UNBIASED ESTIMATION OF CERTAIN CORRELATION COEFFICIENTS!

By IngraM OLrIN? AND Joun W. PraTr®
University of Chicago

1. Summary and introduction. This paper deals with the unbiased estimation
of the correlation of two variates having a bivariate normal distribution (Sec. 2),
and of the intraclass correlation, i.e., the common correlation coefficient of a
p-variate normal dlstrlbutlon w1th equal variances and equal covariances
(Sec. 3).

In both cases, the estimator has the following properties. It is a function of a
complete sufficient statistic and is therefore the unique (except for sets of proba-
bility zero) minimum variance unbiased estimator. Its range is the region of
possible values of the estimated quantity. It is a strictly increasing function of
the usual estimator differing from it only by terms of order 1/n and consequently
having the same asymptotic distribution.

Since the unbiased estimators are cumbersome in form in that they are ex-
pressed as series or integrals, tables are included giving the unbiased estimators
as functions of the usual estimators.

In Sec. 4 we give an unbiased estimator of the squared multiple correlation.
It has the properties mentioned in the second paragraph except that it may be
negative, which the squared multiple correlation cannot.

In each case the estimator is obtained by inverting a Laplace transform.

We are grateful to W. H. Kruskal and L. J. Savage for very helpful comments
and suggestions, and to R. R. Blough for his able computations.

2. Correlation coefficient. Let (21, #1); -, (», yx) be independently dis-
tributed, each bivariate normal with means u;, u2, variances o'% , o3 and cor-
relatlon p. The problem is to estimate p unbiasedly in the cases (i) u1 , uz known,
os, o3, p unknown, and (ii) all parameters unknown.

Sufficiency and invariance suggest that we confine ourselves to odd functions of
r, where r is the usual sample correlation coefficient in either case, namely,

- 2 (@i — fi) (ys — fo)
\/Z (z: — ﬁl)2 Z (y: — ﬁ2)2

where (fi,, fi2) equals (u , u2) in (i) and (Z, %) in (ii).
2.1. Derivation of the unbiased estimator. The density of r is

(21) p(r) = ;_17(25:.___]_.) (1 _ p2)n/2(1 )(n—3)/2 kgo F <n‘-|2' k) (2;{:7")16,
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202 INGRAM OLKIN AND JOHN W. PRATT

where the degrees of freedom are » = N and N — 1 in cases (i) and (ii). (We
assume n = 2, the case n = 1 being degenerate.) The condition E[G(r)] = p,
i.e., G(r) is unbiased, is equivalent to

n—2 ) k 1
2 Z I (’n + k) (2p) f G — AODE G (] T,
1

aT(n — 1) i 2 k!
n
w I‘(—--l-j) 2+1
> 2 p
- _'—-—_‘7.-!-0

R0

Comparing coefficients of powers of p, we find that G(r) is indeed an odd function,
and that

n+ 2
T — DT +2) © (T>

o (SETE N ()74 )
2
Using the identity (e.g., [3, 12.4.4])
Val(2p) = 27Tl + 1/2),

and making the substitution r = exp (—3 y), we obtain

3 . n .
* r{= T(Z
I ) L 0
0 F2 (’n -2|- + j)

As a function of j, for n = 2, the right-hand side is the unilateral Laplace trans-
form of

o
f G(r)(1 —rH) "2 g =
0

vy _ n(mnpap(l 1l n—1 . o
e 1 —e™) F<2,2,——-——2 ;1 e)

[1, p. 262 (7)], where F is the hypergeometric function

oy _ =T(e+ Br@ 4+ Br() o
(22) F(“;ﬁ: Ys 17) - )§ I‘(a)I‘(B)I‘('y + k) k'-
Therefore
(2.3) Gir) = rF(3, 3; (n — 1)/2; 1 — ).

Some alternative representations of G(r) are

G(r) =r : <n_—;—l)

r (l) \ (n = 2) fol T

t—1/2(1 _ t)((n—2) /2)—1

(24)

2 2
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and

T <n%1> - t—1/z(1 t)-—(n-—Z) /2
2.5) G@r) = ) [ ¥ s

N\ (n-2 1+ o7
t (§> : ( 2
[2, 2.12 (1) and (5)].

2.2 Properties of the unbiased estimator. G(r) is an odd function of r by (2.3),
and is strictly increasing since, in (2.5), r(1 4 #°)™"* is strictly increasing in r
for each value of £,0 < £ < . For p = %1, G(r) = r = =1 with probability 1,
and consequently, —1 < G(r) = 1, which is the range of p.

As remarked before, G(r) is the unique minimum variance unbiased estimator
of p.

To obtain the asymptotic distribution of G(r), we note that, by (2.2),

F(a,B;7v;2) = 14+ 2 0(1/)
asy — o« (uniformly in z for z in any bounded set), so that G(r) = r + 0,(1/n).
Therefore \/n[G(r) — p] has the same asymptotic distribution as v/z[r — pl,
which is N(0, (1 — p%)?), [3, p. 366)].

In order to facilitate the use of the unbiased estimator G(r), Table 1 gives
G(r) and (for easier interpolation) G(r)/r for r = 0(.1) 1 and n = 2(2) 30. The
computation was carried out by means of the recursive relation

aF(3, 57+ 1;2)
) 1 11... - 11, 1.
= [1 - (—27Y—~__—1—)2:| [(2z — I)F(E, 2575 z) + (1 x)F(z, 27 1; x)],

[2, 2.8 (30)], together with the initial conditions
F(, % = arc sin \/5/ V'z,
[2, 2.8 (4) and (13)].

Approximations for G(r) can be obtained from the expansmn (2.2), which gives

G’(r) - 91 — )? 3

(26) - 1+( )+8(2— )-I—O(n ).
(2.6) gives G(r)/r within .01 for n = 14 or .001 for n = 36 if two terms are in-
cluded, and within .01 for n = 10 or .001 for n = 18 if ‘three terms are included.
The neglected terms in the first line of (2.6) are all positive and decreasing in 7*
and n. Therefore, if G(r) is estimated by cutting off this series, the estimate will
be too small, by a percentage which decreases as ¥ and n increase.

The k that minimizes the maximum over r of the absolute difference between
(2.6) and 1 + (1 — 7)/2(n — k) is, for large n, (—7 + 9 \f)/z 2.87.

This suggests the approximation
G'(r) 1 -7
2.7) =14 S =3

This is accurate within .01 for n ='8, and within .001 for n = 18.

’

NIH N[
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TABLE 1
Ordinary bivariate correlation coefficient, n degrees of freedom

-1 Si2
G(r) = rF (1/2, 1/2; % ;1 — r2>, re=
2 V 811 S22

la. Table of G(r)

”n

0 1 2 3 4 5 .6 7 8 9 1.0
2 0 1 1 1 1 1 1 1 1 1 1
4 0 1481 .280 | .398 | .506 | .605 | .695| .780 | .858 | .931 1
6 0 JA17 | .232 | .343 | .450 | .552 | .650 | .744 | .833 | .918 1
8 0 110 | .220 | .327 | .432 | .534 | .633 | .730 | .823 | .913 1
10 0 107 | .214 | .319 | .423 | .525| .625 | .722| .817 | .910 1
12 0 106 | .211| .315| .418| .520 | .620 | .718 | .814 | .908 1
14 0 105 | .209 | .312 | .415 | .516 | .616 | .715 | .812 | .907 1
16 0 104 | .207 | .311| .413 | .514 | .614 | .713 | .810 | .906 1
18 0 103 | .206 | .309 | .411| .512| .612 | .711 | .809 | .905 1
20 0 .103 | .206 | .308 | .410 | .511| .611| .710 | .808 | .905 1
22 0 .103 | .205 | .307 | .409 | .510 | .610 | .709 | .807 | .904 1
24 0 .102 | .205 | .307 | .408 | .509 [ .609 | .708 | .806 | .904 1
26 0 102 | .204 | .306 | .407 | .508 | .608 | .707 | .806 | .903 1
28 0 .102 | .204 | .305| .407 | .507 | .607 | .707 | .805 | .903 1
30 0 102 | .204 | .305 | .406 [ 507 | .607 | .706 | .805 | .903 1
© 0 1 2 3 4 .5 6 7 8 9 1

1b. Table of G(r)/r

2 o 10.000 | 5.000 | 3.333 | 2.500 | 2.000 | 1.667 | 1.429 | 1.250 | 1.111 1
4 |1.571 | 1.478 { 1.398 | 1.327 | 1.265 | 1.209 | 1.159 | 1.114 | 1.073 | 1.035 1
6 |1.178 | 1.173 | 1.161 | 1.144 | 1.125 | 1.105 | 1.083 | 1.062 | 1.041 | 1.020 1
8 | 1.104 | 1.103 | 1.098 | 1.090 | 1.080 | 1.068 | 1.056 | 1.042 | 1.028 | 1.014 1
10 | 1.074 | 1.073 | 1.070 | 1.065 | 1.058 | 1.050 | 1.042 | 1.032 | 1.022 | 1.011 1
12 | 1.057 | 1.056 | 1.054 | 1.050 | 1.046 | 1.040 | 1.033 | 1.026 | 1.018 | 1.009 1
14 | 1.046 | 1.046 | 1.044 | 1.041 | 1.038 | 1.033 | 1.027 | 1.021 | 1.015 | 1.008 1
16 | 1.039 | 1.039 | 1.037 | 1.035 | 1.032 | 1.028 | 1.023 | 1.018 | 1.013 | 1.006 1
18 | 1.034 { 1.033 | 1.032 | 1.030 | 1.028 | 1.024 | 1.020 | 1.016 | 1.011 | 1.006 1
20 | 1.030 | 1.029 | 1.028 | 1.027 | 1.024 | 1.022 | 1.018 | 1.014 | 1.010 | 1.005 1
22 [ 1.027 | 1.026 | 1.025 | 1.024 | 1.022 | 1.019 | 1.016 | 1.013 | 1.009 | 1.005 1
24 | 1.024 | 1.024 | 1.023 | 1.022 | 1.020 | 1.018 | 1.015 | 1.012 | 1.008 | 1.004 1
26 | 1.022 | 1.022 | 1.021 | 1.020 | 1.018 | 1.016 | 1.014 | 1.011 | 1.007 | 1.004 1
28 | 1.020 | 1.020 | 1.019 | 1.018 | 1.017 |'1.015 | 1.012 | 1.010 | 1.007 | 1.004 1
30 | 1.019 | 1.018 | 1.018 | 1.017 | 1.015 | 1.014"| 1.012 | 1.009 | 1.006 | 1.003 1
o |1 1 1 1 1 1 1 1 1. 1 1

By (2.2) and (2.3), G(r)/r is larger than 1 and decreasing in #* and n, as Table

1b suggests.
2.3 Partial correlation coefficient. We observe that an unbiased estimator of the

partial correlation coefficient can be immediately obtained from the preceding.
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section. More precisely, suppose the columns of X:p X N are independently
distributed each as p-variate normal with mean vector u and covariance matrix
=. We wish to give an unbiased estimator of the partial correlation coefficient
p12-(¢---p» - The usual estimator, r1.¢...» , has the density (2.1) with n = N —
(p — ¢) if pis known, and n = N — 1 — (p — @) if p is unknown. Therefore
G(ria.¢g---») (with appropriate n) is the unique minimum variance unbiased
estimator of pi.(g...» and possesses the other properties of G(r).

3. Intraclass correlation coefficient. Let the columns of X: p X N be inde-
pendently distributed, each as N (u, Z¥), i.e., p-variate normal with mean vector
x and covariance matrix =*. Suppose Z* is of the form ¢”[(1 — p) I + pee’], where
¢ =(1,---,1),ie., ok = o, 0% = pd’ (i # j), with p and ¢ unknown. The
problem is to estimate p unbiasedly.

We note that p is just the slope of the regression line of z, on z; , and is there-
fore estimated unbiasedly by

‘IZ; (T1a — 1) (T2 — 72.)

ZN: (xla - xl*)2

a=1

A

2

where a dot indicates an average over the omitted subscript. We will see pres-
ently that there is a complete sufficient statistic (u, »).  is not a function of
(u, v), nor is it confined to the range of p, namely, —1/(p — 1) to 1. However, by
the Blackwell-Rao theorem, E(p | u, v) is the unique minimum variance un-
biased estimator of p. Since E(p | u, v) is difficult to obtain, we shall use the joint
distribution of w and v to obtain an unbiased estimator A(u, v) of p, which, by
completeness, must equal E(p | u, v).

As in the previous section, sufficiency and invariance suggest that we confine
ourselves to functions of the conventional estimator 7’ of p. However, it is easier
to deal with the density of (u, v), and it will turn out that the unbiased estimator
h(u, v) is a function H(r’) of " alone.

3.1 Reduction to canonical form. Let A:p X p be an orthogonal matrix with
first row p %, and let ¥ = AX. Then the columns of ¥ are independently
distributed, each as N(Au, AZ*A’). Now

AZ*A’=("f 9
0 oaI)’

where o} = o> [1 4 (p — 1)p], o3 = o* (1 — p). Because of the particular diagonal

form of the covariance matrix, the y;.(¢ = 1, -++ , p; @ = 1, .-+, N) are in-
dependent, and if we let y = Ap = Ey, then 41, is N(m, o1), (@ = 1, --+, N)
and Yia S N(n:, 03), 6 = 2, -+, p;a = 1, .-+, N). We can therefore obtain

two sums of squares, % and v, sufficient for ¢} and o3 and distributed independently
as o1 x2 and o3 x3 where the degrees of freedom a and b depend on our knowledge
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of u. To write u and v conveniently, we first observe that

P N P N
S D=t YV = XX = 3 3,
=1 a= =1 a=1
i 2 —1 /XX/ — i 2
ot Yia = P € e=7D = Z.a,
P

v
D yh = N%'Y'Ve = N %'X'Xe = >k,

i=1 i=1
1 _—1/2 1/2
v = N p 7% Xe = p%x...

Precisely, we consider the following three cases:
(i) »=0and hencen = Au = 0. Leta = N,b = (p — 1) N,

N N

U = Zy%a =Dp Zx?a)
a=1 a=1
v N N D

0= 20 2 e = 2 2 (@i — 0"
=2 a=1 a=1 i=1

(ii) » completely unknown and hence » = Ay is also completely unknown.
Leta=N—1,b=(p— )N — 1),

N ~§
u = Z; (e — Y1) = p Zl (T.a — x..)%,

v = i E (yia - yi.)2 = Z i (Zia — oo — Toa + x..)2.

1=2 a=1 a=1 i=1

(iii) p = we, where w is an unknown scalar, and hence n = wAe =
wvVp(1,0,---,0).Leta=N —1,b = (p — 1)N,

N N
U= Zl (e — ) = p Z_; (@ia — ..)%,

? N p N

v = Z Eyfa = Z Z (xia = x-a)z-
i=2 a=1 =1 a=1
In each case u/o1, and v/c3 are independently distributed as x2 and x;,
and it is easily shown that (u, v) is a complete sufficient statistic for (o} , o3).
The three cases can thus be treated simultaneously.
3.2 Derivation of the unbiased estimator. The condition that h(u, v) be unbiased

is

©0 @
f f h(u, v)u** e du dy
o Jo

(3.1) . (‘_‘) r <9) 6 —0 1
2) 25+ o= Do FRgR’
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where § = 1/(201), ¢ = 1/(203). The right-hand side is the bivariate Laplace
transform of . '

(3 - 1) f b= (p— Dyl 0 — 92 dy
- <g - 1> ];L u— (p - l)tlg—l(v - t)g‘ldt,

where L = min [u/(p — 1), v], [4, p. 36 (Satz 12), p. 208 (9), p. 236 (87)].
Integrating the first term of (3.2) by parts and letting z = u/[(p — 1)v], we
obtain

h(u,v) = h*(z) = 1 — (2 - 1) P fl (1-= zw)g—l(l - w)g'zdw
p—1h

(32)

2
(3.3) )
-1__0P ~2.a <
p—lF<1’~1 2,2,2) for 0=2=1,
1 -2 b
h(u,v)=h*(z)=1—(g—1>—Llf (1—1w>2 (1 —w)? ' dw
2 p — 1z 2
(34). _ 2<a ) p 1 ( ab 1)
A LA TR G 1 R

[2, 2.12 (1)]. Integrating the second term of (3.2) by parts we obtain the following
alternative to (3.4):

b P 1( 1 )‘-;—1 LI 1
* = - — —_— —_—-w —_w 2 W — ———
h(2) (2 l)p—lfo A z ( ) d p—1

=5——§——1-F(1,1—g;g;;1->—5—}_-—1 for 221,

(3.5)

[2, 2.12 (1)].
The conventional estimate of p is (e.g., [5] and [6]),

2 E @ia — ) Tja — B5)

/ p a ]

Tp—1 X3 (e — £

r
(3.6)

-1 (ﬂ_ )= P 1
p—1\u+v . 1+(pp—-1z p-—-1’°
where /i is the appropriate estimate of x in (i), (ii), or (iii). Now

_ =1 r+1
@) T -Da-r’

which is a strictly increasing function of #'. Thus h*(z) is a function H (') of #’.
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TABLE 2
Intraclass correlation coefficient, bivariate case, n degrees of freedom

H(@') =r'F(1/2,1;n/2;1 — 1)
2a. Table of H(r')

I

n

0 1 2 3 4 S .6 J .8 9 1.0
2] 0 |1 1 1 1 1 1 1 1 1 T
41 0 182 | .333| .462| .571| .667 | .750 | .824 | .880 | .947| 1
6| 0 132 259 | .379 | .490 | .593 | .688 | .775| .856 | .931 | 1
8| o0 J120 | 237 | .351| .459 | .563 | .661| .753 | .841| .923| 1
10| 0 14 | 227 | 337 | 444 | 547 | .647 ! .741| .832| .918] 1
12| 0 11| .221( .329 | .435| .538 | .638 | .734 | .826 | .915| 1
14| 0 109 | 217 | .324 | .429 | .532| .631| .728 | .822| .013| 1
6] 0 108 | .215| .321| .425| .527 | .627| .724| .819| .o11| 1
18| 0 07 | 213 | .318 | .422 | .524 | .624| .722| .817| .910| 1
20| 0 106 | .211| .316 | .419| .521 | .e21| .719| .815| .909 | 1
2| o0 105 | .210 | .314 | .417 | .519| .619| .717 | .814| .908 | 1
24| 0 105 | 209 | .313 | .416 | .517 | .617 | .716| .813| .907 | 1
26| 0 104 | 208 | .312| .414 | .516 | .616 | .715| .812| .907 | 1
28| 0 .104 | .208 .311| .413| .515| .615| .713| .811| .906| 1
30| o0 104 | .207 | .310 | .412| .513| .614| .713| .810| .906 | 1
® 0 1 2 3 4 .5 6 7 8 9 1

2b. Table of H(r')/r’

2| o |10.000/ 5.000 | 3.333 | 2.500 | 2.000 | 1.667 | 1.429 | 1.250 | 1.111 | 1
42.000| 1.818 1.667 | 1.538 | 1.429 | 1.333 | 1.250 | 1.176 | 1.111 | 1.053 | 1
61.333| 1.322/1.296 | 1.262 | 1.224 | 1.185 | 1.146 | 1.107 | 1.070 | 1.034 | 1
8 11.200| 1.196/ 1.185 | 1.169 | 1.149 | 1.126 | 1.102 | 1.076 | 1.051 | 1.025 | 1
10 | 1.143 | 1.141] 1.134 | 1.124 | 1.110 | 1.095 | 1.078 | 1.059 | 1.040 | 1.020 | 1
12 | 1.111 | 1.110{ 1.105 | 1.098 | 1.088 | 1.076 | 1.062 | 1.048 | 1.033 | 1.017 | 1
14 | 1.091 | 1.090| 1.086 | 1.080 | 1.073 | 1.063 | 1.052 | 1.041 | 1.028 | 1.014 | 1
16 | 1.077 | 1.076] 1.073 | 1.068 | 1.062 | 1.054 | 1.045 | 1.035 | 1.024 | 1.012 | 1
18 | 1.067 | 1.0€6| 1.063 | 1.059 | 1.054 | 1.047 | 1.040 | 1.031 | 1.021 | 1.011| 1
20 | 1.059 | 1.058 1.056 | 1.053 | 1.048 | 1.042 | 1.035 | 1.027 | 1.019 | 1.010 | 1
22 [ 1.053 | 1.052| 1.050 | 1.047 | 1.043 | 1.038 | 1.032 | 1.025 | 1.017 | 1.009 | 1
24 [ 1.048 | 1.047| 1.045 | 1.043 | 1.039 | 1.034 | 1.029 | 1.023 | 1.016 | 1.008 | 1
26 | 1.043 | 1.043| 1.042 | 1.039 | 1.036 | 1.032 | 1.027 | 1.021 | 1.014 | 1.007 | 1
28 | 1.040 | 1.040| 1.038 | 1.036 | 1.033 | 1.029 | 1.024 | 1.019 | 1.013 | 1.007 | 1
30 | 1.037 | 1.037| 1.035 | 1.033 | 1.031 | 1.027 | 1.023 | 1.018 | 1.012 | 1.006 | 1
o |1 1 1 |1 1 1 1 1 1 1 1

3.3. Properties of the unbiased estimator. For p = 1,z = o, = 1 with prob-
ability 1, and h*(») = H(1) = 1;forp = —=1/(p — 1),2 =0, = —1/(p = 1)
with probability 1, and A*(0) = H(—1/(p — 1)) = —1/(p — 1). Thus in the
two cases when Z* is singular, h*(z) = H(r') = p with probability 1. Further-
more, h*(z) is a strictly increasing function of 2, since the integrand of (3.3) for
0 =2z =1 and of (83.5) for z = 1 is strictly monotone for each value
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of w, 0 < w < 1. Consequently, H(r') is a strictly increasing function of 7’ and
—1/(p — 1) = h*(@z) = H(+") < 1, which is the range of p.
As remarked before, h*(z) = H(r’) is the unique minimum variance unbiased

estimator of p.
We will now obtain the asymptotic distribution of A*(z). Note that z is dis-

tributed as

1+(p—1p a \
1—p b(P—l)“’

and that v/ (p — 1)N/p (Fa» —1) is asymptotically N (0, 1). Therefore, letting
=14 (p — Dol/l(p — 1)* 1 — p)], the quantity,

@—=DN[_ (-1 —p) _ /N —1)"1 —p)
A [1+(,,_1),, 1]‘1/;1+(p—1)p (e = 20

is asymptotically N(0, 1). But, by (3.3), denoting N~*° by ¢, we have, forz < 1,

1 — h*(@) = __p_ —f N —w—(p— Dew™ dw
- [1 4+ 0@ + 0(] + NO(1 — ™

-_P 1 L3
o=+ O &)
uniformly in z. We obtain the same result for z = 1 from (3.4). Therefore

h*@2) = p+ (p — 1)* (1 — p)* (2 — 20)/p + O4(1/N).

Therefore
VN [k*@) — p] = /N [H(r') — p] is asymptotically N(0, %),

where ¢ = (1 — p)’[1 + (p — 1)p]"/[p(» — 1)].
Expanding ' about 2 in (3.6) we find

v = h*z) 4+ 0,(1/N) = H(r') + 0,(1/N),

so that 7’ is asymptotically equivalent to H(r'). Incidentally, we find that
VN(r' — p) is asymptotically N(0, ¢*), with the same o°.

In order to facilitate the use of the unbiased estimator in the bivariate case
with n degrees of freedom, i.e., case (i) or (ii) with p = 2, Table 2 gives H(r')
and, (for easier interpolation), H(r')/r' for v = 0(.1)1 and ¢ = b = n = 2(2) 30.
In this case, H(r') = H,(+’") is an odd function of 7’. The computation was carried
out by means of the recursive relation

, n—2 r’ " ,
H.(r') = n—38|l1=r 1 —r’zH"_z(r) ’

together with the initial conditions

H) =1, H) = % > 0).
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H,(r") was derived for n = 3. For n = 2, the inversion in (3.1) must be carried
out separately, and the result agrees with the final form of 2*(2) in (3.4) and (3.6).
The recursive relation is obtained by application of the relations [2, 2.8 (36) and
(39)]. The same formulas give recursive relations for any values of p, a, b.

For the bivariate case with n degrees of freedom,

(3.8) H(r') = r'F(3, 1;n/2; 1 — 1),

which is obtained from [2, 2.8 (36) and 2.11 (34)].
Approximations for H(r’) can be obtained from the expansion (2.2) applied
to (3.8), which gives
H(r")

_ 11— 301 —r®?
(3.9) r 1+ n + n(n + 2)

This gives H(r’)/r’ within .01 for » = 19 or .001 for n = 57 if two terms are
included, and within .01 for n = 12 or .001 for n = 26 if three terms are included.
Asin (2.6), the neglected terms in (3.9) are all positive and decreasing in 7 and n.
The & that minimizes the maximum over r of the absolute difference between
H@)/r" and 1 + (1 — r*)/(n — k) is, for large n, 6(—1 + /2) = 2.48. This
suggests the approximation
H(@') _ 1— 7"

(3.10) e Tk

+ o(n™%).

This is accurate within .01 for n = 10 or .001 for n = 26.

4. Multiple correlation coefficient. Suppose we have N independent observa-
tions on a p + 1-variate normal distribution with mean vector u and covariance
matrix =, and we wish to give an unbiased estimator of the squared multiple

correlation
P = po.azep = 1 — ®/Ruw,
where ® is the determinant of the correlation matrix and R is its first cofactor.
We are concerned with the cases (i) u known, = unknown, and (ii) all parameters
unknown.
Asin 2.1, we confine ourselves to functions of
1'2 = 1‘3'(12...,,) =1 - R/Roo,

where R is the determinant of the appropriate (to (i) or (ii)) sample corre-
lation matrix and R is its first cofactor.
The condition that I(r*) be unbiased is

w I (g + k) % pl
Z ’l_ f I (1,2) (7'2) ((p—2) /2)+k (1 _ 7'2) (n—p—1) /2 drz
k!l Jo _

“r (g + k)
=T (n ; p) r (g) 1 - )™,
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where n = N and (N — 1) in cases (i) and (ii). Following the methods of Sec. 2,
we obtain ‘

69 =1-"="2(— rZ)F(l,l;n——————— Pt2.,_ 1'2).
n—op 2

As usual, I(+*) is strictly increasing in 7%, and differs from it only by terms of
order 1/N, and it is the unique minimum variance unbiased estimator of p.
Also I(1) = 1. However, I(0) = — p/(n — p — 2). We cannot hope for a non-
negative unbiased estimator, since there is no region in the sample space having
zero probability for o> = 0 and positive probability for p> > 0. For the same
reason there can be no positive unbiased estimator of p either.
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