THE USE OF GROUP DIVISIBLE DESIGNS FOR CONFOUNDED
ASYMMETRICAL FACTORIAL ARRANGEMENTS!

By MARVIN ZELEN

National Bureau of Standards

1. Introduction and summary. A factorial experiment involving m factors
such that the 7th factor has m; levels is termed an asymmetrical factorial de-
sign. If the number of levels is equal to one another the experiment is termed a
symmetric factorial experiment. When the block size of the experiment permits
only a sub-set of the factorial combinations to be-assigned to the experimental
units within a block,.resort is made to the theory of confounding. With respect
to symmetric factorial designs, the theory of confounding has been highly de-
veloped by Bose [1],. Bose and Kishen [4], and Fisher [11], [12]. An excellent
summary .of the results of this research appears in Kempthorne [13]. However,
these researches are closely related to Galois field theory resulting in (i) only
symmetric factorial designs being incorporated into the current theory of con-
founding; (ii) the common level must be a prime (or power of a prime) number;
and (iii) the block size must be a multiple of this prime number.

The theory of confounding for asymmetric designs has not been developed
to any great degree. Examples of asymmetric designs can be found in Yates
[19], Cochran and Cox [9], Li [15], and Kempthorne [13]. Nair and Rao [16]
have given the statistical analysis of a class of asymmetrical two-factor de-
signs in considerable detail.

Kramer and Bradley [14] discuss the application of group divisible designs to
asymmetrical factorial experiments, however their paper is mainly confined to
the two-factor case and its intra-block analysis.” It is the purpose of this paper,
which was done independently of their work, to outline the general theory for
using the group divisible incomplete block designs for asymmetrical factorial
experiments.

The use of incomplete block designs for asymmetric factorial experiments
results in (i) no restriction that the levels must be a prime (or power of a prime)
number, (ii) no restriction with respect to the dependence of the block size on
the type of level, and (iii) unlike the previous referenced works on asymmetric
factorial designs, the resulting analysis is simple, does not increase in difficulty
with an ihcreasing number of factors, and “automatically adjusts” for the ef-
fects of partial confounding.

Received January 10, 1957; revised June 18, 1957; revised November 1, 1957.

1 This paper is an extension of results presented at the Annual Meeting of the American
Statistical Society, September, 1954 (cf. [22]).

2 Note added in proof: The Editor has pointed out that the paper by K. R. Nair, “A
note on group divisible incomplete block designs’, Calcutta Statistical Association Bulle-
tin, Vol. 5, No. 17, (1953), pp. 30-35, together with Nair and Rao [16] essentially contains
the results for the intra-block analysis of the two-factor asymmetrical designs.
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Section 2 states three useful lemmas, Section 3 contains the main results of
this paper, and Section 4 outlines the recovery of inter-block information.

2. Some useful lemmas.

We state here three lemmas which will be referred to in later sections. Since
the proofs are trivial they are omitted.

Let X' = (X1, X,, -+, X,) have a multivariate normal distribution such
that

EX)=m'= (m,mg, - ,m),
E(X — m)(X — m)] = MJd".
Lemma 2.1, The expected value of the quadratic form X'AX s
E(X'AX) = m'Am + o trace (AM).
LemMa 2.2. If M® = MM (X a scalar), then the quadratic form

X —m)'(X —m)
)

follows a o’ distribution with r degrees of freedom where r < n is the rank of M.
Lemma 2.3. Define the direct-product of two square matrices A and B of di-
menstons m and n respectively by

auB a2 B cer amB
auB anB -+ amB
(4*B) =

omB @B - QumB

If A* = oA and B’ = BB (« and g are scalars), then (4 x B)® = a8(4 * B). In
general, given p wmatrices 4, B, C, - - - such that 4* = a4, B* = g4, ¢* = +C,
- wehave (A« B*Cx---) = (afy - )(A*xB*Cx---).

3. Analysis of group divisible designs used as asymmetrical factorials.

3.1. Estimation. The group divisible designs are partially balanced incom-
plete block designs with two associate classes. These were first discussed ex-
tensively by Bose and Connor [3] and Bose and Shimamato [5]. A large cata-
logue of such experiment plans giving full details of the analysis can be found
in Bose, Clatworthy, and Shrikhande [2]. Designs with block size & = 2 have
been enumerated by Clatworthy [7]. Bose, Shrikhande, and Battacharya [6],
and Clatworthy [8] give methods for constructing group divisible designs.

Briefly group divisible designs can be characterized by having b blocks with
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k experimental units such that each of the v = mn treatments is replicated r
times. The v = mn treatments can be divided into m groups of n treatments
each, where any two treatments in the same group are 1st associates and two
treatments ‘in different groups are 2nd associates. With respect to any treat-
ment, there will be (n — 1) 1st associates and n(m — 1) 2nd associates.

Consider a factorial experiment with (g9 + h) factors 4,, Az, ---, 44, B1,
-+« , By such that the number of levels associated with 4, is m,fors =1, -« -,
¢ and the number of levels associated with B, is n.r = 1, 2, ---, h. Further-

more, let these levels be such that m = [[%_im. and n = II%.: % . Then one
can use the group divisible designs for a H‘.Ll me X H','-l n,. factorial de-
sign by arranging the ¥ = mn treatments in an n X m array and assigning the
m factorial combinations among the A factors to the columns (groups) and the
n factorial combinations among the B factors to the rows.

Let the measurement of the uth treatment combination (v = 1, 2, ---, v)
measured in the zth block be denoted by ¥.. and let the underlying mathemati-
cal model be

(301) Yuz = M + tu + bz + €yz

where m is a constant common to all measurements, £, is the effect of the uth
treatment combination, b, is the constant associated with the zth block

(z= 1‘32""7b)’

and {e..} is a sequence of uncorrelated random variables having a zero mean
and (unknown) variance o°. For making all tests of significance, we shall further
assume that the {e,.} follow a normal distribution.

Due to the factorial nature of the experiment, a treatment combination ¢, can
be written as

g h
t, = 3-21 (as)i. + GZ; (bq).‘iq

(3.2) -+ Za: 221 (aat)i,‘ + ; qz;; (bqr):iqr

t=2 g=

h g
+ Z (a,bq),-,jq + -0+ (am...,bm...;.),-u...,jn...,..
q=1 g==1
The (a,):, are constants associated with the main effect of 4, at level 7, ; the
(@se)s,, are constants associated with the two factor interaction between 4, and
A, at levels 4, and 7, , etec. Similar interpretations hold for the constants asso-
ciated with the main effects and interactions of the B factors, and also for the
constants associated with the interactions composed of both A and B factors.
It is well known that these parameters are not all linearly independent and
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satisfy the following relations:

r'_.z-:l(aC)i;=O) s=1,2,...,g’
f.(bq)j.,=0, ¢q=1,2 - ,h,
jq"l
‘E-l(act)iol=0, a=s,t; s<t=1,2’-..’g’
33) ( < )
( ) i(bw),‘q'=0, ﬁ=q’r; q<r=1’2’...’h,
jg=1
421 (am...,bm...h),-u...,,-,2...,,
= i (al2v~-0b12-~-h)im...,ju...h =0, a=12.--¢9; B=1,2---h.
\ gl

If the adjusted treatment total for the uth treatment is defined by

_ __ (sum of the block averages in
Qu = (uth treatment total) (which the uth treatment occurs) ’

then the treatment estimates can conveniently be written as
) 1
(34) by = TF=D Q. + 181(Qu) + ¢28:(Qu)].

Here S1(Q.) and S:(Q.) are the sum of the adjusted treatment totals for the
1st and 2nd associates with respect to treatment w, and ¢;, ¢; are constants
calculated from the design parameters. (All catalogues of group divisible de-
signs [2], [5], [7], [8], give numerical values of ¢; and ¢z).

Since these estimates satisfy the restraint > .,f, = 0, the variance of a
treatment estimate can be written as

(3.5) Varf, = [vk -k + ("'r(”; l_)ci):‘ n(m — 1)02]] 2

and the covariance between treatments which are (say) sth associates (s = 1, 2,)
is :

36)  Cov (i) = [”’ —k+ ("r(; i)ci)j n(m — 1)62]] 2

fors = 1,2,
Let (say) 4;,4;,--- ,A,(p < ¢g)and By, By, ---, B, (¢ < h) be a selec-
tion of the A and B factors and let them be associated with the particular
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levels 7 = (41, %, -, %) and j = (j1, J2, -+, Jo) respectively. We define an
S-function associated with these particular factors and levels by

(37) H m; H n;

8[1)2)""1’; 1)27)QI'L).7] == Ztu’

where the summation Y, refers to the sum over all treatment estimates which
have the same levels 41, %2, -+, % ; J1, J2, -+ , Jo With respect to the factors
Ay, Ay, -+, Ay ; B, By, -+, B,. If an S-function contains no 4 factors, we
shall denote this by S[0; 1, 2, - - -, ¢ | 7] with a similar notation for the absence
of B factors. (Note that these S-functions are simply the cell averages in any
(p + ) way table associated with these factors). Then the expected value of
(8.7) is

b q
E{S[la 2, ety Py 1, 2, ey q | 7',.7]} = ;1 (as)i, + ; (br)ir
(38) )
+ Z Z (a'st)zu + Z E (brs)fn R (au‘“pbm"'q)ilz~--pflz--'q ’

t=2 g==1 =2 r=1
where the summations refer to the particular factors 4; ¢z = 1, 2, .-+, p),
B;(j = 1,2, -+, ¢) and the levels t,.. jrs... refer only to ¢ = (i1, 22, - , %)
andj = (ji,J2, -, Jo)- There will be only (v — 1) linearly independent treat-
ment estimates and since the relatians (3.3) imply that there exist (v — 1)
linearly independent factorial constants, the condition of unbiasedness is suffi-
cient to insure unique estimates of the factorial constants. Therefore the esti-
mates of the main effects and interaction parameters are given by

((@);, = 8s; 014,

(bQ)Jq S[0; ¢ Ijq]’

(@s)s,e = Sls, 40 |45, 3] — {S[s; 0[] + S[t5 044},
(bqu)aqu = S[0;q, u |jq,ju] — {8[0; ¢ qu] 4+ S[0; » !Ju”»
(3.9) (as ‘.1)":Jq S[s; q ’ s, Jd — {S[s; 0 ’ ] + ‘S.'[O; q |jq]}y

(012...¢ h)’uz PEITIE ’

=S[12 '79)12 ,hl'l:l,"‘,'l:g,j1,"°,jh]

—{8[1727' ° 1 ]-2)"',hlily"',ia—lrjly”’,jh]+“°}.
o GOS0 Al

The estimate for a (p + ¢)th interaction involving the factors (say) {4.}, {B/}
associated with the respective levels 7,, 7. (s = 1,2, -+, p;r =1,2,---,¢q)
can conveniently be written as

p+ag L
(3.10) (@13.ep D1 pingerng = (=17 2 (=D {w},

where {w} denotes the sum of all S-functions involving exactly w = » + ¢
factors from the above set.
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3.2. Variances, covariances, and tests of significance. In this section we
shall obtain the variances and covariances of the main effects and interaction
terms. It will be shown that these can be written as direct products of matrices
and this leads directly to the appropriate sums of squares for the analysis of
variance. Four lemmas pertaining to the S-functions are derived and are used
for proving three basic theorems pertaining to the analysis.

Lemma 3.1. The variance of S = S[1,2, -+, p;1,2,---, q| 14, 7l s

(3.11) VarS = ” [((MN — 1)(k — ¢1) + n(M — 1)(c: — ¢)],

ag
r(k — 1)
where M = [[2ym,, N = [[%im, .

Proor. The number of treatments summed in S isv/MN = mn/MN which
can be regarded as m/M groups of n/N treatments each, such that treatments
within the same group are first associates and treatments in different groups
are second associates. Then there are (mn/zMN> different pairs of treatments
among the mn/MN treatments in S, of which

m (n/N) _v(n — N)

M\ 2 ) ToNM

2 G = 1))

are 2nd associates. Therefore the variance of S is

are 1st associates and

_ SMN [ v ok — [k 4+ ciln — 1) + can(m — 1)
Var § = —5 {MN[ 7k — Do ]
) 20(n — N) [ero — [k + ei(n — 1) + can(m — 1)]
(3.12) T oNTr [ (b = 1o ]
n 20(m — M)n I:cw — [k 4+ ci(n — 1) + con(m — 1))
2(MN)? r(k — 1 !

which on simplifying gives the desired result.

Lemma 32. Let S = S[1,2,---,p;1,2,---, q| %, j] and
S = Slll, 2,7 e )p,; 1’7 2/, e ,qlli’,j,]

be two S-functions having a A factors and b B factors in common, such that for a;
and by of these factors, the levels are identical and for a, and by of these (common,)
factors, the levels are different (a = a; + az, b = by + by). Then

2 [(MiNy = 1)k — ¢)
rk — 1o | (M, — 1) (e — )|

(3.13) Cov (8, 8") =
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where My = T3 m: (product of the levels of the ay factors having common levels)
and N, = H?Ll n; (product of the levels of the by factors having common levels).

Proor. The number of treatments summed in S and S’ are v/MN
and v/M’N’ respectively. These treatments can be regarded as consisting of
two rectangular treatment arrays of dimensions (n/N) X (m/M) and

(n/N") X (m/M’)

respectively. The two arrays will overlap if they have common treatments and
the number of such common treatments is

0M1N1 - ('Ian)(’an)
(MN)(M'N’) MM'J\NN']"
It is convenient to depict the intersection of the rectangular arrays by the five
regions as shown below,

518

41

|
1
S| 3
/:2

where region (1) is an array representing the common treatments having
(nN1/NN’) rows and (mMy/MM’) columns. If ) (s) represent the sum of the
treatments in the ¢th region (7 = 1, 2, 3, 4, 5), then

S=2 1) +2@+26),
S =20+ +23.

Hence, in order to find the covariance between S and S, it is necessary to find
the number of pairs of 1st and 2nd associates formed from the multiplication
of 8 and &’. These will give pairs formed from ., (1)), X (1) (2),
TMXB), TMHX@, @@, ZEX@, 21X ),
2 ()2 (5), and 35 (3) 2 (5).

(3.14)

Define
([, — m _ nNy
‘" MM’ " NNV
n
(3.15) Imy = M% M — M), m =55 V=N,
n
m3=—]‘[iM(M"—Jul), ’ﬂs—‘-‘-W(N,—Nl)-

\

Then the dimensions of the five regions are:
region (1): n, X my,

region (2): ny X my,
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region (3): (m + ny) X mq,
region (4): nz X my,
region (5): (n; + mg) X ms.

Since the treatments in the same row are 1st associates of each other and treat-
ments in different rows 2nd associates, it is an easy matter to count the number
of 1st and 2nd associates arising from pairs formed from ) (z) Y (j). Perform-
ing the necessary algebra, we find that the total number of 1st associate pairs

18

UMl(n - Nl)
(NN")(MM')

and the total number of 2nd associate pairs is

vn(m - M1>
(NN (MM')"

Therefore,

rCov (8,8) =

o (MM')(NN') [ vM\N,

7 oy Ve
P oM 1(71 - N 1)
(3.16) + NN
on(m — M)
(NN'MM')
On simplifying we get the desired result.

LEMMA 3.3. Let (ab) = (@iz---pb12---)izs. .. sna. ..o b€ the estimate of the (p + q)th
factor interaction associated with the factors {A,}(s = 1,2, ---, p) and

{Bf}(r =12-.- ) Q)'
Le 8 = 8[1;2,---,9; 1,2, -+, ¢ |7, 7] be an S-function which is not
associated with all factors (regardless of level) of (ab). Then
(3.17) Cov [(ab), S'] = 0.

Proor. Let a be the number of common A factors between (ab) and S’, and
a and a; (@ = a1 + az) be the number of these common factors having the
same levels and different levels, respectively. Define 8, 8,, and B8; in the same
manner with respect to the B factors. Since the interaction (ai;) can be written

in the form

Cov (1st associates)

+

Cov (2nd associates)} .

@ = (~)7 3 (~D*(w),

consider a fixed {w} and a particular S-function in {w} having the characteris-
tics a, a1, aa, b, by, b2 as defined in Lemma 3.2,
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Define
(c0,0 = -1,
Clay) = E e D (Mg - - Meg, — 1), o =< a,
(3.18) TC(bl) =2 X gy -y, — 1), b < B,
Cla, b)) => - > (Mo y My =+ Moy MMy = - - Ny, — 1),
| a = o, b = 81,

where the summations are only over combinations of A and B factors taken
a; and b; at a time respectively, such that these factors are those in which (ab)
and S have in common at the same level.

Then the covariance between S’ and {w} can be written

, _ o ptg—a—g
[Cov[S,{w}] —7—'(](;-——_1)—1){0,1-(-2171:=w< w—a — b >

. [(k —c)Haz, b)) + n <§1> (e1 — Cz)C(al)]

G19) 1 - 3 <p+q—a—ﬁ>

cartb=w \ gy — gy — b

bg #0
. l:(al> <B> k—ca) — n<ﬂ> (a — 02)0(al):l
ay b b

+ Zw: <p+q—a—ﬂ><a2>[(k —¢1) + nla —02)]}.

a=l\  w—a a

\

Note that the first summation is for those S-functions in {w} for which
a; = by = 0;

the second summation refers to a; = 0, b, = 0; anq the third summation is
when a, > 0. Since the covariance between S’ and (ab) is

(3.20) Cov [S, ()] = (=1)** ’g (=1)* Cov [§', {w}],

we can substitute (3.19) in (3.20) to obtain an explicit expression for (3.20).
Now with respect to fixed values of a,, a2, b1, and b, the only terms contribut-
ing to the first summation in (3.19) is when

’w:al+b1,"',p+q+al+b1—a—'3;
the value of w contributing to the second summation in (3.19) is for

w=a+b--,pteg+a+db—a—8



GROUP DIVISIBLE DESIGNS 31

and the contributing value of w for the last summation in (3.19) is when
W=, ,pt g+ m—a—4

Therefore collecting coefficients of

[(k — e)Clar, b) + 7 (&) (e — cz)C(al):I
in (3.20) gives
(3.21) (= TS (” ta—o- ") (-1)* =0

w=0 w

for all a; and b; . Collecting coefficients of

OLE)e-0 == one]

(—1)m+oH pﬂ_za_ﬂ (P +q¢—a-— .3) (=1)” =0

w=0 w

results in

for all a1, b1, and b, . Finally, with respect to the coefficient of
()16 = &9 + ne = @)

in (3.20) we have
S > (” to—e- ") (-1 = 0.

w=0 w
Lemma 3.4. Let (ab) = (am...,,élg...q),-m...,,,-”...q be an estimate of the (p + q)
factor interaction associated with the factors {A}(i = 1,2, ---, p) and

{BJ}(] = 1: 2: ) Q)~
Le 8" = 8[1,2,---,p; 1,2, ---, q|1, j] be an S-function associated with the

same factors as (ab) such that oy and By of the A and B factors have common levels.
Then,

2

__1\Ptaterthy eee e .
( 1) 0(1) 2) 3 al)d’(l) 2: ] .31) Borv )
(3.22) Cov [(ab), S = ifg =0,
2
(_1)p+a10(1’ 2, ot 7a1) E:rv’ if q= 0’
where
(3.23) 0(1,2, -+, 0n) = (my — 1)(mg — 1) -+ (Mo — 1),

¢(1:27"',ﬂl) = —1mn—1)--- (nﬂl -1,
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and
(k —1)
E, = ,
(3.24) Iik —lcl) + nler — )
Ey, = PR—

Proor. If we expand (a") in terms of S-functions (Eq. 3.10), we can write
the covariance between S’ and a fixed {w} for ¢ > 0 as

Cov [Sl, {'ll)}] = 7'(_16{‘2_1)1—){[(]6 —a) Z C((h, by)

arformu
+ n(a — c) al+%:=w <b1) C(al)]
(3.25) - ngiw (Z:)(q _t, al) [k — e) + nla — 02)]]
. B2 0

[ GE)E - e
—nla — ¢) al+g§%2_w (511)(5:) C (al):l} ,

where the first bracket is when a; = b, = 0; the second bracket is the case
az # 0; and the third bracket refers to a; = 0, b, > 0. Substituting (3.25) in

(626)  CovIS, @] = (-1 3 (~1)* Cov I8, {w)]

results in the first bracket being written as (neglecting the constant term)

(—1)”*”“‘*"‘[2( D* 3 Clar, b — o)

i
o) Pl —e) o (- Ny (b;) 0@ |

= (=1)Prtattip(1 2 oot a)e(1,2, -, B)(k — )

=)™ — o) 3 Ca) S (- 1)”( al).

a1=1 w=ay

With respect to the bracket when a ;é 0, we can ‘write these terms after
substituting in (3.26) as

(3.28) [k — o + nler — o) [E (-1 (” + q) pIEN ("‘1 + q)] 0.
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Finally for the terms where a, = 0, b, 5 0, after substituting in (3.26), we can

write
Wt wt e
(329) e[ F e (] q>w e (i) e-a
+ 0 - o) Bow 3 o [(B A -(,% )]

The first term in (3.29) is identically zero and combining the second term of
the right hand side of (3.27) with the second term of (3.29) gives

(=10 - o) | 32 0@ (- )] 0.

ay=1 r=a)

Thus the Lemma is true for ¢ ¢ 0. For ¢ = 0, the covariance between S’ and
{w} will be

Cov 15, (w}] = - il ){[(k &) + nlo — elC(@)

-2 () - e+ nte - )

and following the same reasoning as for ¢ # 0, we can prove the Lemma for
q = 0.
TeHEOREM 3.1. Let (ab) = (ayz...pb12.--g)iss...pi1e..., 0 OGN estimate of the

(p + 9th
Sactor interaction associated with the factors {A:;} (0 = 1,2, ---, p) and
{Bi}G=1,2---,9;

let (a?;)’ = (afg...,ﬁfz...,)au rif1z..., b€ @ (r 4 8) factor interaction associaled
with the factors (A} (G = 1, 2, -+, 7) and {Bj}(j = 1,2, --- ,5), such that all
Sactors are not identical between (a,b) and (ab)’. Then the two different interactions
are uncorrelated.

PrOOF. (ab) can be expanded in terms of S-functions, such that no S-func-
tion contains all the factors of (ab)’. Hence by Lemma 3.3, the covariance be-
tween all such S-functions and (ab)’ are zero which proves the theorem.

TueoreM 3.2. The variance of the (p + q) factor interaction

(tﬁ?) = (au~--pi)lzn-q)iu...,,z‘u...q
assoctated with the factors {A;} (1 = 1,2,---,p)and {B;} (j = 1,2, ---, q) 18

2

0(1:2;"')1’)@’(:%: ifg=0,

(3.31) Var (ab) = 2
o .
0(1,2”'°7p)¢(1y2)""Q)mr lfq;éo'

(3.30)
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Proor. Using Lemma 3.3, we can show that
Var (ab) = Cov [(ab), 8],

where S denotes that S-function coinciding in all factors and levels with the
interaction (ab). Hence, by Lemma 3.4 the theorem is proved.

TurorEM 3.3. Let (ab)i; and (ab)s be two estimates of a (p + q) factor inter-
action associated with the factors {A,} =12 ---,p) and

{BJ} (.7= l, 2, e ,Q)
such that for ax of the A factors and B, of the B factors, the levels are identical. Then
(3.32) Cov [(@b)i;, (ab)ws]

2

E"w, ifg =0,

{ (’j']-)p+a10(ly 2,00, al)

2
(—1)7retatbip(1 2 e a)e(1,2, -, BY) L, if ¢ % 0.

Proor. Expanding (ab)»; in terms of S- functions, taking the covariance of
(ab),] with each of the S-functions associated with (ab)u i and using Lemma
3.3, results in

Cov [(ab)is, (ab)v#] = Cov [(@b)is, S'],
where 8’ is that S-function associated with the factors {4} and
{BJ} (2 =1,2---,p;5 = L2 .- ,Q)

and levels 413...pj12...q .

Hence, by Lemma 3.4 the theorem is proved.

Theorems 3.1 through 3.3 give the variances and covariances of any general
interaction. Define the square matrices M (:) and N(j) of dimension m; and
n; , respectively, by

(3.33) {M(i)’:mil—‘,; t=12.--,9,

N(j)=nd_J, j=112;"')h’

where J is a matrix of appropriate dimension having all elements unity. Then
the variance-covariance matrix of the estimates of the (p + ¢) factor interac-
tion (2. b1z -Q)iz...pira..., Tanging over all the [J%im; [[%<n; combina-
tions is given by the direct matrix product

2

(3.34) E" — [M@)*M@)* - - *M(p)], if ¢ =0,
or
(3.35) EEE [MQ)* - *M@)*N(1)* - -+ *N(g)], if ¢ = 0.
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Therefore, since M(3)* = m:M (), N()’ = n;N(j), and using Lemmas (2.2)
and (2.3) the sums of squares

E.rv
P . E (‘212---11)22‘12...,77
m, T12..00p
=1
(3.36) T
b TV a

P q . Z (al2--~pb12~~q)312...,,f12...q, ifog =0
H m, H Ny t12...p712...q q )
8=1 r=1

follow x°s” distributions with [[2; (m, — 1) and IIZ’=1 1% me — D — 1)
degrees of freedom respectively if the null hypothesis of no interaction effect is
true.
Using Lemma 2.1 these sums of squares have the expected values
E,rv P
? X Z (alz"'p)?n...p + H (mz - 1)0'2
Hm‘ $12.0ep i=1

s=1

and

Eyry 2 2
P : q . Z (a2...pb12..0)° + IIl (m; — 1) I]; (n; — 1)d”.
112.4.pJ1244 g = j=
g My, rI_Il N,
The entire intra-block analysis of variance can be summarized in Table 1
where B represents the b X 1 vector of block totals, @ is the v X 1 vector of
adjusted treatment totals,  is the » X 1 vector of treatment estimates,

_ (grand total)®
g b k ’

and terms such as

2 (@i,
t12...p
are written as (dy...,)", ete.

The computations for the analysis of variance are straightforward and ac-
tually amount to treating the {.’s as observations on a one replicate factorial
experiment, where all sums of squares are multiplied by E.r or Ewr. It is also
clear from the analysis of variance that the various interactions are estimated
with one of a possible two types of efficiencies. If the interaction is composed
only of A factors the efficiency is E,, otherwise the efficiency will be Ej .

Extension to the balanced incomplete block designs. The balanced incomplete
block designs can also be used for asymmetric factorial arrangements by as-
signing the v factorial combinations to the v treatments of the balanced incom-
plete block design. All results immediately follow by regarding the balanced
incomplete block designs as a “degenerate” partially balanced design. Then
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TaBLE 1
Summary of intra-block analysis of variance

Source Degrees of freedom Sum of squares
Blocks (unadjusted) ... ... b—1 B'B g
k
Treatments (adjusted)....| » — 1 i'Q
A
A, (my — 1) 2 Ear(a)?
my
A, (ma — 1) 2 Fara)?
me
B, (g — 1) 2 Byribye
n
A,B, (my — 1)(ng — 1) ”" Eyr(ady)?
. 1
: K . :
A3A; -+ AgBy -+ By I m—1II (n=1) || — Eyr(an.. .o bre...n)?
. vt Tt I m, IIn.
L\ 1 1
B'B
Error.............c.ooii.. ne=>bk—b—v+4+1 S¢=Ey.-i2—t’Q——k—
i
Total..................... bk — 1 Zyt—g
i

¢ = ¢ = k/vin (34),E, = E, = E = v(k — 1)/k(v — 1), and all main effects
and interactions are estimated with an efficiency factor E.

4. The recovery of inter-block information. If the block effects b; in (3.4)
can be regarded as a sequence of random variables such that

E(®;) =0, Varb; = o1,
4.1) Cov (b, , bj+) = 0, for j # 7,
Cov (e, bjr) = 0,

it will be possible to extract additional information from the block totals. This
additional analysis is sometimes termed the recovery of inter-block informa-
tion or the interblock analysis. With respect to the balanced incomplete block
designs, the inter-block analysis was first developed by Yates [20] and appears
in the books by Cochran and Cox [9], Federer [10], and Kempthorne [13]. The
inter-block analysis with respect to the partially balanced designs is discussed
in a particularly simple form by Bose and Shimamoto [5] and by Bose, Clat-
worthy, and Shrikhande [2]. Generally it will be possible to use this inter-block
information in two ways. The preceding references discuss how one may com-
bine the inter-block information with the intra-block information in order to
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obtain the most precise treatment estimates. The paper by Zelen [21] discusses
how one can use this inter-block information for obtaining additional inde-
pendent tests of significance for every hypothesis pertaining to the treatments.

Define QFf = T; — Q; — rij, where Q; is the i¢th adjusted treatment total, T’
is the total for the sth treatment and 7 is the grand average of all measurements.
Then the best estimates of the treatments using both the intra- and inter-block
information can be written as

- 1
(4-2) ti - }_B'(—k'—_"l—) {kP, + dISI(Pi) + d2S2(P1)})
where
P; = WQ; + W*Q¥,
W*
43) R“r[W“'k—l]’
1 1
= WS I

The constants d; , d; are usually tabulated with all the designs. Note that (4.2)
is the same form as (3.4) except that P; replaces Q;, R replaces r, and d;, d»
replace ¢;, ¢; . Thus all results in Section 3 carry over directly by substituting
the above changes in the formulas of Section 3 and replacing o by unity.

On the other hand, under certain conditions which are elaborated in [4],
one can also obtain additional independent tests of significance using only the
inter-block information. Three cases have to be considered depending on
whether the group divisible design is a regular, singular, or semi-regular design.
These are the three exhaustive classes of group divisible designs introduced
by Bose and Connor [3].

For the regular group divisible designs the inter-block treatment estimates
can be written as

(4.4) = QF + ol Si(@F) + ¢ Si(QD)
r

and will have a variance of
vk — [k + (n — Def + nlm — 1)0?1] (0" + kad).

rv

Var tf =-|:

Also if #f and £ are sth associates (s = 1, 2),

* * *
Cov (t?, t;k) - I:UC. — [k 4+ (n — ei + n(m — 1)02]] (0_2 + ko'g).

rv

The quantities ¢i and c; are defined by

* C,A - 7‘)\, _
Rl (o= 1,2)
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where the parameters ¢, , A, A;, and H are the usual parameters for partially
balanced designs (cf. [2], [5]) Therefore all results for Section 3 apply directly
by replacing ¢° by (¢° + ko), ¢, by ¢ , and r(k — 1) by r. This results in the

two efficiencies being
1

k —cf + nlef — ¢3)’
I
k-—-cf’

*
E, =

Ef =

and the breakdown of the v — 1 treatment sum of squares, using only the inter-
block information, is similar to Table 1. If b > v, there will be an independent
estimate of o 4 kos , thus permitting independent inter-block tests of signifi-
cance for the main effects and interactions.

With respect to the singular designs, the intra-block efficiencies are

Ea<1’ Eb=1.

Hence it is only possible to obtain inter-block estimates for those main effects
and interactions associated only with the A factors. Since treatments in the
same group are first associates, 1/n[t; + Si(4;)] represents the average of the
group to which treatment 7 belongs This average is estimated by

*

* * mn — k
(4'5) [t + Sl(t )] E* ) Ea - k—(m-
There will be m such estimates, thus making it possible to have S-functions of
the form S[1, 2, ---, p; 0| 4] for p =< g. Then all results of Section 3 follow by
replacing E, by E; and o° by ¢° + ko3 . If b > m, this will permit an estimate
of ¢® + ko3 and thus we can have independent inter-block tests of significance
for the 4 factor.

The semi-regular group divisible designs have the intra-block efficiencies
Ey = 1, Ey < 1. Therefore it is possible to obtain inter-block estimates of those
main effects and interactions having the intra-block efficiency Ej,. These
(v — m) contrasts can be found by using the normal equations

(4.6) ZZ‘Et,,_Q;!‘, i=1,2-,0,

s=1

where A;; = 7, and A;; = number of blocks in which treatments 7 and s appear
together. The rank of Egs. (4.6) is exactly (v — m). If b > (v — m), then it
will-be possible to have an independent estimate of (¢° + ko3), thus allowing
independent inter-block tests of significance for testing these contrasts. An
open problem is to simplify this analysis.

Extension to balanced incomplete block designs. Similar results apply to the
recovery of inter-block information for the balanced incomplete block designs.
The best combined estimate can be written as

; P; _P g _RBGE—D AW -
" orf[WE+ W*1 - E)]  ER’ R )
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Therefore all results of Section 3 can also be carried over by substituting unity
for ¢°, R for r, etc. This produces an efficiency of

Rk — 1) + AW — W*)
- 2 .

In addition if one wished to obtain additional independent significance tests
using the inter-block information only, the treatment estimates can be written

s @
* (1 -=E)x

and all results of Section 3 follow by replacing o° + ko3 for o°, and
Ea, = Eb = 1 - E

E

Again we will have two independent tests of significance for testing every null
hypothesis pertaining to the main effects and interactions.
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