MINIMAX ESTIMATION FOR LINEAR REGRESSIONS!

By R. RAapNER
University of California, Berkeley

1. Introduction and Summary. When estimating the coefficients in a linear
regression it is usually assumed that the covariances of the observations on the
dependent variable are known up to multiplication by some common positive
number, say ¢, which is unknown. If this number ¢ is known to be less than some
number %, and if the set of possible distributions of the dependent variable in-
cludes “enough” normal distributions (in a sense to be specified later) then the
minimum variance linear unbiased estimators of the regression coefficients (see
[1]) are minimax among the set of all estimators; furthermore these minimax
estimators are independent of the value of k. (The risk for any estimator is here
taken to be the expected square of the error.) This fact is closely related to a
theorem of Hodges and Lehmann ([3], Theorem 6.5), stating that if the obser-
vations on the dependent variable are assumed to be independent, with variances
not greater than k, then the minimum variance linear estimators corresponding
to the assumption of equal variances are minimax.

For example, if a number of observations are assumed to be independent, with
common (unknown) mean, and common (unknown) variance that is less than
k; and if, for every possible value of the mean, the set of possible distributions of
the observations includes the normal distribution with that mean and with
variance equal to k; then the sample mean is the minimax estimator of the mean
of the distribution.

The assumption of independence with common unknown variance is, of
course, essentially no less general than the assumption that the covariances are
known up to multiplication by some common positive number, since the latter
situation can be reduced to the former by a suitable rotation of the coordinate
axes (provided that the original matrix of covariances is non-singular).

This note consideres the problem of minimax estimation, in the general “linear
regression”’ framework, when less is known about the covariances of the observa-
tions on the ‘“dependent variable” than in the traditional situation just de-
scribed. For example, one might not be sure that these observations are inde-
pendent, nor feel justified in assuming any other specific covariance structure. It
is immediately clear that, from a minimax point of view, one cannot get along
without any prior information at all about the covariances, for in that case the
risk of every estimator is unbounded. In practice, however, one is typically
willing to grant that the covarainces are bounded somehow, but one may not
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have a very precise idea of the nature of the bound. One is therefore led to look
for different ways of bounding the covariances, in the hope that the minimax
estimators are not too sensitive to the bound.

Unfortunately, in the directions explored here, the minimax estimator is
sensitive to the “form” of the bound, although once the form has been chosen
the minimax estimator does not depend on the “magnitude” of the bound. This
result thus provides an instance in which the minimax principle is not too ef-
fective against the difficulties due to vagueness of the statistical assumptions of a
problem, although this is a type of situation in which it has often been successful
(see Savage in [4], pp. 168-9).

In this note, two ways of bounding the covariances are considered. The first is
equivalent to choosing a coordinate system for the “dependent variables,” and
placing a bound on the characteristic roots of the matrix of covariances of the
coordinates, in terms of one of a certain class of metrics (e.g., placing a bound on
the trace on the covariance matrix, or on its largest characteristic root). The
second way consists of choosing a coordinate system, and then placing a bound
on the variance of each coordinate.

In the first situation, the minimum variance linear unbiased estimator cor-
responding to the case of uncorrelated coordinates, with equal Vvariances, turns
out to be minimax; this minimax estimator is, in general, different for different
choices of coordinate system, but does not depend on the “magnitude” of the
bound. Also, the minimax loss typically decreases at the rate of the reciprocal of
the sample size.

In the second situation, the minimax procedures derived here involve ignoring
most of the observations, and applying a linear unbiased estimator to the rest.
Again, the minimax procedure depends upon the choice of coordinate system;
furthermore, in this case the minimax loss typically either does not approach
zero with increasing sample size, or does so much more slowly than the reciprocal
of the sample size.

Thus the minimax estimator appears to be less unsatisfactory in the first
situation than in the second, but in both cases it depends upon the choice of
coordinate system, which is a disadvantage if there is no “natural” coordinate
system intrinsic to the regression problem being considered.

Section 2 below presents the formulation of the problem, and a basic lemma.
Sections 3 and 4 explore the two ways of bounding the covariances just men-
tioned. Some examples are given in Section 5. I am indebted to R. R. Bahadur,
L. J. Savage, and G. Debreu for their helpful comments.

2. Problem formulation and a basic lemma. Let y be a random N-dimensional
column vector, with a distribution p that is known to be in some family P of
distributions. Let m, = Ey denote the mean of the distribution p, and suppose
that one is required to estimate the value of f'm, on the basis of a single observa-
tion on ¥, where f is given. It is assumed that the loss due to incorrect estimation
is the square of the error. In this note minimax estimators of f'm, will be de-
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rived under two different assumptions about P; both assumptions have the
following form:
Let T be given N X M matrix; let C, denote the covariance of p, i.e.,

Cor = E(y — mp)(y — my)';
and let H be a given set of N X N covariance matrices.

(2.1) For every p in P, the mean m, = Tz for some M-dimensional vector z,
and Cp is in H.

(2.2) For every z, and every C in H, there is a normal distribution in P with
mean Tz and covariance C.

The assumption that P includes normal distributions is a natural one, since
normality can rarely be ruled out as preposterous.

If « is any estimator, then the risk, or expected loss, associated with using o
is, for any p, given by

2.3 r(a, p) = Ela(y) — f'm,]’
= Ela(y) — Ea@y)f’ + [Ba(y) — f'm,]"
An estimator & is minimax if, for every estimator «,

sup (&, p) < sup 7(a, p).
peP peEP

Because of the convexity of the risk function, it is not necessary to consider
randomized estimators (see [3], Theorem 3.2).

Relative to a given covariance C, an estimator « is said to be minimum variance
vinear unbiased, or more briefly, Markoff, if

(2.4) a(y) = o'y (linearity).
2.5) For every p in P, Ea'y = m, (unbiasedness).

(2.6) If Bis any estimator satisfying (2.4) and (2.5), then for every p in P with
covariance C, r(a, p) = (8, p).

The significance of the Markoff estimators in this problem is that, in both
cases considered in this note, there is a Markoff estimator, relative to some C
in H, that is minimax.

It follows from (2.1) that a linear estimator a is unbiased if and only if T'a =
T'f; and from (2.3) that the risk for a linear unbiased estimator is a’C,a. There-
fore, a linear estimator a is Markoff relative to C if and only if it minimizes a’Ca
subject to the constraint T"a = T'f.

It might be noted here that it follows from (2.3) that the standard definition
of a Markoff estimator given above is equivalent to another one in which condi-
tion (2.5) (unbiasedness) is replaced by the following (bounded risk):
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(2.5") The risk E(a’y — f'm,)’ is bounded as p varies in the class of all p in P
that have covariance C, for any given C.

The idea of replacing the constraint of unbiasedness by the constraint of bounded
risk is close to the minimax spirit, and seems to be due to L. J. Savage.

The main tool that will be used is the following lemma, which is closely related
to a theorem of Hodges and Lehman ([3], theorem 6.5), and is stated here without
proof. '

LemMa. If é is Markoff relative to C in H, and if 4'Cd = 4'Ca for every C in H,
then @ is minimazx.

In the “classical” situation to which the general Markoff theorem on least
squares is applied (see, for example, Aitken [1]), it is assumed that the covariance
of the distribution p is known up to multiplication by a positive constant, i.e.,
that the covariance is ¢C, where C is known but ¢ is not. If it is further assumed
that ¢ is bounded by some number k, then it follows immediately from the Lemma
that the Markoff estimator relative to kC is minimax. Note that the Markoff
estimator is independent of k.

On the other hand, if nothing at all is known about the covariance of p, i.e.,
if H is taken to be the class of all N X N covariance matrices, then the risk for
every estimator is unbounded. To get a finite minimax value, the class H must
be “bounded” in some sense, and the next two sections explore two directions
in which such a bound can be defined. In each case it should be borne in mind
that postulated assumptions are thought of as applying after, possibly, an ap-
propriate transformation of the coordinate system.

3. The case of bounds in terms of characteristic roots. In this section minimax
estimators are derived for the problem formulated in Section 2, when the co-
variances are bounded in certain ways in terms of their characteristic roots.

For any covariance matrix C, let r; denote its characteristic roots (these will
be non-negative real numbers). For any number ¢ = 1, the g-norm of C is de-
fined here to be

N(C;q) = (; r‘i)llq.

For g = 1,2, and «, one gets the trace of C, the square root of the sum of squares
of the elements of C, and the largest characteristic root of C, respectively. Note
that for the identity matrix I, N(I; ¢) = N

TaeoreM 1. Let g and k be given such that 1 < ¢ £ « and k > 0, and let H be
the set of all covariances C such that N(C; q) < k; then for the estimation problem
described in Section 2, the Markoff estimator 4 relative to the identity matriz® is
minimaz, and the minimazx loss is kd'd.

Proor. The idea of the proof is to show that the covariance of rank one that

2 Strictly speaking, relative to the identity times an appropriate constant, since the
identity may not be in H. '
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concentrates all the variance in the direction of f’y is least favorable. Let B =
dd’/d@’d. Note that N(B; q) = 1. Since d is that unbiased linear estimator with
minimum length, any unbiased linear estimator is of the form 4 + d, where
d’d = 0. Hence for all unbiased linear estimators b,

YBb = 4'Bé = d'd;

in particular, d is Markoff with respect to B, and to kB.
Let C be any covariance in H, and let r be its largest characteristic root; then

(3.1) 4'Céd = rd’'d = N(C; »)d'é¢ = N(C;q)d'd < kd'Ba.

The theorem now follows from the lemma, equation (3.1), and the fact that &
is Markoff relative to kB.

For the case ¢ = 1, it can be shown that the minimax estimator is not unique,
but it is not known whether it is unique for ¢ > 1. However, the Markoff esti-
mator 4 of Theorem 1 is the only linear minimax estimator, which can be seen
as follows. A linear minimax estimator d must have bounded risk, and therefore
must be unbiased. Suppose d is different from 4, and let D = dd’/d'd; then

kd’'Dd = kd'd > kd'a,

Le., the risk for d against the covariance kD is greater than the minimax risk.

Note that it follows immediately from Theorem 1, that if the characteristic
roots of the covariance matrices in H are defined relative to any fixed symmetric
positive definite matrix @, then the Markoff estimator relative to @ will be
minimax.

4. The case of bounds on the variances of the coordinates. In this section
minimax estimators are found for the problem of Section 2 in the case in which
the class H of covariances is delimited by bounding the variances of given linear
functions of the random vector, in other words, by choosing a particular co-
ordinate system and bounding the variances of the colrdinates.

THEOREM 2. Let ky, -+ , kv be N given positive numbers; let H be the set of
covariances C such that ci; < ki for ¢ = 1, .-+, N; then any & that minimizes
ik | as | subject to To = T'f (unbiasedness) is a minimaz estimator for the prob-
lem of Section 2, and & = (Q_: ki | a: |) * is the minimaz loss.

Proor. There is no loss of generality in assuming that k; = 1 for every <. Asin
Theorem 1, one is led to look for a least favorable covariance matrix among those
of rank 1. .

Let U be the set of linear unbiased estimators; for any € in H and b in U,

2
(4.1) v¥Cb = %: bibicy = ; | bib; | (iiei)t < ; | b:b; | = (; | b: I) .

Let 4 be any vector that minimizes ) ;| a; | in U, andlet é = Y_; | d; |. By equa-
tion (4.1), and the lemma, the present theorem is proved if a vector & can be
found such that (1) 4 is Markoff against £ = ¢¢’; (2) £ isin H, i.e., & = 1 for
every 7; and (3) the risk for 4 against E equals &.

To this end, let S be the set of all vectors b such that > ;|b;| < ¢. Sisa
bounded convex polyhedron, and the intersection of S with U is contained in
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the boundary of S, by the definition of ¢. Hence there is a hyperplane supporting
S that contains U, i.e., there is a vector & such that

4.2) b'é = ¢, forall bin U,
(4.3) b’é < ¢, forallbin S

(see, for example, (2], p. 4).

By (4.2), e satisfies conditions (1) and (3) above. By the definition of S, any
vector with one coordinate equal in absolute value to &, and all other coordinates
zero, is in S. Hence, by (4.3), é| é;| < ¢, for every 4, so that & < 1 for every
1; thus condition (2) above is also satisfied, which completes the proof.

Note that Theorem 2 characterizes all the linear minimax estimators, which is
easily seen by an argument similar to that which follows Theorem 1.

5. Examples.

1. Suppose that the random variables ¥;, - -+, y» each have the same mean
x, which is to be estimated, and assume that the sum of the variances of the y;
is not greater than k. To apply Theorem 1, Take T to be the N X 1 matrix
whose elements are all equal to 1, f to be vector for which > f; = 1 (e.g.,
[1,0,---,0]),and ¢ = 1. It follows that a minimax estimate of f'm, = z is the
arithmetic mean of 3, - - - , y»,1.e.,é4 = (1/N, --- , 1/N), and the minimax loss
isk D ;@7 = k/N. This minimax estimator is, of course, the Markoff estimator
for the situation in which it is known that the y; are independent, with equal
variances.

The same result would be obtained if it were assumed that the variance of any
linear combination Y byy; such that >, b} = 1 is not greater than & (the case
g = ).

2. Consider the estimation problem of Example 1, except now assume that
the variance of y; is not greater than &}, < = 1, -+ , N. By Theorem 2, a mini-

max estimator is given by

4 = {1, for that ¢ for which k; is minimum,

G.1) 0, otherwise,

and the minimax loss is min; &} . Note that in this example the minimax loss is
independent of the sample size N, except insofar as min; k; depends upon N. If
ky = ..+ = ky, then any linear unbiased estimator is minimax.

3. Suppose it is required to estimate the slope e in the linear regression of one
variable on another, and it is assumed that the variance of the “dependent
variable” is not greater than k’. To apply Tl‘1eorem 2, take

T =[t11""’tl] and 2’ = (d,e),
_ Loty

where t; , - -+, ty are the values of the “independent variable,” and d and e are
unknown. A bounded risk (unbiased) linear estimator a must satisfy

a; = 0,
(5.2) >
Z a,~t,~ = 1.
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By Theorem 2, any d that minimizes ), | a; | subject to equation (5.2) is a mini-
max estimator of e. Without loss of generality, ¢y can be taken to be the largest
value of ¢;, and t; the smallest; then it is not hard to show that the unique solu-
tion of the above minimization problem is

——— for 4=1,

;= ].
(5.3) @i _—, for i = N,

o , otherwise;

and the minimax loss is 4%’/(ty — &)°. In other words, a minimax estimate of e
is obtained by taking the slope of the line passing through the “extreme” points
(Y1, &) and (yw , tn).

4. Consider the estimation problem of Example 3, but assume that the sum
of the variances of 1, - -+ , yx is not greater than k. As in Example 1, this cor-
responds to taking ¢ = 1 in Theorem 1. By Theorem 1 the usual least squares
estimate Y, [(y; — y) (t; — D)1/ (@t; — 1)’ is a minimax estimate of e, and the minimax
loss is &/, (t: — ).

Suppose further that ¢; = ¢ — 1 (e.g., think of ¢; as successive times), and con-
sider the transformation (taking successive differences)

[y, fori=1,

(5.4) 2, =
Yo — Yiu1, forl1 =2,---,N.

The means of the z; are
(d, forz =1,
L e fore =2,.--, N.

Now assume that the sum of the variances of the new variables z; is not greater
than k; then by Theorem 1 a minimax estimate of ¢ is

Zzt"‘yN—zily

-1

and the minimax loss is k/(N — 1), a different result from that obtained before
making the transformation (5.4).
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