SOME PROBLEMS OF SIMULTANEOUS MINIMAX ESTIMATION
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1. Summary. In this paper, we give minimax estimates of the parameters of
the multivariate hypergeometric distribution and of the multinomial distribu-
tion, and of some parameters of an unspecified distribution with known range.
We use as loss a weighted linear combination of squared differences between
the true and the estimated values of the parameters. Some properties of the
minimax estimates obtained are discussed.

2. Introduction. For our purpose, it is sufficient to define the estimation
problem in a fixed sample size experiment as follows ([3], [4]). The random vari-
able X is distributed in the space X according to the distribution F belonging
to the family §. We want to estimate w(F) where o is a function, the values
of which belong to some space @, defined on §. (In the following we assume
that X and w(F) are vector valued.) An estimate is a statistic f(X) having values
in ©. The nonnegative function L[w(F), f(z)] is the loss resulting if, when F
obtains, the estimate f(z) is made. Define the risk by

¢ R(f, F) = E{L{«(F), f(X)]|F}

and call »(f) = supr.s R(f, F) the guaranteed value for the estimate f. We seek
the minimax estimate f°, that is, the estimate whose guaranteed value is mini-
mal. Obviously, such an estimate does not always exist. It is our aim to derive
minimax estimates in some specific problems.

3. Problem 1. In practice, we often meet the following situation. A lot con-
sisting of N units of a product has been produced. The units are classified into
l categories, the 7th category containing U; units (¢ = 1, --- , [). A sample of
size n is taken from the lot in which %, , - - - , k; units of categories 1, ---, 1
are cbserved. The problem is to estimate Uy, ---, U;.

This leads to the estimation of the parameter U = (U, ---, U)) of a multi-
variate hypergeometric distribution. Thus, let
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PXi=ky, -, Xi=Fk) = __k_l___ﬁ’__
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2 _ _ 2 _ n(N - n) . - R
4) oi = E{[X; — E(X;|U)|U} = ME =D UN — U,).
Suppose that the loss is
1
®) LW, f) = X elfdX) - U (c; 2 0),
where f = (fi, -+, fi) is the estimate of U and X = (Xi, -+, X,) is the

sample. The risk is then
©® RGO = FLO) | 0] = B{3elsX) - UL Uf.

If we study estimates of the form

fiX) = aXi + b; G=1,--,0),
then
1
R(f, U) = X e:E{laX: + b — UL | U}
1
) = 21 cillam; + b; — U)? + oo}

- [(a’LNq + b — U.-)2 + ’;ﬁgv ”1)) UN — U.-)].

=]

Let the constant a assume a value such that the terms quadratic in U vanish.

For this, it suffices to put
_ N
N —n
n
* 1/ "N -1

If, moreover, we put

S,N n N —n
b = n—1
N -—n
A =
then (7) may be written
WETT
®  RG,U) = > aiNst + (1 — 25)UL.
(’n-l-/‘/nN_n) =
N-1
Without loss of generality, we may assume ¢; = ¢ = -+ = ¢; = 0. For the

present, assume also that ¢; # 0. Let l be the greatest index ¢ for which ¢; # 0
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and let
9) L=max[s§lo,21/c,->s;2:|.
8 =1

8

The above assumptions being satisfied, we prove the following lemma.:
If L < 1then

L —
L
2.1/
=1

Proor. First, observe that a proof of the inequality is necessary only for
= L + 1. If ¢,41 = 0, then the lemma obviously holds. If ¢, # 0, it fol-
lows from the definition of L that

6= =c¢forer=L+1,L+2---,1

(10)

L+1 1 L
L—-132 Zc—=1+c,,+1zll/c,~.
=] =
The lemma is a direct consequence of this inequality.
Now put
1(1 - 8—), when ¢ < L,
(11) s = {2 ¢
0, when ¢ > L.
Observe that 1 < L, 0 < s; < % We shall show that the estimate
fo = (ff:fg’ ;f?)y
where
X+ s /‘/ n N-—mn
(12) X)) = N N1
N-—n

is the minimax estimate sought.
From (8) and (11) we have

(13) R, U) = Nn%{—% 2{53[ ]Z(l ——) + 5U':|+.t ciUf}-

Observe that for
(14) UL+1= UL+2= "'=Ul=07
R(f’, U) = c, where c is a constant. By the lemma, R(f°, U) < c. Thus, by

theorem 2.1 of [4], it is sufficient to prove that a distribution of the random
variable U exists which satisfies (14) and for which f° is the Bayes estimate.
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We seek for such a distribution among those of the form

(15) P(UL+1="'=U1=0)=

(16) PWUy=w, - ,U, =u) = CI‘((M + ’Zi)' Zl(laf + ul,).
Let

a7 r(f, P) = E[R(f, V)] = X «E{E(X) — UL | U}.

It follows from (15) that the expected risk does not depend on f; if k; > 0 for

at least one j > L. Thus,
region kL+l = kL+2 = .

kL+1 = kL+2 = -

any estimate which.minimizes (17) throughout the

= k; = 0 is a Bayes estimate. Now, if

=k =0

then, as is well-known, the expression (17) attains its minimum value for

ft’(kh"')kL)O) "0)
=E(U;|X1 = kl, M ,XL = kL;XL-l-l = e = Xt = 0)
0 forz > L;
(18) E (u\ T'(a; + u,)
= upte e otu p=N w II"]; (kl) u; !
uiZzky, w2k otherwise.
(u;) ;[‘(aj + u,~)
uytetup=N j=1 ki (ZR

uy 2k,

e L2ZkL

The second part of Eq. (18) reduces to

) H I'(a, + ;)
uytee tup=N =1 (uJ - k,)!
wizkr o upzky
A I'(a, + u,)
uite-tup=N j=1 (uJ' - k?)'
w12k w2k

=

vyt 4o =N—n
oL 20

— _v120,--

E
Mﬁm+m_dnﬁﬂ%¢@

=1

=

v+ -+vp=N—n
_ o120,

ﬁ I‘(aj + k; + v;)

vyt oo =N—n j=1 v; !
v3 20,000,920
k;
T(a;s + ki + v + 1) H Lla; + & +v)

i=1 ?), !

wL20 7

—_— a.
1] Do+ ks + v) '
v1+- - Fvp=N—n =1 vl

v120,0009220

L
)7 P
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Observe that
(N —n)! Ty + v) -+ T(be + v1)

v+ v =N—n 1)1! LR /A ! L
9120,04+,0120 T{N —n+ Z b:‘

i=1

= — N — n)!
f p'l’l 1, pl}lL 1 Z ( )
vyt Fop=N—n 1)1! RN

pr1+ee+pp=1 120,000,920
(19) ” l;o p?,zo 12 L2

P - pEdpy - dp
= ff pu Lt dL='M
S, r(%n)

Applying (19) to L; with b; = a; + k; for j # ¢ and
bi=a;i+ki+16=1,---,L)
and to M; with b; = a; + k; we obtain

L
. (@ + k) (N + Zlaf)
7= " —
i n+2a’
(20) =
L
(N+Za,-)k,v+(N—n)a.-
= =1 - =f?(k1,"°,kz.,0,"',0)
n+Zao-
=1
for
N nN:n

a; = 8 ————,
N —-n

Thus f° is minimax whenever a; > 0; that is, when N > n + 1. For N = n
this result is immediate. For N = n + 1 it is a consequence of the fact that
f° is Bayes for the a priori distribution of U defined by

P(Ub+1= e =U;=0) =

sttoe. sth.

P(U1=u1;”" L_uL)
Ul uy !

Up to this point, we have assumed c; # 0. Consider now the remaining cases.

If all ¢; = O then, obviously, every estimate is minimax. If alone ¢; ¥ 0 then.

the problem may be considered as that of finding a minimax estimate of the
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parameter U in a one-dimensional hypergeometric distribution for the loss
L = (f — U)% In this case, the formula for the minimax estimate is (see [4])

_ X+ % /‘/ n NN—:—?
(21) f(X)=N . S
n + /‘/ n N—n
N-1
It is easy to verify that the estimate (12) satisfies the condition

YR=N

1=1

Observe that we are actually dealing with only [ — 1 independent parameters
since one parameter, say U;, may be computed from

(22) U+ ---+U=N.

If we consider the problem of finding a minimax estimate for Uy, ---, U4
under the loss
-1

(23) LW, f) = 2 alfi = U,
the same estimate as above for Ui, ---, U, results as is seen by identifying
¢; in the above with ¢;(z = 1, --- , I — 1) and putting ¢; = 0.

In solving our problem, we have restricted ourselves to the case ¢; = 0. If,
however, some ¢; < 0 then for f; — 2 the loss tends to —  and, conse-
quently, the problem becomes trivial.

In the special case ¢, = ¢2 = --- = ¢; > 0, formula (12) takes the form

1 N—n
N—n
n+/‘/nN—-———-——_1

4. Corollaries for the multinomial case. For N — o, the distribution of X
converges to the multinomial distribution defined by

(24) filw) = N

n! ky
________.pl
kil ook !

ki
oo pl}

P(X1=k1’...’Xl=k,)=

.
;k,' =n;

and

im &) _ Kt v _ oy

N-+>w N n+‘\/1—1,
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We shall prove' that ¢° = (4, ---, g7) is really a minimax estimate of the
parameter p = (p1, - -+, pi) for the loss
1

(25) L(Q,-P) = Z Ci(gi - pi)2, C;

i=1

v

0.

When L, § and s; are defined by (9), (10), and (11), respectively, the loss is

@) RGP = BLGP |7} = (r | S et + o)+ 2 am),

=1

which for pr41 = --- = p; = 0 is constant and, by the lemma of Sec. 2, maxi-
mum in p.
As is easy to verify, ¢° is Bayes for the a priori distribution G(p) defined by

Vrs—1 v p}l/;‘-”‘—l, when Poyr = = =p1 = 0’

_JCpq
27) dG(p) = {(), otherwise.

By theorem 2.1 of [4] it follows that ¢° is minimax.
For¢ = --- = ¢; > 0, s; = 1/l and the minimax estimate ¢’ takes the form

X: + ll V'n
n+Vn
This case was previously solved by H, Steinhaus in [5].

giX) =

5. Problem 2. We shall prove the following theorem:

THEOREM. Let X be a random variable distributed according to the unknown
distribution F on the measurable space A. Let g1, +++ , gm be such bounded meas-
urable functions on A that there exist two points «’ 2" € A such that each of these
Junctions attains its minimum in x’ and its maximum in x”. Let Xy, -+ , X, be
a random sample from F, and let \; = E[g«(X)). If the loss is given by

(29) LGN = 3 el = M

where f = (fi, -+« , fm) is an estimate of A = (A1, * -+, Am), then the minimaz
estimate of \ is given by

0( ) le ge(X:) .

i X I et ) Xn = - + -

i n+ vVa o Vn+l

(s: s the arithmetic mean of the maximum and minimum values of gi(x)).
Proor. If fi(X1, ---, X.) = @ D_j=19«X;) + b;, then the risk may be

(30)

1 While this paper was being written, Joseph Dubayv communicated to me a result similar
to this but not in its full generality.
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written
R(, ) = B[ Gath =2 1 F] = Bab{[a o) + 6 -2 |7
(31) . i= j=
= 2 a{l(l — o)k — b + nd’B{lg(X) — N | F}}.
Let

a; = min g;(z) = gi(z’), B:; = max g;(x) = gi(z”).
zeA zeA

It is easy to prove that
(32) E{lg(X) — M| F} = (8: — M) — ).
Thus

@) RGP < i el — anh — b + nat(B: — M) — @)}

Putting
- by = ——2
n+n AVn+l
we obtain
(34) RUSF) S —2 > e —a) =

IOV L=
Observe that if a distribution F of the random variable X is defined by
PX =2') =1—p,
(85) PEX = x”) ) = p. ’
Then \; = a; + (Bs — a:)p, and equality obtains in (32); i.e.
(36) R F) =c.

The distribution F depends on the parameter p. Since (34) and (36) hold, it is
sufficient to show (as in Sec. 3) that there exists a distribution G of p for which
(30) is Bayes—that is, a distribution G such that (30) minimizes the expected

risk

(1, @) = BIR(, P)) = 3 & BB — 10° | Fl

- g;aE{E{[m + 8 — a)p — | p}}.
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It is easy to verify that this happens for the distribution G°(p) defined by equa-
tion

37) d6°(p) = Clpg) V"™ dp @=1-np).
This completes the proof.

6. In this paper, we have used the loss L = Y™, ¢i(f; — ;). This loss has
been extensively investigated ([2], [4], [5], [6]). For many special problems,
other loss functions might be used, for example,

L=§6‘|f5_wil’

about which little is known at present.

Problems considered in this paper were suggested to me by L. J. Savage and
H. Steinhaus. I am indebted to J. A. Dubay and L. J. Savage for help and sug-
gestions made during the preparation of this paper.
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