SUMS OF POWERS OF INDEPENDENT RANDOM VARIABLES!

By J. M. SHAPIRO

Ohio State University

1. Summary and introduction. Let (zu), k =1, -+« , kn,;n =1,2,--- bea
double sequence of infinitesimal random variables which are rowwise inde-
pendent (i.e., limy. maxi<igi, P (| Zae | > €) = 0 for evey e > 0, and for each
N Tn1, *** , Tnk, are independent). Let S, = 2 + -+ 4+ Zu, — A Where the
A, are constants and let F,(x) be the distribution function of S,. Necessary
and sufficient conditions for F,(x) to converge to a distribution function F(z)
are known, and in particular we know that F(z) is infinitely divisible.

In this paper we shall investigate the system of infinitesimal, rowwise inde-
pendent random variables (| Z.« | "), r = 1. In particular we shall be interested
in large values of r. Specifically, let S, = |Zu |" + -+ + | Zm, | " — Ba(7),
where B,(r) are suitably chosen constants. Let F7(z) be the distribution func-
tion of S; . Necessary and sufficient conditions for F7(z) to converge (n — )
to a distribution function F'(z) are given, and also necessary and sufficient condi-
tions for F'(x) to converge (r — ) to a distribution function H(x) are given.
The form that H(z) must take is obtained and under rather general conditions
it is shown that H(z) is a Poisson distribution. In any case it is shown that H(x)
is the sum of two independent random variables, one Gaussian and the other
Poisson (including their degenerate cases).

2. Notation. Let F(z) be any infinitely divisible distribution function with
characteristic. function ¢(#). According to the formulas of Lévy and Khintchine
(cf. [1]) we know that ¢(¢) has the following representation:

o(t) = exp {i'y(r)t - 31 + f_ ; (€™ — 1) dM (u)

0—

2.1) + f " = D) dNw) + [ € = 1 — itu) dM(u)

+ ff (€™ — 1 — dtu) dN(w),
0+

where M (u) and N (u) are respectively. nondecreasing functions in the intervals
(=, 0), (0, + ) which satisfy M(—©) = N(+») = 0and [>, u’ dM(u) +
foe W AN (u) < = for every ¢ > 0; ¢ is a nonnegative constant; r and —r are
continuity points of N(u) and M (u); and v(7) is a constant depending only on 7.

It is well known that the distribution functions F'(z) and H(z) referred to in
Section 1 are infinitely divisible, and throughout this paper we let M"(u) and
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N'(u) be associated with F'(z) and M*(u) and N*(u) be associated with H(z),
through the formulas given for their characteristic functions analogous to (2.1).

We let F,.(z) and Fhi(zr) be the distribution functions of z. and |z |”
respectively.

When speaking of a random variable (or its distribution function) being
Poisson we shall mean it is either Poisson or its degenerate case (i.e., a random
variable taking the value 0 with probability 1). The same applies to a Gaussian
random variable) in this case the degenerate case is a random variable taking the
value m with probability 1).

If K(z) is a nondecreasing function when we write lim, .. K.(z) = K(z) it is
understood that this need only hold at continuity points of K(x).

3. General results and proofs.

THEOREM 1. Let lim, . Fr(z) = F'(x) forr = ro = 1 and lim, .. Fr(z) = H(z),
where F'(x) and H(z) are distribution functions. Then H(x) is the distribution
function of the sum of two independent random variables one of which is Gaussian
and the other Poisson.

We remark that Theorem 1 remains valid if we assume lim,.. Fyn(x) = F'(z)
for some sequence of values of r becoming infinite in place of this condition hold-
ing forr = 7.

The proof of Theorem 1 requires the following lemma.

LemMa 1. If we add to the hypothesis of Theorem 1 the condition that lim,.,.
F.(x) = F(z), the conclusion of Theorem 1 holds.

Proof. Since lim,.. F.(x) = F(z) by Theorem 1 on page 116 of [1], we see

lim E Fu(z) = M(z), z <0,
and
kn
lim 3 (Fu(x) — 1) = N(z), z >0,
n-»>o0 k=1

where M (z) and N(z) are given by (2.1). Now for a« = 0,
F;k(a) P( l Lk I = F,.k(al/') — Fou(— M -)

and for a < 0, Fpi(a) = 0. Thus for z < 0, lim,. Zk-l Fur (z) = 0, and for
z >0,

hm Z [Fnk(x) - 1] hIn Z [Fnk(xllr) - 1] + hm Z [ Fnk( x )]

n->00 ==l n->o0

Now assume that 2" and —z"" are continuity points of N(z) and M (x) respec-

tively. Note that the set of points £ > 0 for which this is true is dense on the
positive axis. For such =z we have lim,.. Z’,ﬁ"_l [Fir(z) — 1] = N(z'") —
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M(—z'"). We note that the function N(z'") — M(—2"") and the function
kn

E [Fr(z) — 1]
k=1
are both nondecreasing for z > 0 and hence lim,.. P e [Fa(z) — 1]

= N(z'") — M(—=2"") at all continuity points, z > 0, of N(z"/") —M(—2z"").
Now since limg.. Fr(z) = F'(z) we see by Theorem 1 on page 116 of [1] that
M'(z) = 0and N'(z) = N(z'") — M(—2'"). (Note that since [°, z* dM(z) +
fiz* dN(z) < o it follows that for r = 1, [, 2” dM (z) + [§2° dN™ (z) < ©.)
Now since lim,.., F'(z) = H(z), it follows by Theorem 2 on page 88 of [1] that
lim,., M'(z) = M*(z) and lim,., N'(z) = N*(z) at continuity points of M*(z)
and N*(z). This shows that M*(z) = 0 and

1 - .
N*(x) = lim [N(xl/r) _ M(_x”,.)] - {N( +) M( 1 ), T > ].:

r—»o

N1-) — M(-1+4), 0<z<L

This shows that N*(z) is constant for 0 < z < 1 and for x > 1 and hence (since
M*(— o) = N*(+«) = 0) we see that N(1+) = 0 and M(—1—) = 0. Thus
we see N*(z) is either identically O or takes one jump at z = 1. (In fact if both
M (z) is continuous at —1, N(z) is continuous at +1 then N*(z) = 0; otherwise
N*(x) takes one jump). Now let o* be the nonnegative constant associated with
H(z) by the formula (2.1). Then if ¢* = 0 and N*(z) takes one jump it is clear
that H(z) is Poisson or H(z — m) is Poisson (m a constant). If ¢* = 0 and N*(x)
= 0, H(z) is a unitary distribution. If ¢* = 0 and N*(z) = 0, H(z) is Gaussian;
and if o* = 0 and N*(x) takes one jump, then (cf. [1]) it follows that H(z) is
the sum of two independent random variables one Gaussian and the other Pois-
son. This proves the lemma.

Proof of Theorem 1. Let s = roand let Y = | 2 | *. Then | 2w | " = | ym | 7.
Then for /s = 1, under the conditions of Theorem 1 the conditions of Lemma 1
are satisfied with the system (z..) replaced by (y.z). This proves Theorem 1.

LemMma 2. If limn., Fa(x) = F(x), then for sustably chosen constants B,(r),
F',(z) converges to a distribution function F'(z) if and only if°

lim limiaf i{ f e 2" d[Fpu(z) — Far(—2-)]
(31) €e>0 neco k=1 0 .
- ( [« aFu - M(—x—)l)z} — <

Proof. Suppose lim,.» F.(zx) = F(x) and that (3.1) holds. Then as in the proof
Lemma 1, limn.,, Y s Fox(z) = 0 = M'(z) for z < 0, and

lim kE" (Fri(z) — 1) = N(@E'") — M(—2z"") = N'(z) for z > 0.

n—>o k=1

2 We use the notation limiaf to mean that the indicated condition is to hold for both

lim inf and lim sup.
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(Here we consider N'(x) and M (z) only as functions just defined and not, at
this point, as being associated with any distribution function.) We see that
M (=) = N(+») = 0and that [2. 2" dM (z) + [;2°dN'(z) < . Consider

lim lim?ﬁ?g{ [ 2@ ‘( [ xdF:"‘(x)y}

>0 n>o
lz|<e lzl<e
Ky, €
= lim lim}? Z{ f 2’ dlFu(2'') — Fa(—2""=)]
>0 no>o k=1 0
€ 2
(3.2) - (f z d[F . (z") — Fnk("xl/f—)])}
0
kn el/r
- lim nm;:sz{ [ & dFu@) = Ful—z-)]
>0 n-> k=1 0

ellr 2
- (-/0. z’ d[Fnk(x) - nk(—x—)])} = ‘7?'1
using condition (3.1). (Note r is fixed here.) Now by choosing

kn

B.() = 3 [ zdFut) — C+ o (),
= lzl<r

where C, is a constant and o(1) — 0 as n — «, we see by Theorem 1 on page
116 of [1] that F3(x) converges to a distribution F'(z). (We note that M (z),
N'(z) and of are associated with F"(z) through the formulas (2.1).)

Now suppose that F,(z) — F'(z). Then again using the theorem of [1] referred
to above we see that (3.2) holds and hence that (3.1) holds.

THEOREM 2. Under the conditions of Lemma 2 a necessary and sufficient condi-
tion for the distribution functions F'(x) to converge (r — o) fo a distribution func-
twon H(z) for sustably chosen constants B,(r), is that’

M) =0 for 2 < —1, N() =0 for z>1,

lim o = (o%)%

>0

(3.3)

Furthermore H(x) is Gaussian if M (x) is continuous at —1 and N (z) ts continuous
at +1, H(x — m) is Poisson if o* = 0 and either M (x) vs discontinuous at —1 or
N (z) is discontinuous at + 1 where m is a constant, and H (x) is the sum of two inde-
pendent random variables, one Gaussian and the other Poisson otherwise.

Proof. Suppose lim,.. F'(z) = H(x). Then as in the proof of Lemma 1 we see
that M(—1—) = 0 and N(14+) = 0 and hence M(z) = 0 for z < —1 and
N(z) = 0for z > 1. Now by Theorem 2 on page 88 of [1] we have

0 €
lim limiaf { f W dM (w) + oF + f u* dN" (u)} = (%)%
— 0

e»0 r-oow €

3 Same notation as in the proofs of Lemmas 1 and 2.



SUMS OF POWERS 519
Now

{f_o utdM (w) + [oe u dN'(u)} = f; W AIN@W') — M(—u'")]
ellr

= [ v an - u-y)

1 [
é‘{fo ysz(y)+[1ysz(y)} forr > 1and0 < e < 1.

Thus we see that lim inf,,. o7 = (¢*)° = lim sup,.. o .

Now suppose (3.3) holds. Then as in the proof of Lemma 1 we see

lim N'(z) = N*(z) =

r-»0

{N(1+) -M(—1-) forz > 1
N1-=) —M(—14) for0<z<1

and lim,... M’ (z) = 0 = M*(z). (Here we consider M* and N* as functions just
defined and not at this point as being associated with H(z).) Now from (3.3) it
follows that N*(4+ o) = M*(— o) = 0 and [, 2 dM*(z) + [o 2" dN* (z) < .
Also since

fo u? dM (u) + j: u* dN(u)} =0

lim limipf {

e>0 r-ec

(from the first part of this proof), it follows from (3.3) that

0 «
lim lim#af { f u' dM (u) + oF + fo u* dN'(u)} = (a%)>
Now by Theorem 1 on page 116 of [1] we see that v.(r) = Z;’Z‘.l [iz1<e T dFni(x) —
B.(r) + o(1), where v.(7) is associated with F'(x) through the formulas (2.1).
Thus by the proper choice of B,(r), v-(r) converges (r — «) to some constant
vx(7), (v fixed). But using Theorem 2 on page 88 of [1], we see that lim,., F' (z) =
H(z), where H(z) is the infinitely divisible distribution determined by M*, N*,
v+(7) and (¢*)* given above. It remains to show the form for H(z), but this
follows as in the proof of Lemma 1.

4. Characterization of the Poisson distribution. In this section we give con-
ditions which will insure that the distribution functions F”(z) will converge to
the Poisson distribution. We use the same notation as in the previous sections.
In particular M (z) and N(z) are associated with the distribution function F(z),
the limiting distribution of F,(x).

TuroreMm 3. If F,.(x) converges o F(z), M(x) = 0 for x < —1, N(z) = 0 for
x> 1, and

kn .
(4.1) > ] |2|* dFai(x) is bounded in n for some s < 2r,
=

FIR
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then for suitably chosen constants B,(r), Fr,(z) converges (n — ) to a distribution
function F"(x) and F"(x) converges (r — ) to the Poisson distribution. (No matter
what the choice of Bu(r), if Fn(z) — F'(x) and F'(x) — H(z), then there exists a
constant m such that H(x — m) is Poisson.)

We postpone the proof of Theorem 3 as well as that of the next three theorems.
In the rest of the paper it will be convenient to assume r > 1.

THEOREM 4. Condition (4.1) of Theorem 3 may be replaced by

(4.2) The random variables (x..) are symmetric about the origin.

THEOREM 5. Let S, = 21 + -+ + Zu, (€., let A, = 0) and suppose F,(z) —
F(x). Let N(x) = O for « > 1. Then if the (xn) are positive random variables the
concluston of Theorem 3 holds.

THEOREM 6. Let A, = 0, Fo(x) = F(z), M(z) = 0 fora < —1, and N(z) = 0
for x > 1. Then if the (z.x) are identically distributed within each row the con-
clusion of Theorem 3 holds.

Proof of Theorem 3. We first show that condition (4.1) implies condition (3.1) of
Lemma 2 with ¢ = 0. We have

kn € . "
§{ fo 2 dIF () — Fop(—z—)] — ( fo & dlFw(z) — ,,k(_x_)])}
< f{f! 2 d[Fn(z) — ,.k(—x—)]}
k=1 0

< & S ol aiPu) - Fut=2-)
kn € 0
= Gzr-'k.z-:l{/; |:c|' dF,.,,(x) + ];elxl' anb(x_)})

and since 2r — s > 0 we see by (4.1) that (3.1) holds with ¢ = 0. Thus from
Lemma 2, Fy(z) — F'(z). Also since lim,,. o = 0 = (¢*)’, it follows from
Theorem 2 that F"(z) — H(z) and that H(x — m) is a Poisson distribution.
(This includes the possibility that H(z) may be a degenerate Gaussian distri-
bution.) We note that B,(r) could be chosen so as to make m = 0. This proves
the theorem.

Proof of Theorem 4. We only need to show that (4.2) implies (4.1). Let anx =

f z dF () for some 7 > 0. By Theorem 2 on page 111 of [1] we have
lzl<™

kn © 1'2

kgl ‘[w mdpnk(x + anr)

is bounded. But since the random variables are symmetric it follows that a.. = 0
and hence
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kn . . kn xz
< —
> [ P sa+a) [ I dFu@

lzl<e lzl<e
kn © 2
2 x
=1+ €) kE_: ‘[wmdl”nb(x)

is bounded. Thus (4.1) holds with s = 2, i.e., for r > 1.
Proof of Theorem 5. Since the x.. are positive it follows from Theorem 1 on
page 116 of [1] that M(z) = 0 for z < 0, and that D jm fjz<r  dFm(z) =
w1 [0 ¢ dF . (x) converges to a constant y(7) (note A, = 0). Thus

lim 3 [ f; o auw,‘,,(:c):l2 i 3 [ fo 2 dF,..(x):r

n-+>0 k=1 n->0 k=1

g3 kn (]
< lim [ max (f z dF,,.(x)):l[lim > f z dF,,.(x):l = 0,
n»w0 | 1<k<k, 0 n-»0 k=1 J0

since limp.o maxi<i<in Jo % dFai(z) = O (infinitesimalness). Now again from
Theorem 1 on page 116 of [1] we have

2
lime-»O hm::lf) n-veoz:llzll {f a:2 dF,.,,(x) - (/ x dF”.(x)) } = 0_2
lzl<e lzl<e

so that
lime-io hm::rf, n-sw0 ZII::I j; | xz ank(x) = 0'2 < .
zl<e

Thus D_k% [zi<e 2° dF () is bounded in n so that (4.1) holds with s = 2. This
proves Theorem 5.
Proof of Theorem 6. Since 4, = 0 we again have
Fn

kgl ~ll‘a=|<r * dF”k(x) =k ‘/;2|<f v anl(x) - 7(1)'

Also
kn 2 2
lim ([ z ann(x)> = lim k. (f x anl(:c))
N0 k=1 |zl <e n->0 lz]l<e
= lim k&, 2 dF () «lim z dF 1 (z)
n->00 l1z]<e ns>o Vizi<e
= 'Y(T) -0 = O)

since the random variables (z,:) are infinitesimal. From this point the proof is
identical to that of Theorem 5.

The next theorem shows the existence of a double sequence of random variables
(|za|™) such that the distribution functions of the row sums (minus a constant)
converge to the Poisson distribution.
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TueOREM 7. Under the conditions of any one of the Theorems 3 through 6 there
exists a sequence of numbers r, — o such that the distribution functions of the sums
|Za]™ 4 + -+ 4 |Ta,|™ — Ba(ra), (Ba(ra) suitably chosen constants) converge to
the Poisson distribution.*

Proof. Wehave lim, .. F5(z) = F'(z) and lim,,« F'(x) = H(x), where H(z) is
a Poisson distribution. (In particular the first limit relation holds for r = 2,
3,+-.)Let {&},k = 1,2, -- -, be a countable dense set on the real line such
that Fr(&) — F (&) forr = 2,3, --- and F' (&) — H (%) for all k. Let {e,} bea
positive decreasing sequence of real numbers such that e, — 0 as n — «. Let
{n.} be an increasing subsequence of the positive integers such that n = =,
implies that |[Fn(&) — F'(&)] < e fork = 1,2, ---, r (r fixed). Consider the
sequence of distribution functions S: Fi(z), F3(x), - -+ , Fas_y(2), Fa(x), -+,
Fi,_ (x), Fa,(x), - Fa,_,(x), - -+ . We claim this sequence converges to H(z) for
z =& fork=1,2 ---.Consider & . Let ¢ > 0 be given. Let ry, (ro > k) be
such that r = r, implies ¢ < ¢/2. Let r, = v bé such that r = r; implies

|F' (&) — H(%:)| < €/2. Then for n > N (&) = n,, consider
|Fu(&) — HE)| = |Fals) — F(&)| + |F(&) — HE&).

Since we are considering only elements of the sequence S we have n > n,, im-
pliesr = r, = 7y > k. Therefore |Fpn (&) — F ()| < & < ¢/2 and |F' (&) — H(%:)|
< ¢/2. Thus |F, (&) — H(%:)| < e and we see that the sequence S converges to

H(zx) forz = & ,k = 1,2, --- . But since {£} is dense, the sequence S converges
to H(z) at every continuity point of H(z). Now if weletr, = 2forn =1, ---,
ng— landr, = mforn = npm, «+ -, w1 —1 (m > 2), we see that the distri-

bution function of |[Zu|™ + -+ + |[€w,|™ — Ba(ra) is F*(x), which is the nth
element of the sequence S. This proves the theorem.
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4+ An analogous theorem holds for the conditions of theorem 2.



