisible into six groups of three, in blocks of six, treatments repli-
cated five times, can be adapted to a 6 X 3 factorial scheme; by regarding the
six groups as made up of a 2 X 3 classification, the same design can be used for
a 2 X 32 factorial scheme. Single-degree-of-freedom comparisons are obtainable
in much the usual way and use of fractional replication, essentially within the
groups of factors, is possible. The analyses for factorials depend on the estimators
of basic treatment effects.

We are not concerned with the construction of two-associate class group divis-
ible designs and all known such designs for which » < 10,3 < &k < 10, where r
is the number of replications and k is the number of plots per block, are given
in [7].
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2. Definitions and notation. Bose, Clatworthy, and Shrikhande [7] list the
following properties of group divisible designs with two associate classes:

(i) The experimental material is divided into b blocks of k units each; dif-
ferent treatments are applied to the different units in a block.

(ii) There are v = mn treatments (v > k) and the treatments can be divided
into m groups of n each such that any two treatments of the same group are
first associates while two treatments from different groups are second asso-
ciates. Each treatment occurs in the design r times, and vr = bk.

(iii) Each treatment has exactly (n — 1) first associates and n(m — 1) second
associates.

(iv) Given any two treatments which are ith associates, the number of
treatments common to the jth associate of the first and the kth associate of the
second is pix, (3, 7, k = 1, 2), and is independent of the pair of treatments se-
lected. In matrix notation, if P; is the matrix with elements pj; ,

(n — 2) 0 0 (n—-1)
0 n(m — 1) | (n—1) nim-—2)

(v) Two treatments which are sth associates occur together in exactly \;
blocks, z = 1, 2.

(vi) The inequalities, r = A\, 7k — A = 0, hold.

(vii) The design parameters are related so that (n — 1)\ + n(m — DA =
r(k — 1), orrk — A = r — A\, + n(Ay — \;). Group divisible designs have
been divided into three subclasses, Singular, Semi-regular, and Regular, but
we shall consider the class as a whole without subdivision.

We let V;; denote the jth treatment of the 7th group noted in (ii),7 =1, -- -,
m;j = 1, -+, n. Then the usual association scheme is given by the matrix V
with elements V;;. Two treatments with common first subscripts (in the same
row of V) are first associates; otherwise they are second associates. The double
subscript notation is introduced here for it will be convenient when we come
to consider factorials. To use the design catalogue [7] it is only necessary to
match our treatment designations with those in the association matrices where
treatments are numbered serially.

The model that will be assumed for group divisible incomplete block designs
is that

(2.1) Yijs = B+ Tij + B + €ijs

where y;;, is the observation on V; in block s if that treatment occurs in block
s, p is the grand mean; 7;; is the effect of V;;, B, is the effect of block s, and
€;j are independent normal variates with zero means and homogeneous vari-
ances, ¢”. Latin letters m, t;; and b, will be used for estimators of the parameters
in (2.1). Restrictions on. the parameters in (2.1) are

(2.2) =0
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and
(23) Zc Be = 0.

The parameter 8, in (2.1) may sometimes be redefined when the blocks are
arranged in replications or a Latin square [8], [9]. We shall not explicitly con-
sider these situations since the modifications involved do not affect the estima-
tion of the adjusted treatment sum of squares.

3. General regression theory. Let
k
(3.1) Yo = 1+ 2 Bitia + &,

a =1, ..., N, represent a general regression model where the z;, are con-
stants and the e, are independent normal variates with zero means and homo-
geneous variances, ¢°. The B8; are regression parameters subject to r, linearly
independent restrictions,

k

(3.2) Zla;;.ﬂ;=0, h=1,-,n < (k—1),
defining a parameter space Q. The a; in (3.2) are known constants. A null hy-
pothesis introduces 7, additional restraints through additional linearly inde-
pendent equations like (3.2) forh = r + 1, .-+, 7 4+ r» < (k — 1) and thus
defines a parameter space w, a subspace of Q. ‘

The general theory of regression tests under the conditions set forth lets us
state that Reg (8|Q)/0", Reg (8|w)/c’, and [Reg (8|2) — Reg (8|w)l/d’
have x’-distributions respectively with (k — r), (k — 71 — ry), and r, degrees
of freedom independent of Res (8 | 2)/¢”, which also has a x’-distribution with
(N — k 4+ r — 1) degrees of freedom. Reg (8| Q) is the sum of squares due
to regression on the z-variables in (3.1) with the regression coefficients subject
to the restraints (3.2); Res (8 | ©) is the resultant sum of squares of deviations
about that regression line. Reg (8 | w) is the sum of squares due to regression
on the z-variables in (3.1) with the regression coefficients subject to the totality
of (r; + 7o) restraints defining . We note that

k
(33) Reg (8] Q) = Zl bigs,
k
(3.4 Reg (8| w) = Zl bigi,
~and
N k
(3.5) Res (8| Q) = El (Ya — 9)° — Zl begi,
where

N
(36) g: = E] (ya - g)x‘ias
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b; and b; are the least squares estimators of 8; under the restraints of ¢ and «
respectively, and § = D a1 Ya/N. An F-test of the indicated hypothesis is
possible based on

(37) F= N —I+r — 1)[Reg (8|92 — Reg (8| w)]/r:Res (8]9),

with v, and (N — k 4+ r — 1) degrees of freedom.

To illustrate the application of this theory, we consider the model (2.1) cor-
responding to (3.1) and the restrictions (2.2) and (2.3) corresponding to (8.2)
and defining 2. Now N in the regression theory is replaced by vr, k by (b + v),
7 by 2, and 2 by (v — 1). The regression coefficients 8; become treatment and
block effects, 7;; and B, . To test the hypothesis that 7;; = 0 for all ¢ and j in
(2.1), the hypothesis of “no treatment effects”, it is only necessary to add
(v — 1) additional linearly independent restrictions on the r; to insure that
each 7;; = 0, thus defining w. The adjusted treatment sum of squares with
(v — 1) degrees of freedom becomes

(3.8) Reg (8, 7| @) — Reg (8, 7| w),
where

(3.9) Reg (8, 7| Q) = D i ;tiiTii + e b:Bs
and

(3.10) Reg (8, 7| @) = D s b:Bs,

the latter sums of squares having respectively (b + v — 2) and (b — 1) degrees
of freedom. T%; is the total for treatment V;; and B, is the sth block total. b
and b, are the estimators of 8, under @ and w respectively; {i;, the estimator
of ;; under w, is necessarily zero. The error sum of squares for the intra-block
analysis of variance is

(311) Res (B: T l Q) = ZiZfES (yiis - g)’z - Reg (ﬁy T l Q))

with (v — b — v + 1) degrees of freedom. In (3.11), note that the summation

is restricted to values of 7 and j occurring with s through the properties of the

designs considered; this will be the case throughout this paper. The unadjusted

block sum of squares is given by (3.10)-and has (b — 1) degrees of freedom.
We shall use the theory summarized in this section in the subsequent dis-

cussions. A basis for this theory is given by Wilks ([10], Sections 8.3 and 8.43).

4. General analysis of variance modified. The basic intra-block analysis of
variance for partially balanced incomplete block designs with two-associate
‘classes is known ([7], Table 1.0). In our notation, the adjusted treatment sum of
squares is

(4.1) Adj. Treat. S.8. = D i i tiiQis
where
(4.2) Qi = T — Bij./k,
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with B;;., the total of block totals for blocks containing V;;. For the subclass
of group divisible designs,

(4.3) o+ 7k — Pbi; = kv + A — M)Qi; + kv — A) X Qip
P
P

obtained from the reference ([7], Egs. 1.11 to 1.19). If j in (4.3) is replaced by
¢q and both sides of (4.3) summed over values of ¢ # j, the resulting identity
may be substituted back into (4.3) with simple algebraic reduction based on
the relations (vii) of Section 2 to yield

(4.4) [z + rk — r)ts; + (A2 — M) Z tid/k = Qij.

27

The adjusted treatment sum of squares expressed in terms of the estimators
of treatment effects alone is

(45)  Adj. Treat.88. = Mtk =7 = Dy oy 4+ Qe M - M S (5 )
1 ? % 7
obtained by substituting Q;; in (4.4) into (4.1).

The result of (4.5) is a form more suitable for the consideration of factorials
than (4.1). Usually in analysis of variance, computing is based on (4.1). It is
in fact simpler when using a desk calculator to substitute for the Q;; in (4.3)
to obtain

tii = [eoheTis— k(e — M)D_iTs; — vNeBij.
+ (A2 — A1) i Bijl/vAe(M + 1k — 7)

trom two-way tables of values of T;; and B;;.. Substitution in (4.5) is then

based on (4.6).
The analysis of variance is completed by the calculation of the unadjusted

block sum of squares and the total sum of squares, for the error sum of squares
is obtained by subtraction.

(4.6)

@ Unadj. Block S.8. = }c > B — rg’_v

2
4.8) Total 88. = 2 2 3 v — %
£ 7 8

G is the grand total of all observations, D ;D ;D ¥is - Degrees of freedom
for Adj. Treat. S.S., Unadj. Block S.8., Total S.S., and Error S.S. are respec-
tively  — 1), 0 — 1), (rv — 1), and [(r — 1)v — b + 1].

The variance of the difference between estimators of first-associate treatment
effects is

(4.9) V(tii — tiy) = 2ka’/(\ + 1% — 1),
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j #% j’; the variance of the difference between estimators of second-associate
treatment effects is

(4.10) Vit — toj) = 2]60’20\1 4+ A0 — Ag)/vA(A\ 4+ TR — 1),

¢ # 7. These variances are estimated by substituting the error mean square
from the analysis of variance for o”.

The efficiencies of first and second associate treatment comparisons have
been given by Bose and his associates [7]. These efficiencies are obtained by
taking the ratio of the variance of the treatment contrast for a randomized
block design to the corresponding variance for the incomplete block design
given equal values of 7 and on the assumption that both designs yield the same
experimental error. The efficiency for the comparison of two treatments that
are first associates is

(411) E, = ()\1 + rk — T)/Tk
and, for two treatments that are second associates, the efficiency is
(412) E2 = 1))\2()\1 + rk — T)/T]COq + )\22) et )\2)._

E; and E; are in more explicit forms than given previously and are derivable
from (4.9) and (4.10) and the fact that the corresponding variance for the
randomized block design is 2¢%/r.

6. The basic two-factor factorial. To introduce factorials into two-associate
class group divisible designs, we first consider a basic two-factor factorial. Then
it will be possible to show how multi-factor factorials may be used.

Consider 4 and C factors with m and = levels respectively providing v = mn
treatment combinations associated with the V;; so that

(5.1) Ti; = o + vi + &;
with restrictions,

(5.2) Diai =0,
(5.3) 27 =0,
(54) 28 =0,
and

(5.5) D idij = 0.

. Equations (5.2) to (5.5) represent (m + n + 1) linearly independent restric-
tions on the (mn 4+ m + n) new parameters. a;, v;, and §;; are parameters
representing respectively the effects of the sth level of the A-factor, the jth
level of the C-factor and the interaction of the 7th level of the A-factor and
the jth level of the C-factor. Corresponding Latin letters will be used for esti-
mators of these effects.
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The change to factorial parameters may be regarded simply as a one-to-one
transformation in the parameter space. It follows that

(5.6) tii = ai+ ¢; + di;
and substitution in (4.5) yields

Adj. Treat. S8. = ’% 2 ai+ "’()‘—‘+,§l°—"——’) I
L3 7

+(>\1+;‘ck—r)z‘:;d§j

after reduction based on (vii) of Section 2. Use of the general regression theory
is sufficient to obtain

(5.7)

(5.8) Adj. 88, (4) =T df,
(5.9) Adi.88.(0) = Mt E =D 5
1
and
(5.10) Adj. 88. (AC) = (ﬂ—*';ck—“") > X dy,
1 7

with (m — 1), (n — 1), and (m — 1)(n — 1) degrees of freedom respectively.
The complete analysis of variance is given in Table 1. Definition of (5.8), (5.9),
and (5.10) is complete when we note that

(5.11) ai = 2 itii/n = k.,
(5.12) ¢; =2 it/m = 1.,
and

(5.13) dij = ti; — 4. — 1.,

computed most easily from the two-way table of values of ¢;; . Independence
of the sums of squares in (5.8), (5.9), and (5.10) follows from Cochran’s theorem
[11].

We sketch the use of the general regression theory of Section 3 and the appli-
cation of it to our problem by considering Adj. S.S. (4).

To effect the regression with the complete model obtained by substituting
for 7;; of (5.1) in (2.1), it is necessary to minimize

(5.14) Didid e Wi — m — @i — vj — 8 — B.),

subject to the restraint (2.3) and to the (m + n + 1) linearly independent
restraints of (5.2) to (5.5) through use of Lagrange multipliers. The resulting
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TABLE 1
Intra-block analysis of variance for the basic two-factor factorial
Source of Variation Degrees of Freedom Sum of Squares*
Treatments (adjusted) w—1) = (mn — 1) K22t
+ K22 (T )2
A-factor (adjusted) (m — 1) (nK; + n2Kq) 2:
C-factor (adjusted) (n — 1) mK, 2; &
AC-interaction (adjusted) m—1) (n — 1) K 22 (tii— 6. — 1.5)2
. 1 G?
Blocks (unadjusted) b —-1) -2, B} ——
k ™
Error [mn(r — 1) — b+ 1] By subtraction
Fe2
Total. . P (mnr — 1) 2:i2i2eViis ——

Y

*Ki= A\ + 1k — r)/k, Ko = (A2 — N)/k, and nK, + n?K, = ni/k.

estimators are those given in (5.11) to (5.13) for «;, v;, and §;;, and the esti-
mator of u is G/vr. It follows that

Reg (¢, 7, 8, 8] 9Q)
= ad; + 260 4+ D> ;diDi; + D s 0B,
where A; = 2.; Tsj, C; = >:Tsj, Dij = T:;, and B, is defined after (3.9).
Q is the parameter space defined by the indicated restrictions.
The null hypothesis of no A-effects implies (m — 1) additional linearly in-
dependent restrictions sufficient to make each a; = 0, and they reduce con-

sideration to a parameter space w, , a subspace of Q. Under these conditions it
is necessary to minimize

(5.16) DD D Wiis — mo— vi — 8 — B

with use of Lagrange multipliers and the restraints (2.3) and (5.3) to (5.5).
Estimators of g, v;, and 8;; are unchanged; a new estimator b, of g, is obtained.
Now

(5.17) Reg (v, 8, 8| wa) = 2 ;¢,Ci + 2 2. diDij + 2 e buBs .

The estimators b, and b, are fairly complex, but we need only note that

(5.15)

(5.18) bs = b, + %Z ny(9ai,

ins

where n,(¢) is the number of times a treatment combination with the 7th level
of the A-factor occurs in block s.
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Adj. S.8. (4) is the difference, Reg (e, v, 8, 8| 2) — Reg (v, 8, B| w4); and,
using (5.15), (5.17), and (5.18), we have

(5.19) Adj.88.(4) = T asdi = 1 = T n(aiB,.
But

> Z ns(1)a;:B, = Z a;i 2 n(i)B, = Z aiz Bi;.,

8
ins with ¢

and, from the definition of A;, 4; — X_; Bij. = 2_; Q:;. It follows that

(5.20) Adj. S8. (4) = Tia:X; Qi
and
(5.21) Ei Qi = ndwa./k,

the latter result obtained from (4.4), (5.2) to (5.6), and algebraic reduction
based on (vii) of Section 2. The final form for Adj. S.S. (4) given in (5.8) is
now evident and the degrees of freedom are (m — 1), since (m — 1) additional
restrictions were required to reduce @ to w, . Adj. S.S. (C) and Adj. 8.8. (4C)
are obtained in much the same way.

It is of interest in some applications to have the variances of (a; — au),
1 # 1/, and of (¢c; — ¢j),j # j'. These variances are most easily obtained from
the forms of the multipliers of Y :%. = ., a? and of )_;i’; = D_;c} in the
analysis of variance of Table 1. It follows that

(5.22) V(a; — ar) = 2ke*/ndw, R
and
(5.23) Vic; — ¢j) = 2ke’/m(\ + 1k — 1), J#=7.

The error mean square of the analysis of variance is used to estimate o and
consequently the variances of (5.22) and (5.23). Alternate derivations of (5.22)
and (5.23) may be obtained through the forms (5.11) and (5.12) given the vari-
ances and covariances of the ¢;; . Considerable algebra is involved in the deriva-
tion of these variances and covariances, and we do not include it here. It may,
however, be useful to have these results and we now state without proof that

(n — 1) (m — 1)]
n\ + 1k — 1) mnigv |’

(5:24) V(t;) = ka2[

el = A 1 —_ 1 ] )
(5-25) COV (tu t.) ) - ko' l:mn)\zv n()\] + "'k . T):I’ .7 # .7 )

and

(5.26) Cov (tijtirj7) = —ko/mnw, R
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Efficiencies of factorial contrasts may be obtained in the same way as E;
and E; in (4.11) and (4.12). The variances corresponding to (5.22) and (5.23)
respectively for a randomized block design are 2¢°/rn and 2¢°/rm, on the as-
sumption again of equal experimental errors for the complete and incomplete
block designs. The efficiency for contrasts among A-factor effects is

5.27) E, = \/rk
and the efficiency for contrasts among C-factor effects is
(5.28) Ec= M+ rk — r)/rk.

The variance for an interaction contrast in the group divisible design is
M+ rk — r)d/k

from Table 1 and is ¢°/r for the randomized block design. Consequently, the
efficiency for an AC-interaction contrast is also

(5.29) Eije= M+ 1k — 1r)/rk.

Note that E¢ = E4 ¢ = E:. The two-associate class group divisible designs
have three subclasses as noted earlier. For the singular subclass, \; = r and
E; = E ¢ = 1; for the semi-regular subclass, Asv = rk and B, = 1. In the
next section we discuss individual comparisons and multifactor factorials. We
now note, somewhat in advance, that all individual comparisons and sub-
factor effects of the A-factor have the efficiency E, , those of the C-factor have
efficiency E¢, and those of the AC-interaction have efficiency E,¢ .

6. Individual comparisons and multi-factor factorials. Individual or single-
degree-of-freedom comparisons are possible in much the usual way.

Let £ be an (m — 1) by m orthogonal matrix and 5, an (n — 1) by n orthog-
onal matrix used to transform the a’s and +’s respectively. Contrasts on A4-
factor effects would be

(6.1) o = D i b, u=1 -, (m—1),
and on C-factor effects,

(6.2) Mo = 205 Tes¥i v=1-, (1.
To test the hypothesis that £ = 0, we form the contrast

(6.3) Lo =2 kadi = 20005 budis/n

“and

M s Eadin) ke D £

Mo (30205 Eaulis) "/l 22625 b
Similarly, to test the hypothesis that %, = 0, we form the contrast
(6.5) Jo =225 oes = 224225 estis/m

Adj. 8.8. (1)

I

(6.4)
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and
Adj. 8.8. (J») = m(\ + 1k — T)(Zi ﬂ»az~i)2/k2j 7’3.1'
=Mtk — (i itk 225 e -

The contrast for interaction of £, and #, is

(6.6)

(67) (E"])uv = Zz‘z:’ E'iunvjatj .

The hypothesis, (£9)., = 0, is tested through use of the contrast
(6'8) (IJ)uv = Ziz.‘i Eiuﬂvitij

and

Adj. 88. (IJ)w = (M + 1k — 1)

e 205 Eaumostis) [ D0 205 (Baumed).

Cochran’s theorem [11] is sufficient to demonstrate the independence of all
adjusted sums of squares, Adj. S.S. (I,),uw = 1, ---, (m — 1), Adj. S.8. (J,),
v=1---,(m—1),and Adj. SS. {N)w,u=1,---,(m—1),0 =1,---,
(n — 1), and that they are appropriate for use in analysis of variance. Each
has one degree of freedom and F-tests are effected using the error mean square
of Table 1.

Special definition 6f the matrices ¢ and » permits the use of special contrasts.
For example, rows of £ and # may be defined such that contrasts on A-factor
and C-factor effects measure trends (linear, quadratic, cubic, --- ) ever the
factor levels.

Suppose the A-factor has levels which themselves are factorial combina-
tions of other factors. Let there be p such factors, 4,, ---, 4,, with levels
my, -+, my. It is only required that m = J]Zi m;. Then ¢ may be chosen
in the obvious way so that the contrasts defined may be grouped to obtain
main-effect and interaction comparisons for the subfactors of 4. The correspond-
ing adjusted sums of squares, each with one degree of freedom, may be grouped
if desired to obtain Adj. S.S. (4,) with (m; — 1) degrees of freedom, Adj. S.S.
(4;) with (m; — 1) degrees of freedom, Adj. S.S. for interaction of 4, and A,
with (m; — 1)(m; — 1) degrees of freedom, etc. Alternately, these sums of
squares may be computed by forming the usual two-way, three-way, ete.,
tables of values of ;. and effecting the computation as though they were ob-
servations in a single replication on factorial treatment combinations only
finally multiplying the resulting sums of squares by the coefficient niw/k of
(6.4). Similarly the C-factor may consist of factorial combinations of ¢ factors,
Cy, -+, C,, with levels ny , - -+ , ng such that [[%in; = n and appropriate
contrasts and adjusted sums of squares may be obtained with proper selection
of the rows of . When ¢ and 5 have been defined, the corresponding contrasts
for interaction of A-factor and C-factor contrasts follow immediately. These
in turn yield adjusted sums of squares that may be grouped to yield sums of
squares for interaction of 4, and Cy, 4., 4;, and C}, ete.

6.9)
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Now we have shown how multi-factor factorials may be used in two-associate
class group divisible designs. It is also evident that fractional factorials may be
used. The levels of the A-factor may be designated to be m treatment combina-
tions of a fractional factorial which is a fraction of a full factorial with, say,
hm treatment combinations, h an integer. The levels of the A-factor would
then form a (1/h)-th fraction of the full factorial. Similarly, the n levels of the
C-factor might be a fraction of a second set of factorial treatment combina-
tions. Analysis of the resulting fractional factorial experiment would again
depend only on proper specification of £ and 9. We would have r replications
of a fractional factorial in the experiment. This may be a very useful system
when it is necessary to use small incomplete blocks in a study.

7. Remarks. We have shown how factorials may be incorporated in group
divisible partially balanced incomplete block designs with two associate classes.
The factorial treatment combinations were so matched with treatments in the
rectangular association schemes for these designs as to yield quite simple analyses.
Other correspondences between factorial treatments and the treatments of the
basic designs may be possible, but we would expect that they would result in
considerably more complex analyses and in lack of orthogonality among the
factorial comparisons. The problem of the recovery of inter-block information
is being considered.

The group divisible subclass of the two-associate class of partially balanced
incomplete block designs is only one of five subclasses given in [7]. The others
listed are Simple, Triangular, Latin Square Type, and Cyclic, and comprise
only a minor percentage of the designs listed in the reference. In particular,
many designs of the Simple and Cyclic subclasses have values of » which are
prime numbers and are not therefore suitable for factorials. Factorials have been
developed in Simple and Triangular designs for special cases, but a general
development has not been found.

In the view of the authors, important applications of these factorial incom-
plete block designs should be forthcoming. They should be useful in large ani-
mal experimentation where litter sizes sharply limit the amounts of homogene-
ous experimental material available. In taste testing, fatigue and other factors
limit the number of samples that can be considered at a session, and these de-
signs have applications there. In industrial experimentation, it may not be
possible to make many observations while normal production is interrupted,
and again use of incomplete blocks may be desirable. Some numerical examples
on the uses of these designs are being prepared for an applied paper [12].
~ Marvin Zelen [13] did some preliminary work on the use of factorials in in-
complete block designs (and subsequently has obtained additional results in-
dependent of us.) While the formulation and presentation given here are our own,
we wish to acknowledge his cooperation through helpful discussions when this

research was initiated.
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