ON SELECTING A SUBSET WHICH CONTAINS ALL POPULATIONS
BETTER THAN A STANDARD

By SHaNnTI S. Gupra! AND MILTON SOBEL

Bell Telephone Laboratories

1. Summary. A procedure is given for selecting a subset such that the prob-
ability that all the populations better than the standard are included in the sub-
set is equal to or greater than a predetermined number P*. Section 3 deals with
the problem of the location parameter for the normal distribution with known
and unknown variance. Section 4 deals with the scale parameter problem for
the normal distribution with known and unknown mean as well as the chi-
square distribution. Section 5 deals with binomial distributions where the param-
eter of interest is the probability of failure on a single trial. In each of the above
cases the case of known standard and unknown standard are treated separately.
Tables are available for some problems; in other problems transformations
are used such that the given tables are again appropriate.

2. Introduction. C. W. Dunnett [3] has considered a different but related prob-
lem of comparing several treatment means with a control mean for normal dis-
tributions with a common unknown variance. His goal is to separate those treat-
ments which are better than the control from those that are worse (or not better).
He controls the probability of selecting the standard as the best (i.e., classifying
all other treatments as worse) when the treatments are all equal to (or worse than)
the standard. Earlier, E. Paulson [8] considered the problem of selecting the best
one of k categories when comparing &k — 1 categories with a standard. He deals
with means of normal distributions with a ¢common unknown variance and also
with binomial distributions. He controls the probability of selecting the stand-
ard as the best when the categories are equal to (or worse than) the standard.

The procedure described in this paper controls the probability that the selected
subset, contains all those populations better than the control for any possible true
configuration. If we define a correct decision as a selected subset which contains
all those populations better than the standard, then the procedure given below
guarantees a probability of a correct decision to be at least P*, not only when the
k — 1 populations are equal to (or worse than) the standard, but for any pos-
sible true configuration. Although we are comparing the procedure with the work
noted above, it should be stressed that the goals are different and the procedures
are not interchangeable. It should be noted that the treatment of Secs. 3 and 4
could be applied to several other distributions in the Koopman-Darmois family.

The goal treated in this paper is more flexible in that it allows the experimenter
to choose a subset and withhold judgment about which is the best one. Then, if
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236 SHANTI S. GUPTA AND MILTON SOBEL

the best one is desired it can be chosen from the selected subset on the basis
of economic or other considerations.

Although the title and discussion above use the phraseology ‘‘populations
better than a standard” we shall actually be interested in selecting all popula-
tions as good as or better than the standard; for practical purposes the distinc-
tion is of minor importance since in most of the practical problems the param-
eters of interest can have any value in some interval and are very rarely equal.

To discuss confidence statements we consider first the problems below in
which the better populations are the ones with the larger values of the main
parameter of interest . After the experiment is performed, we can make with
.confidence P* the joint statement that for all populations which are eliminated
the parameter value is less than that of the standard. This joint confidence state-
ment follows from the fact that in selecting a subset containing all populations
as good as or better than a standard we are automatically eliminating a subset
_containing only populations worse than the standard. Hence this procedure can
be used fo eliminate those populations which are distinctly inferior to the stand-
ard.

For the case in which the better populations are defined to be the ones with
the smaller values of r, the statistical problem is identical and all the results
and tables of this paper apply with the obvious modifications.

- 8. Location parameter—normal populations. We shall assume that popula-
tions II; , I, - - - , I, with unknown means p, p2, - -, pp, respectively are
given and that I, is the standard or control, whose mean uo may or may not
be known. For clarity we shall discuss the various cases separately.

Case A. Common known variance (uo known). From each of the p populations
O = 1,2, ---, p), n; independent observations are taken. Let Z; denote the
sample mean from II; and let o* be the common known variance.

Procedure: “Retain in the selected subset those and only those populations
(=12, -, p) for which

(3.1) E 2= po — do/Nn:.”

To determine the value of d let p; , 2 denote the true number of populations
with g = o and u < uo, respectively, so that p; + p. = p. Then the prob-
ability P of retaining all the p; populations with x4 = uo is given by

P = ,ﬁlP{fé 2 wo — do/+/nl}
(3.2) ‘m | ]
= I PVAi(&: = /o 2 ~d + V/milso = wid/o),

where primes refer to values associated with the p, populations for which
& = o . Hence ‘

(3.3) P= fI {1 — F(=d + V7li(po — pi)/0)}

1=1
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W/here F(z) refers to the standard normal cun,mlative distribution function. The
ks in (3.3) are restricted by the condition u; = o and the minimum of (3.3)
is attained by setting ui = w(i = 1, 2, --- , p1). Since the result depends on
‘the unknown integer p; , we can obtain a lower bound by setting p; = p. Then
using the symmetry of F we have

(3.4) P = F*(d).

The equation determining d is obtained by setting the right-hand member of
(3.4) equal to P* and is given by

(3.5) F(d) = (P*)"*.

It should be noted that (3.4) is independent of uo, 7 and n; . Hence with a table
of the standard normal c.d.f. one can easily find the appropriate d which satis-
fies (3.5) and is to be used in rule (3.1) for any o, any ¢ and any vector n; .

The case when the normal populations have different but known variances
and the standard is known is treated similarly. The inequality defining the pro-
cedure for this problem, corresponding to (3.5), is

(3.6) i 2 po — doi/V/n;

and/ the equation determining d is exactly the same as (3.5).

Case B. Common known variance (uo unknown). In this case n, independent
observations are taken on the standard II,. Let & denote the mean of these
no observations and let o° be the known common variance for all the (p + 1)
populations. Then the procedure is to select all those populations for which
the relation

(3.7) E = & — do/N/n:

is satisfied. The equation determining d is obtained by the same argument as
in Case A and, letting f(x) denote the standard normal density, we obtain

(3.8) ‘[o ﬁ [F (u :::+ d):l f(w) du = P*.

0 g=1

For the special case n; = n(¢ = 0, 1, - - - , p) this reduces to
(3.9) [ P+ dfe) du = P,

Equation (3.9) is independent of ¢. Hence a single two-way table of d-values
for different values of P* and p solves the problem for all values of ¢ when
n; =n( =20,1,---, p). Tables of d-values satisfying (3.9) for several values
of P* are given in [2] for p = 1 (1) 10 and in [5] for p = 1 (1) 50. A short table,
using only two decimals of the original four, is excerpted from [5] (see Table
I). In the more general case when the populations have different but known vari-
ances the procedure is defined by

(3.10) & 2 %o — doi/V/ni
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TABLE I
Table of d-values satisfying (3.9) and used in the procedure defined by (3.7)
PO
?
.75 .90 .95 .99
1 0.95 1.81 2.33 3.29
2 1.43 2.23 2.7 3.62
3 1.68 2.45 2.92 3.80
4 1.85 2.60 3.06 3.92
5 1.97 2.71 3.16 4.01
6 2.06 2.80 3.24 4.09
7 2.14 2.87 3.31 4.15
8 2.21 2.93 3.37 4.20
9 2.26 2.98 3.42 4.25
10 2.31 3.03 3.46 4.29
15 2.50 3.20 3.63 4.44
20 2.62 3.32 3.7 4.54
30 2.79 3.48 3.89 4.68
40 2.90 3.58 4.00 4.78
50 2.99 3.67 4.08 4.85
s For a more complete table see [5].
and the equation determining d is
“ A o ;i
(3.11) ['n [F (u G0 0/ d)] f) du = P*,
—o0 =1 (] No

this reduces to (3.9) in the case when ¢;//n; = constant (z = 0, 1, --- , p).

Case C. Common unknown variance (uo known). As in Case A, n; observations
are taken only on the p populations II;(z = 1, 2, --+, p). Let s; denote the
pooled estimate of o* based on » = D% (n; — 1) degrees of freedom (n; > 1
for at least one 7). Then the procedure is to select those and only those popu-
lations II; for which

(3.12) £ = po — ds,/V/ni.
The equation determining d is
(3.13) [ Padaw) a = P,

where ¢,(y) is the density of y = s,/¢ = x,//». This result holds for any uo
and depends on #; only through the value of ».

Case D. Common unknown variance (up unknown). In this case n; observa-
tions are taken on all the populations II;(¢ = 0, 1, - - - , p) and the pooled esti-
mate s, of o” is based on » = D_%4 (n; — 1) d.f. (n; > 1 for at least one 7).

The inequality defining the procedure is

(3.14) & 2 %o — ds,/V/ni.
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The equation determining d is
-] 00 D _
619 [ [[HF (s g/ + 0) | rra) duay = P
0 —o0 |_i=1 No

Forn; = n(z =0, 1, ---, p) this reduces to
(3.16) [ [ P+ wiwew dudy = P~

Methods for evaluating this double integral and tables of d-values for selected
values of P*, p and » are given in [6] and values of d/A/2 for other values of
p and v are given in [3].

4. Scale parameter—gamma or chi-square populations. In this section it will
be more natural to define the population II; as better than II, if the scale param-

eter 0.' < 00 .
Case A. 6y known. We assume that the population II;(z = 1, 2, --- , p) has
the density
1 1 2
) —z/0;
(4.1) r (%) 0:0:{/2 x € .
2
If z;; = 1,2, -- -, m;) are the n; observations on II;, then ¢; = DM, zy; has

the density (4.1) with o; replaced by »; = n,a; and the procedure is as follows.
Procedure: “Retain in the selected subset only those populations

H,('I,= 172)""1))

for which
L

*

(42) = 1+ d)o.”

Let ¢, and ¢, denote the number of populations with § < 6 and 8 > 6, re-
spectively, so that ¢1 + ¢ = p. The probability P of a correct decision is given
by

g1

(43) p=]I P{fﬁ < (1+d) o‘ﬁ,

where primes refer to the ¢; populaticns with 8, < 6, . Hence,
q1 6, V:‘
(44) P = I—];G,;.[(l + d) '0—/]»

where G,,(z) is the c.d.f. of the gamma density in (4.1) with a; replaced by »;
and 6; = 1. A lower bound to this probability is obtained by setting 6; = 6,
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and ¢; = p so that the equation determining d can be written in the form

P 1 vi(14d) 7y 1
4.5) II o (% / u? ¢ “dup = P*,
=1 2 0

For v; = »({ = 1 2, - -+, p) this is easily solved with the help of a table of the
c.df. of vy, = ix} Wlth v degrees of freedom.

Application to normal populations. If 6; = 2¢5({ = 0, 1, - - - , p) are the scale
parameters for the (p + 1) normal populations and x‘;(y =1,2,---,n;) are
the n; observations on the population II; with the mean u; (known), then we
retain the population II; in the selected subset if

(4.6) -~ Z (@i — )" = 2(1 + d)oi.

i i=1
The equation determining the d in (4.6) is the same as (4.5) with »; replaced
by ng.

If the means u; are unknown and n; > 1(z = 1, 2, -- - , p), then in (4.6) we
use the sample mean &; in place of u; and n; — 1 in place of n; . The equation
determining d is again (4.5) with v; = n; — 1.

Transformation: If we apply the transformation [1]

@) y; = In (i_) G=1,2-,p)
then the procedure (4.2) of this section can be put in the form

4.8 Yi = ln( ) + di,

where

4.9) di = In [2(1 + d)].

Then using the normal approximation and the same argument as before, the
approximate equation determining d; is

(4.10) ﬁ{F <d1 1/%)} = P*,

For v; = »(7 = 1, 2, - -+, p) this gives an equation similar to (3.5). For the
application to normal populations the equation corresponding to (4.8) is

(4.11) Ins? <Inot+dy,

where d; is determined by (4.10) with »; = n; or n; — 1 according as the means

us are or are not known.
Case B. 6, unknown. The assumptions are the same as in Case A except that
no observations, viz., Zoi, %oz, * -+, Zon, are taken on I . The inequality de-
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fining the procedure and corresponding to (4.2) is
412) bsa+al,
1 0

Ve

where f, = 72 2o; and vy = moao . The equation determining d is obtained as
before and is given by

L] oy ¢
(4.13) fno [IPI /-V.'t(l-l-d)ll'o u? 16 2 du] £ le 3 i
o Li=iJo T'(n:/2) T'(»/2)
Application to normal populations. For the case where the means are known,
the rule takes the form

(4.14) nl Z (x5 — w)® < 1+ d) Z (zo; — po)’;
$ j=1 o j=1

where d is given by (4.13) with »; = n;. If u.’s are not known and
n; > l(i = 0’ 1, e ,p);
then the rule is the same as (4.14) with u; and n; replaced by Z; and n; — 1,
respectively. The equation determining d is again (4.13) with »; = n; — 1.
Transformation: Using the transformation (4.7), we put the inequality de-
fining the rule as

(4.15) Yi S Yo+ do.

The approximate equation determining d; is

(4.16) [: [i{l F <u :L;; + d» 1/%)] flw) du = P;v,

which for n; = n(z = 0, 1, - - -, p) is of the same form as (3.9).

5. Binomial populations.

Case A. Known standard. It is assumed that p + 1 binomial populations II;
with parameters 8;(¢ = 0, 1, --- , p) are given where 6, is the known value of
the probability of a unit being defective in the standard population, ITo . Again
n; independent observations are taken from each population

H,(i = 1:2’ e 7p)'
Since 6; is the probability of a unit being defective, we define II; to be better

than II, when 6; < 6. Let z; denote the number of defectives observed in the

sample of n; observations from IL;(z = 1,2, --- , p).
Procedure: “Retain in the selected subset those and only those populations

I = 1,2, -+, p) for which
(5.1) _in é 00 + d /‘/00(1'— 00) R

ng ni:



242 SHANTI S. GUPTA AND MILTON SOBEL

Let ¢1, ¢z, be defined as in Sec. 4; let [m;(d)] denote the largest integer in
(5.2) mi(d) = nbo + d\/n:0(1 — 6o) ¢t=12---,p).
The probability P of retaining all the ¢; populations with 6 < 6, is given by

['$Y [me(d)] ) A
(5.3) P= II[ > Crei(l — 0,)"""].

T=1 7=0
A lower bound is obtained by setting 6; = 6(z = 1, 2, -+, p) and ¢1 = p.
The fact that 6, = 6, gives a lower bound can be shown by writing the binomial
sum as an incomplete Beta function. Hence the inequality determining d be-
comes

p_ [[mild)] . ;
(5.4) II[ > Crei — 00)"“’] > P*

=1 7=0
and the solution is the smallest value of d satisfying (5.4). If n; = n then
[m(d)] = [m(d)]

and (5.4) reduces to
[m(d)]

(5.5) 2 Croj(1 — 60)" =z (PH)V”.
p
This is easily solved by consulting a table of cumulative binomial probabilities.
For large values of n; (large enough for the normal approximation to give
good results) the inequality determining d can be approximated by the simple
equation

(5.6) F@) = (P*)'”,

where F is the standard normal c.d.f. This equation is independent of n; and is
much easier to solve than (5.4).

Case B. Unknown standard. The assumptions are the same as in Case A ex-
cept that mo observations are taken on the standard population II,. Let x, be

the number of defectives among 7, .
Procedure: “Retain in the selected subset those and only those populations

Iz =1,2, -+, p) for which
(5.7) Laslatdy/tyls
ni Mg 2 n: Mo
The probability P of retaining all the ¢, populations with § < 6, attains a mini-
mum when 6; = 0 = 0,1, ---, p) and ¢; = p and is given by

no P [m; (y.d) ] ) R
(58)  P6,d) = Z)II[ Z;) crei(1 — o)”"’] CMe¥(1 — )™,
-

y=0 =1



SELECTING A SUBSET 243

where [m.(y, d)] is the largest integer contained in

. _n dn; 1 1
(5.9) m(y, d) = pou Y+ 5 o + g

Then the desired value of d for (5.7) is the smallest number for which

(5.10) min P, d) = P*.

0<6<1

Since, except for very small n; or very large p, the minimum occurs near § = 3,
we can obtain an approximate solution for d by finding the smallest number for
which

(5.11) P(},d) = P*.

A simpler approximate solution, which gives good results when the n; are not
too small and p is not too large, is the normal approximation obtained under
the assumption that §; = 3(z = 0, 1, ---, p). Then from (5.7) we obtain for
the approximate equation determining d

(5.12) f_ : I:IiI1 F (u %: +d 1/ 1+:‘T;):| f(u) du = P*.

Forn; = n(¢ = 0,1, --- , p) the rule (5.7) can be written as
(5.13) z: S wo + d,,

where d’ = dv/n/2. In carrying out the rule we can assume that d’ is an #n-
teger. The desired value of d’ is the smallest integer for which

n_ [Cytd’ . »
(5.14) min {Z[Z cre'(1 — o)”“’:l Cre*(1 — 0)”"’} > P*
0<0<1 \y=0 7=0

Then (5.12) can be written in the form

(5.15) [: F*(u + 3)f(u) du = P*

and the relation between d’ and d, using a continuity correction, is

(5.16) d=d /‘/g’ = {-(MT_I}

where {z} is the smallest integer greater than or equal to «.

Transformation: It may be desirable to solve the binomial problem by using
an arc sine transformation and -converting it into one involving the location
parameter of the normal distributions. For example, for the Case B above with
n; =n(lE = 0,1, ---, p) if we use the arc sine transformation as given in [4],
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the inequality defining the procedure is

. i . :11;+1< . Zo
arcsm,‘/n+1+arcsm/‘/n+1=arcsm T
. F1 d\/2
+arcsin g/ 2 + '
n+1  on+1

where the approximate equation determining d is the same as (3.9) so that
Table I is applicable here also.

(5.17)
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