COVARIANCES OF LEAST-SQUARES ESTIMATES WHEN RESIDUALS
ARE CORRELATED!

By M. M. Sippiqui?
University of North Carolina

1. Summary. In this paper we will study the effects on the covariance matrix
of the least-squares estimates of regression coefficients and on the estimate of the
residual variance when the usual condition of independence of residuals is
violated. The cases of linear trend and of regression on trigonometric functions
will be considered in some detail.

2. Introduction. Several authors have studied the problem of estimating re-
gression coefficients when residuals are autocorrelated. We refer here only to the
work of Grenander and Rosenblatt [2, 3, 4]. Grenander [2] gives conditions on the
regression variables for the existence of consistent estimates of the regression
coefficients. He also gives conditions on the residual process under which the
least-squares (L.S.) estimate of a regression coefficient is asymptotically efficient
with respect to the Markov estimate. The covariances of the L.S. estimates as
summarized in a matrix form are well known and are given at the end of section 3.
The exact expression for an individual covariance or variance in the general case
is easily extracted from this matrix and is given in section 4. The variance of
the L.S. estimate in the general case is also given by Grenander [2, (8) p. 258].
Asymptotic expressions for the covariances of these estimates are also available
[2, 4]. However, it seemed desirable to present here, in some detail, exact ex-
pressions or high order approximations to them for the individual variances and
covariances of the L.S. estimates of regression coefficients and for the expectation
of the estimate of residual variance, particularly for the cases of general interest,
in readily usable form, and derived in an elementary fashion. The first term of
each of our expressions coincide with the asymptotic expression given in [2, 4],
when the regression coefficients are made comparable.

Bounds on the covariances of L.S. estimates are also provided in (7).

3. The L.S. estimates. Let y = 2’8 + A be the regression equation, where
y and A are N X 1 column vectors, 8 is a p X 1 column vector, x isap X N
matrix and a prime is used to denote the transpose of a matrix or a vector. It
is assumed that N > p, z is non-stochastic and of rank p, and A is a N(0, ¢’P)
vector variate, where O is a zero vector and P is a positive definite correlation
matrix. ,

Introducing ¢ = (z2')”, b = cxy,v = y — 2'b,n = N — p, and writing éq
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1252 M. M. SIDDIQUI

for ¢ — Eq, where ¢ is a variate with expected value Eg, it is known that b and
§* = v'v/n are the least-squares estimates of 8 and ¢” respectively. It is also known
that Eb = B, and

B = Eobsb’ = o’cxPx'c.
In case P = Iy, where Iyis the N X N identity matrix, Es’ = ¢’ and B = o%.

4. The covariance matrix B. We propose to study the effects on B and Es?
when P is given by

N—1
(1) P=I~+kZ‘ipk(C’°+C"‘),
where
0100 ---0
0010 --- 0
2) C=| veeeeenianiai... ,
0 00O --- 1
00 0O 0
i.e. when
3) EAAy, = oo, k=0,1,---,N—1,p = 1.
We have
(4) v=y—ab=2B -0+ A= Uy — 2cx)A

asb = B + cxA. Writing m = z’cz, we have m’ = m and m* = m. Hence if A
is a characteristic root of m, A = 0 or 1. Writing ‘“tr” for the trace of a matrix
we obtain tr m = p. Now, by simple evaluation

2 1 N—k
(5) Es = %[N — tr Pm] = o° [1 - —Z > mem ,+k:|

N k=1 t=1

Here, if e is a matrix, e;; or e;,; refers to its element in the ¢th row and the jth
column.
If we write d = cx, we find that

N—1 N—k
Bij = Eabi 5bj =0 [Z du d]t + I; Zl Pk(dn dt t+k + du d; t+k)]

If, by a proper choice of x or with a suitable transformation on z, we make
xx’ = ¢ = I, ,we have d = z. Writing z; for the row vector in the sth row of
x, we find

N—1
{(6) Bij — ¢’ = o ,cz:l o 2(C* + C"®)zx;, 5Lj=1,,p;

where 8;; = 0if ¢ £ jand 8;; = 1.
It has been shown [1, p. 130] that if A isan N X N real symmetric matrix with
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characteristic roots ey < a; < - = an, and v and v are N X 1 real vectors,
then, under the conditions v’y = v'v = 1, ¥'v = 0, the bilinear form «’Ay has
a maximum (ay — @1)/2 and a minimum (a; — ax)/2. Also the quadratic form
wWAu < ay. Now the maximum characteristic root of C* + C"‘, where £ is a.
positive integer,

m

_ kx
ay = 2008{[N + o — 1]+ 1} é 2cos{mk—_i};

k

where [g] denotes the largest integer < ¢, and the minimum characteristic root.
ay = —aw, [1, p. 101]. Hence, we obtain

N—1 N—1

20 2 kw
) ‘B,J 06,,‘<2ak§1 pkcosN~————+2k_1’<2ak kal
In the case p, = p*, k = 0,1, --- , where & = |p| < 1, we have
2a0® ... . 2 l-l-a)
(8) |B;]‘<1—_—a lf’liéj, Bu<0’(1_a .

5. Linear trend. Let N = 2r + 1 where r is a positive integer and consider
the linear trend in the form

9 ye = Bi2r + 1) + Bt — r — 1)/a + A, t=1,---,N,
where
(10) & =rlr+1)2r + 1)/3 = NN* — 1)/12.

In the notation of section 3

=2+ 1) = (—r—1)/a, t=1---,N,
(11) _ N N
b = V/Ni, bz=[§ty,—(r+1);_lyt]/a.
Furthermore

c=1,, p =2, n=N-—2

32— N-1)(@2j—N-1)

mi; = (x’x)ij = 'l + N(Nz — 1)

N
ns® = 2 yi — bl — b3,
N—1 k
(12) Bu = a [1 + 2 Z (l - -—) pk:l, By, = 0,
k=1 N
N—1 1
322=02[1+216le,, (3+ )kZ;km

+

Z kpk]

N(NZ —
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Esz=az[1—§Nf +3(4+——?——)ka
PET N—1)&5 "
Ekpk:l

nN(N2 — 1) iz

For the case when p; = p°, we can evaluate the summations Z PE Z kox , ete.
If N is moderately large we may neglect " and thus find

$ 4p 8p 4(p + 49" + 5
Bl — o T aNa = o T il = D = o)
Bu_ | _2p—No"+ W —1p"™"
a? N 1 — p)?
(13) .
+2(p—p)§1+p_ 2p
l—p ~1—p NI-p?
By—o Brnlte_ G

@~ 1—p NIA-p*
We note that b; are independently distributed N(8:, B::), ¢ = 1, 2, variates.

If we set
- V/12b
bi=N"b =g, b=t 2t
TV TN oD

the estimate of Ey, is given by

(14) Yi=g + byt —r — 1)

and under the first order autoregressive scheme for A’s,

2
(15) 0’% = (1 + P) ) ‘7%2 = N(A}?O'_ 1) <i i_ P) ) cov (g7 b;) = 0.

N N02(1+p>|: 12(t—r—1)2:|
SO AVE=Y ) e o ]

6. Regression on trigonometric functions. Consider

Ye = Bl/\/]v + V2/N .21'3“ cos A\t
(16) i=

. q
+\/2/Nzgﬂm1sin)\,~t+A,, t=1,--,N,
where \; = 27w;/N and w; is a positive 1nteger less than N for 7 = 1, 2, , q

and w; # w;if ¢ # j.
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In the notation of section 2
z = 1/A/N,  @si. = V2/N cos \it,
Toiyie = V2/N sin A, i = 1,2, -+ ,q;t = 1,2,--- N,
zx' = ¢ = I, n=N-—2¢—1,

= '\/Nfl], by = '\/27N E Y COS At
t

a7 beiy1 = \/9/7\7 Z yesin\; b1 =1, -
t
q
M = 1/N + 2/N D_ cos (t — ki, t,ts=1---,N,
=1
2g+1
32=(Zy3—z b%)/n
t i=1
We find

k=1 i=1

N—1 ¢
(18) Ei 1——Zpk—|- ka—%ZZ(l——)MCOSk)\

For the covariances of b; and b; we obtain

By =a2|:1+2k§l (1 —->pk],

_\/é 02 N—1 N—k
Biai = Y- 30 2o feos L+ DM Feosin),  i=100
=1 t=1
4 N—1 N—k
(19)  Bup = [1 + 2 2 mcos b+ DN\ COSt)\z]: i=1-,q
k 1 t=1
2 N-~1 N—k
Bsiginn = 5+ LZ Z pr {cos t\; sin (k + DN;
k=1 t=1

+ cos (k + DN, sin &}, =1 "-,q

Bigiy1 and Bgiyg i1 are obtainable from the expressions for By and Bas:
respectively by replacing cosine by sine.

If p, = p%, and p" is negligible, we find for the variances, after some reduction,

Bu _1+p_ 2p
o2 1=p NO-—p?
Bzi,zi ~ 1 - p2 p COS A:

(20) a* _l—ZpCOS)\i+p2+N(1—2pCOS)\i+p2)
_ p(1 + p) coshi — 2¢’
N(1 — 2pcos \; + p9)?’
Boita 2in1 o 1—5 _ p COS A;
o2 T 1—2pcoshi+p2 N — 2pcos\; + p?)

it Deosn— 2t
N(I = 2pcos\; + )’ s g
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Also

s 2p 4p < cos\; — p 1
I T R Rl OF e s vemr 0<m>-

7. Concluding remarks. We conclude with the remarks that in most practical
cases the correlation matrix for A’s will not be known. However, if A’s may be
represented as a stationary autoregressive process of some small order—in many
cases first or second order scheme gives a reasonably good fit—we would be re-
quired to estimate a few parameters p1, p2, -+, ;. We, however, note that
these quantities do not appear in b and §*, only in B and Es".

We further observe that the estimates, 8 and &, of 8 and o° obtained from
maximizing the likelihood function will depend on the parameters of P, i.e. on
P1, P2, -+ » pv—1, which will mean using sample serial correlation coefficients
to estimate p’s in the expression for § and ¢°. These estimates will obviously be
non-linear. Thus it seems more desirable to stick to the least-squares estimates
b and §° rather than to attempt to develop maximum-likelihood (or minimum
x’) estimates.

8. Acknowledgement. The writer wishes to express his indebtedness to
Professor Harold Hotelling for drawing his attention to this problem.

REFERENCES

[1] M. M. Sipp1qUI, Distributions of Some Serial Correlation Coefficients, University of North
Carolina Institute of Mathematical Statistics Mimeograph Series No. 164, Chapel
Hill (1957).

[2] ULr GRENANDER, “On the estimation of regression coefficients in the case of an auto-
correlated disturbance,”” Ann. Math. Stat., Vol. 25 (1954), pp. 252-272.

(3] MURRAY ROSENBLATT, “On the estimation of regression coefficients of a vector-valued
time series with a stationary residual,” Ann. Math. Stat., Vol. 27 (1956), pp.
99-121.

[4] ULr GRENANDER AND MURRAY RoOSENBLATT, Statistical Analysis of Stationary Time
Series, John Wiley and Sons, New York, 1957, Chapter 7.



