GENERALIZATIONS OF A GAUSSIAN THEOREM

By Paur S. Dwyer
Unaversity of Michigan

1. Introduction and Summary. Plackett [1] has discussed the history and
generalizations of the Gaussian theorem which states that least squares estimates
are linear unbiased estimates with minimum variance. General forms of the
theorem are due to Aitken [2], [3] and Rao [4], [5]. The essence of the proof for
Aitken’s general case consists in minimizing, simultaneously, certain quadratic
forms involving linear combinations of the parameters. Plackett derived Aitken’s
result by using a matrix relation. The proof of the theorem follows quickly once
the relation is established. A somewhat similar but simpler matrix relation is used
by Rao (4], page 10).

Aitken [2] and Rao [4], [5] obtain minimum variance with the use of Lagrange
multipliers. Unless one has a method of working with matrices of derivatives it
seems necessary to differentiate with respect to the many scalars constituting the
matrices and to assemble the results in desired matrix form. Authors frequently
give only the assembled results ([4], page 10, [5], page 17, [6], page 83).

The question arises as to whether it is possible to use the logically preferable
matrix derivative methods of minimization. It is shown below that the use of
matrices of partial derivatives [7] leads logically to the solution without the
necessity of changing to and from scalar notation, or without the necessity of
establishing some relation which implicitly contains the solution. Matrix deriva-
tive methods seem to be preferable methods for undertaking solutions of prob-
lems of simultaneous matrix minimization with side conditions for the same
reason that derivative methods are preferable to the use of some (unknown)
relation in solving problems of minimization involving scalars. They may also
be used in establishing the relation which may then be verified withou} their use.

The paper includes generalizations of the results of Aitken [2], [3], Rao [4],
[5], and David and Neyman [8]. It gives a general formula for simultaneous
unbiased estimators of linear functions of parameters when the parameters are
subject to linear restrictions and shows how the results are applicable to special
cases. It provides formulas for the variance matrix of these estimators. It gen-
eralizes a matrix relation used by Plackett [1]. It uses the matrix square root
transformation in establishing the general result for the variance of (weighted)
residuals when there may be linear restrictions on the parameters. It provides a
generalization of a formula of David and Neyman [8] in estimating the variance
matrix of the unbiased linear estimators.

2. The least squares solution. The (inconsistent) observational equations are

(2.1) A6 =z
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and the true linear regression is given by

(2.2) &(x) = A9,
where the values of z, 4, and 4 are real. We set
(2.3) A6 —z = ¢
so that

(2.4) &(e) = 0.

In determining the least squares regression we have 6(s X 1) as the vector of
unknown parameters, z(n X 1) as the vector of measurements of the variable of
regression, e¢(n X 1) as the vector of errors and A(n X s) as the matrix of
measurements of the regressed variables. We take s < n and A of rank s. Further,
under the usual regression condition of fixed 4,

V = &@zz") — &(x)8(z") = &(ee’) = V©

= var (z) = vare

Il

(2.5)

is the dispersion matrix of  and e. We limit our discussion to the case where V is
positive definite. A common dimensionless generalization of the least squares con-
cept uses weights for the observations with W = V™' and leads to

(2.6) = V= (40— 2)"V (40 — )

as the form to be minimized. The value of § which minimizes (2.6) is known to be
(2.7) o = ATVA) ATV .

This result can be derived using symbolic matrix derivatives ([7], page 524).
We have successively

(2.8) Q= 0"A"VIA0 — 0"ATV 'z — 2TV TA6 + 2TV g,

(20)  Z& = JTATVI M0 4 ATVIAT — ATV = STV,

210) XL _ 4TVUKT + ATV UASK — ATVTRRT — ATV RK,

and since Q is scalar, K = K* = 1. Setting § = 6*when 22—0@ = 0, weget (2.7).

We note that 6* is an unbiased estimate of 8 because of (2.2) and (2.7).

3. Linear estimates with minimum variance. Now consider the k linear par-
ametric functions

(3.1) ¢ = L,
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where L = L(k X s) is known. Then ¢ = ¢(k X 1). We wish to find
(3.2) o* = Lo*

such that ¢* is an unbiased estimate of ¢ with minimum variance. This means
that the diagonal terms of var ¢ (a matrix of order k¥ X %) should attain their
minimum values simultaneously. Following Aitken we consider solutions of the
form

and determine B = B(k X n). Rao [4] has shown that this homogeneous form is
the general form. The relation

(34) (BA — L) = 0

follows from (3.3), (2.2), and (3.1) in accordance with the requirement that ¢*
be an unbiased estimate of ¢.

Aitken [3] has shown using Lagrangian multipliers and Plackett [1] using a
matrix relation that the value of 6* in (3.2) which minimizes the diagonal term of
var Q* is identical with the 6* resulting from least squares as given by (2.7). This
Aitken theorem is a generalization of the Gaussian theorem that least squares
linear estimators are unbiased with minimum variance.

Rao [5] further generalized the theorem with a consideration of linear re-
strictions on the parameters when & = 1. The argument is given below for the
more general k. The preparation of the problem for minimization is similar to
that of Rao in the special case with & = 1, though there are some modifications.
‘The u < s independent linear restrictions may be indicated by

(38.5) g = R6 =0,

where R = R(u X s) and ¢ = g(u X 1), without loss of generality since any
term not having some 6; as a factor may be multiplied by 6, = 1 and s replaced
by s’ = s + 1..-We premultiply by the undetermined D = D(k X u) to get

(3.6) DR = Dy,

in which the matrix coefficient of 6 has the same order as BA and L. Then the
condition for unbiased estimation and the specific side conditions are incorpo-
rated in the matrix relation

(3.7) (L — BA)6 =0 = DR6 — Dg
so that the conditions for estimation can be written in the form
(3.8) (L—BA—-DR)=0 and Dg=0.

Specifically our purpose is the minimization of the diagonal terms of var ¢*
subject to (3.8). Now

(3.9) varg* = &(p**") — 8(¢*E(p*") = Bl&(zz") — &(x)&(«")]B” = BVB."
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We can then use
(3.10) ¥ = BVB" + 2(L — BA'— DR) A + 2Dgu",

wherey = ¢ (k X k), A = A(s X k),and p = # (k X 1) and differentiate with
respect to B and D. We have

A r
3B) JVB® + BVJ 2JAA,

‘W’) = KBV + KBV — 2KA”A”,

so that the critical value, for each and every diagonal term, is given by
(3.11) BV = ATA”.
Again

% _ _ T
3Dy 2JRA + 2Jgu,

W) _ _opaTpT r
6¢ii —_ . TpT . T
3D = 2K ;A'R™ + 2K ;;ug,

so that, for each and every diagonal term

ATRT = ug”,
so by (3.5),
(3.12) A"R" =0
From (3.11) we get
(3.13) B = ATA®V.
Substituting in the first equation of (3.8), we arrive at
(3.14) ATA"VT'A 4+ DR = L.

This equation and (3.12), for the special case with k = 1, were derived and
emphasized by Rao [5], [17].

We next derive an estimate of ¢ in terms of A” and 6* for general k. We just
multiply (3.14) by 6* and use R6* = 0 to get

(3.15) ATATVTIA* = ¢*.
The correspbnding estimate in terms of A" and z is

(3.16) ¢* = Bx = ATATV 2.



110 PAUL S. DWYER

It follows that 6* satisfies
(3.17) ATATVTIAG* = ATATV .

Equations (3.17) and (3.12) may be considered to be basic relations in §* and
A

4. The general Gaussian theorem. We next demonstrate the general Gaussian
theorem that the value of §* obtained by least squares is consistent with that of
(3.17) and (3.12). We note first that 6* in the general solution is an s X 1 vector
and that the general solution is obtained by premultiplying 6* by the fixed
k X s matrix L. The general theorem is established by proving the typical case.
with k& = 1so that L, B, D, and A are vectors and (3.17) becomes

4.1) ATATVTIA6% = NTATV
where A7 is A(1 X s). Also (3.12) becomes
(4.2) MRT = 0.

Now we wish to minimize the scalar Q = ¢V ¢, subject to the restriction con-
ditions. Then

(43) @ = (46 — 2)"V7'(46 — 2) + 2(I — bA — dR)\ + 2vR6.

Differentiation with respect to 8 and d leads to the “normal” equations

(4.4) ATV7Ae* — AV72 + R™YT = 0,
(4.5) MR" = 0.
Premultiplying (4.4) by A" and substituting (4.5), we get
(4.6) NATV A = \TATV 'z

Since (4.6) and (4.5) are identical with (4.1) and (4.2),-the N’s and 6’s must be
the same, so the general Gaussian theorem is true.

This solution, which is similar to that of Rao, is satisfactory in proving the
generalized Gaussian theorem but it is not satisfactory in that it does not provide
an explicit value of 6* (only implicit relations involving the vector parameter
\) nor does it give an explicit expression for the unbiased linear estimator having
minimum variance. These are provided in the sections following.

One further remark should be made before leaving these results on least
squares. The Egs. (4.6) and (4.5) may be considered to be the normal equations
of a general least squares problem expressed in terms.of the vector parameter A,
Comparison of (4.6) with (2.7) shows that these normal equations can be ob-
tained from the normal equations of the problem with no restrictions by pre-
multiplication by A” where \” is subject to the conditions ART = 0.

6. The explicit form of the estimator. It appears that no one has provided the
explicit form for ¢* or for 6*. Post multiplication of (3.14) by (4"V4)~'R"
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followed by application of (3.12) eliminates A” with the resulting

(5.1) DR(A"V'A)'R” = L(A"V'A)'R".
Now since R(A"V4)™'R” is of order and rank u, we can write
(5.2) D = LA"V'A)'R[R(A"V'4A) 'R

The value of A” is then from (3.14)
(5.2) AT = L(A"V'A) — LATVTA)RTR(ATVTIA) R R(ATVT'4) !
and from (3.13),
(54) B = LA"V'A)7 ATV
— LATV'A'RIR(ATV AR R(ATV A ATV
so that
(5.5) ¢* = LA"VA)TATV 'z
— LATVTA)'RT [RATVTIA) 'R RUATV A ATV
is the linear unbiased estimator having minimum variance, and
6% = (A"VA) ATV e
— ATVA)TRT RATVTA) TR RUATVTIA) ATV e,
and 6* is the explicit solution of the normal equations. Rao did not give an ex-
plicit answer even for the case k = 1, since he did not derive an explicit formula
for A". The argument above covers the Rao case with L and A vectors. Thus
(5.5) and (5.6) hold with L a vector. As is pointed out above, the 6* which re-
sults from least squares and from minimum variance is independent of L.

The results above are also general enough to include the Aitken results. These
can be obtained formally from the above results by using the convention that
RT[R(A"V'A)R™] " is 0 when R = 0, the formal equivalent of u = 0 side con-
ditions. Thus the last terms drop from (5.5) and (5.6) for the Aitken problem.

The above results also generalize those of David and Neyman [8] who placed

specifications on the dispersion matrix V. They defined V to be a diagonal
matrix with

(5.6)

2

g
(5.7) Vy = P—;, where Pii =

a9
- »

The formula for ¢* then becomes
58) ¢* = L(A"PA)'A"Px
' — L(A"PA)'RT[R(A"PA) 'R 'R(A"PA) A" Pz .

Now B is ¢* with x = I, and 6* is ¢* with L = I.



112 PAUL 8. DWYER

If Py = oPi; with Pi; = 1/4%, we have
¢* = L(A"P'A)'A"P'x
— L(A"P’A)"R[R(A"P'A)'R"I"'R(A"P'A) "' A" P'z.
Then dropping the side conditions on the parameters we get
(5.10) B = L(A"PA)'A"P = L(A"P'A)™'A"P’.
When L is restricted to a vector, this is the David-Neyman result in matrix

form.
When V = I, L = I and R = 0 we have the common case of unweighted least

squares regression

(5.9

¢* = 0% = (ATA) A"z
and
(5.11) B = (ATA)7'A".
The general results are immediately applicable to a variety of special cases in-

volving specifications on V, specifications on L, and specifications on R. sepa-
rately or in combinations.

6. The dispersion matrix of solutions. The dispersion matrix of solutions is
var ¢* = BVB”. Using the value of B in (5.4), we get

6.1) var (¢*) = BVB" = L(A"V'A)'L”

' — LAV A RTRATVA)TRTTTRATV L)L,
Whenk = 1, thisisan explicit result for the Rao problem. When there are no side
conditions we have the Aitken result
(6.2) var (¢*) = L(A"VA)7'L".

When the values of z are uncorrelated with v;; = ¢’/Pi, (6.1) and (6.2) be-
come

var (¢*) = L(A"PA)”'L"S

6.3

( — L(ATPA)'RT[R(A"PA)'R"I"'R(A"PA)'L"o’
and

(6.4) var (¢*) = L(ATPA)'L74.

. o N . 2 2
When in addition the variables have a common variance ¢°, ¢ = ¢ and

P = I. The Egs. (6.3) and (6.4) appear with (474)™" replacing (4"PA)~.
If¢ =6, the above formulas appear with L = I. The simple case in which
there are no side conditions, ¢ = 6, with variables uncorrelated but with equal

variances gives
(6.5) var (6%*) = (A474)7'",
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which is the formula for the dispersion matrix of regression coefficients in a
common model.

7. Use of a matrix relation. The results (6.1) and (5.4) enable us to write a
relation involving the value of B which gives the value of BVB” having minimum
diagnonal terms and the resulting matrix. In order to write this relation in
compact form we use

(7.1) € = AV7A)T — AVTATRTRATVTA)TRTTRATYV ' A) 7,
which is A with L = I to get
(7.2) BVB" = LCL" + (B — LCA"V)YV(B —~ LCA™VY)T,

The relation used by Plackett ([1], page 459) is a special case of this relation
with the terms involving R deleted. Then ¢ = (A7V'4)™". Plackett’s relation
may be considered to be a generalization of the relation used by Gauss in estab-
lishing the theorem. Once the relation is established we see at once that the
diagonal terms of BVB” are minimized for general B when

(7.3) B = LCA™V™

as indicated in (5.4) and that the minimum values of the diagonal terms of the
dispersion matrix are the diagonal terms of

(7.4) BVB" = LCL”

as given in (6.1).

Once this general relation (7.2) is proposed, it may be verified by direct ex-
pansion. Then the whole solution of the problem of the minimization of the
diagonal terms of the dispersion matrix of the estimators is immediately avail-
able as indicated by Plackett. If the relation is not known, and it has not been
known previously for the general problem, it can be established with the use of
matrix derivatives as shown above.

The various special cases of the general matrix relation result from the ap-
plication of specified conditions to V, L, and R.

8. The variance of the residnals. Returning to the problem of least squares,
we call &(¢"V¢) the variance of the (weighted) residuals. Then e can be written
(8.1) e= (ACA™V™ — D)z,

where C is given by (7.1), and ACA™V™", and hence ACA"V™' — I, are idem-
potent. Hence

TV e = T(ACATV™ — DTV HACATV ™! — Dz
= 2"V — 2"VACATV a.
There is no loss in generality, for purpose of derivation, in assuming that z in

(8.1) and (8.2) is a deviate with var (z) = &(xz") = V.
For the Aitken problem, C = (A"V'4)™ and we have

(8.3) €Vl = 2"V — TVAUATVTA) ATV .

(8.2)
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To this we apply the triangular matrix square root transformation

(8.4) y = Wz with W'W = V7.

We then have

(8.5) Ve = 4Ty — yWAUVA) AWy
with

(8.6) var (y) = E(Waz'W") = WYW"™ = I,

so that, using the trace

(8.7 E@"V'%) = EW"y) = n.

In order to find the expected value of the second term on the right in (8.5), we
use the additional transformation

(88) z = Sy with 8"S = WAV '4)7A™WT,

where S is a triangular matrix. Since the rank of WA(A"V'4)'A™W” is s,
S is of rank s, and there are n — s rows identically zero. Then

(8.9) Ve = yTy — 2",
and since
(8.10) E(@") = [é 8],
then
E(z'2) = s
and
(8.11) EE V') =EW"y) —EG2) =n — .

In the general problem with more complex C we have the additional quadratic
form
(8.12) z"V'AA'VT'A)TRTIR(ATV'A)'RTTR(ATV A ATV
whose matrix is of rank w. Application of (8.4) followed by application of
t = Uy, , where U'U = WA(A"V'A)'RT[R(A"V'A)"R"T"
(8’13) Tyr—1 g\—1 4 Ty7T
‘R(AV A" AW

1 A triangular matrix square root, as applied to this problem, is a triangular matrix W
defined by WTW = V-3, This should not be confused with the (non-triangular) algebraic
matrix square root defined by (V)2 = V1.
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reduces this term to

(8.14) "t with E(t"t) = u.
Then
(8.15) EE€V%e)=n—s+u=n—(s—u).

This result is what one would expect. If the values of « were distributed norm-
ally, the positive definite quadratic form ¢V 'e would be distributed as xX
with E(X?) = n — (s — u) indicates the number of sndependent parameters.

This result is independent of k. In the Rao problem, ¥ = 1, and the value of
E("V ') isn — s + u as above. For the Aitken problem, » = 0, and the value
isn — s. Where V! = P/s’° we have

(8.16) E(Pe) = (n — s + u)d®

and when u = 0, this is

(8.17) : E("Pe) = (n — s)d’

as shown by David and Neyman for the case of uncorrelated variables ([8],

pages 110-112). When P = I this becomes

(8.18) E("e) = (n — s)d

as shown by Aitken using the properties of idempotent matrices ([3], page 139).
9. An estimator of the dispersion matrix of ¢*. David and NeymanW8] have

provided an unbiased estimate of var ¢* for the case in which V™' = P/ o, the

2’s are uncorrelated and L is a vector. A generalization related to the David-

Neyman formula for the general problem is, for known V,

eV

T
st a Ol

9.1) E 7' var (¢*) =

since its expected value is the dispersion matrix of ¢*.
When V is known this formula is of little value since BVB” can be computed
and no estimation is necessary. However if V is not known, but P is, we have

1 %) — e"Pe
©2) E " var (¢*) T
L{(A"PA)™" — (A"PA)'R"[R(A"PA)"'R""'R(A"PA) "} L".
When P = I, the case of equal variances, we have the important
T
E 7 var (%) = ——— L{(474)™
n — u

(9.3) s+

— (ATA)'RTR(ATA)RTT'R(ATA) L.
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In the case of no side conditions we have

T
0.4) E™ var (¢%) = 225 L(ATPA) L,
Using the value of B in (5.10) we get
T
9.5) E'var (¢*) = 1-5—?; BP'B”,

If L is a vector, the estimate is a scalar. In the David-Neyman scalar nota-
tion, with the 2’s uncorrelated and B a row vector (A\) we have

n 32
(9.6) = S N

T n—-s&iP

where [\ = A = L(A"PA)"A"P = B. Hence (9.2) gives the estimator matrix
of var (¢*) for a more general problem than does (9.6).

Appendiz Showing Orders of Matrices and Conditions

Matrix Order Matrix Order
X nX1 v kEXk
A nXs A s Xk

6 and 6* s X1 A s X1
€ nX1 R u X s
V nXmn g u X1

Q and Q' 1X1 D kX u

ATV4 s Xs n kX1
L kXs % 1 X u

¢ and ¢* kX 1 R(ATV'A)'RT uXu
B kXn C s Xs

va;¢: k Xk P nXn

BVB kEXEk

u < s < n,u = 0 gives Aitken problem, & = 1 gives Rao problem, V-1 = P/q?
gives David-Neyman condition.
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