SOME EXACT RESULTS FOR THE FINITE DAM
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1. Summary. In the discrete finite dam model due to Moran, the storage
process {Z,} is known to be a Markov chain. Stationary distributions of Z; are
obtained for the cases where the release is a unit amount of water per unit time,
and the input is of (i) geometric, (ii) negative binomial and (iii) Poisson type.

The paper concludes with a discussion of the problem of emptiness in the finite
dam and considers the probability that, starting with an arbitrary storage, the
dam becomes empty before it overflows.

2. Introduction. This paper is concerned with a storage system whose prob-
ability model is due to Moran [9]. The storage Z; of a dam of finite capacity K
is defined for discrete time ¢ (¢ = 0, 1, 2, ---) as the dam content just after an
instantaneous release at ¢, and just before an input X, flows into it over the time-
interval (¢, ¢ + 1). The model is subject to the conditions that

(i) the inputs X, during the intervals (¢, ¢ + 1) are independently and iden-
tically distributed;

(ii) there is an overflow Max(Z; + X, — K, 0) during the interval (¢, ¢ 4+ 1),
a quantity Min(K, Z, + X,) being left in the dam just before the release occurs;
and

(iii) the amount of water released at time ¢ + 1 is Min(M, Z; 4+ X,) where
M is a constant (<K).

A fuller description of the model and further references on the subject are given
by Gani [3]. It is seen the stochastic processes {Z,} and {Z, 4+ X.} are both
Markov chains, and the problem of obtaining their stationary distributions,
given the probability distribution of the input, is of some interest. Moran ([9],
[10]) and Gani and Moran [4] have obtained a few approximate solutions to this
problem by numerical methods, and some important observations on the solu-
tion in the general case have been made by Moran [11], but the only exact solu-
tion known so far is the one due to Moran [10] for the case of the geometric input.
The problem is considerably simplified when K = «, i.e. when the dam is of
infinite capacity; it is then seen (Gani and Prabhu, [5]) that the transition-
matrix of the Markov chain {Z; + X,} also occurs in the theory of queues in
connection with the length of a queue at epochs just before service. For this case
Bailey [1] has obtained, by the method of probability generating functions
(p.g.f.), the stationary distributions arising from a given distribution of X,.
A dam of finite capacity K can be considered as the analogue of a queueing sys-
tem in which there is accommodation for only K customers to wait, those in
excess of K being compelled to leave the queue altogether (as may happen, for
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instance, in an airport of limited capacity); we proceed to obtain for such a dam
the stationary distribution of the storage Z,.

3. Stationary distribution of the storage. We shall be concerned with the case
where M, the amount of water released at time ¢, is unity. Let {g;} be the prob-
ability distribution of X, so that

(1) Pr{Xt=j}=gf, (j=0)1;2,"')'

We assume that g; > 0 for all j. Also, let

2) Glz) = Zogjzj, 2] <1
J-

be the p.g.f. of {g;}, and
3) b =G = 2 jo;

the mean input. The transition-matrix of the Markov chain {Z,} is P = {P,;},
where

A 0 1 ... K—-—2 K-1
0 go+ g g2 - gr—1 hx
1 gdo gr - gr—2 hx-1
(4) P = 2 0 [// Jr—3 hx_2
K -1 0 o --- go h

where h; = D 3mig;j, ({ = 1,2, ---, K). Clearly, the chain is irreducible and
contains a finite number K of states, so that the stationary probability distribu-
tion {ui}, ¢ =0, 1, .-+, K — 1) exists, where the u; are the unique solutions
of the equations

K~—1
(5) W= 2y %P, G=01-,K~1
together with D> 6 ~u; = 1. We first prove the following theorem due to Moran
[11]. '

THEOREM.
() If {u{®}, G = 0,1, ---, K — 1) is the stationary probability distribution
of storage in a dam of capacity K, then the ratios

(6) v._uﬁ") (G=12---,K—1)
1 b 3 H

- T(K)?
uf®

are independent of K, and
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(ii) the vi’s can be found as the coefficients of z* in V(z), where

_ go(l —2)
(7) v(@) = W;_z

The first part of the theorem is easily proved; infact, writing out the equations
(5) in full we obtain
U = (go + gx)uo + GoUy
U = gllo  + gith + Gtz
Urk—2 = Jr—1Uo + Jr—2U + -+ JoUg—1
Ug—1 = hgto + hxts + -+ + hug
Solving these equations successively for the ratios »; = u; / up we obtain

=1—go—-91

0
(8) 1 - ;]: [}]
Vg = T n + !-};
and in general, the vs ({ = 1,2, --- , K — 1) are seen to be independent of K.

Now consider the function V(2) defined by (7). We shall first prove that V(z)
can be expanded as a power series which is convergent for suitable values of |z |.
Let us first consider the case p < 1. Writing

1 -2z

GGk —z= (l—z){l —I_ZG—@}

and following Kendall ([6], p. 159) we obtain

#I—G(z)=izni gi

1 —2z n=0 n+1

so that, for |z| < 1,

- 2 n=0 n+4l i=1

Hence |G(z) — 2| = 0, and we have the power series expansion

-1
V(z) =go{1 - l—i——_qu—)} =wtnztnd+ -

convergent for |z| < 1.
Next, let p > 1. In this case there exists a positive A such that the power
series expansion

1

m=co+c12+czze+"'
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is valid for [ 2] < A (Knopp, (8], p. 182). Hence it follows that V(z) also possesses
a power series expansion convergent for |z| < A.
Thus whether or not p < 1, V(2) has a power series expansion

) V(z)=g%g)—:_-z—)é=vo+vlz+vzz2+-~

The coefficients v; are determined from the relation
go(l — 2) = {G(2) — 2} g v 2

and hence it is seen that »o = 1, and v;, vz, - - - , vk satisfy the relations (8).
Thus they are, in fact, the quantities defined in (6).

If p < 1, the stationary probability distribution exists in the case of the in-
finite chain (K = =), and its g.f. is proportional to V(z). However, the above
results hold, as we have shown, even when p = 1. It is now obvious that the gen-
eral method of obtaining the stationary probability distribution {u;} for the dis-
crete dam of finite capacity K consists of (i) finding V(2), (ii) expanding V(2) to
obtain the v;’s, and (iii) normalising v, v1, - - - , vx—1 to obtain a probability dis-
tribution. We proceed to do this in some particular cases.

3.1. Geometric input. Consider, for instance, an input distribution of the
geometric type,

(10) gf=Pr {Xt=j} =abj» (j=0’1,"")
where 0 < a < 1and b = 1 — a. The p.g.f. of X, is then

(11) @) = =%

and the function V(z) is given by

_ al=2) _1-—bz
V(z)_a(l—bz)'"l—z—l—pz

= (1 — be) 2 p'7 <Izl < min (%, 1)),
i=0

where p = b/a is the mean input. Hence we obtain

(12)

w=1 vi=p —b'" =bp, ¢=1,2--,K-1)
and
K~—1 K—1 . 1_pK+l
Sw=14+b2 p=a—"—.
0 i=1 1—»p

The stationary distribution in this case is therefore given by {u.}, where

) _ P = p) . ) -1
(13) Uy = a(l = prH)’ Ui = BTGl ¢G=12---,K—1).
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Thus the storage of a dam of finite capacity K into which flows an input of the
geometric type has a stationary distribution of the geometric type, which is
truncated at Z = K — 1 and has a modified initial term. This result is implied
in Moran’s solution (referred to in Section 2) for the general case M > 1, al-
though it is not explicitly mentioned by him; for M = 1 his solution is given by

the formulae up = w1 + m, s = 1 (¢ =1, 2, ---, K — 1), where
Txr/Tx = Q10 — S d + "8a’---
(14) ng _ (17— 1\ ,-n n— 2\ ;10 _ )
So={, 1) -1t (r=12---,K)

From this we obtain (13) after some simple reduction.

3.2. Negative binomial input. Consider next the more general case of the nega-
tive binomial input,

(15) o=PrXo=i)=n("TITNaw,  G=01,0
where 0 < a <1, b =1 — a, and n is a positive integer; the p.g.f. of X, is
then

ton

a
Ty

and the mean input is p = nb/a. We have then

a"(1 — 2 _a1 =21 — b)"

(16) Ve = a(l —b2)™ —z a» —2z(1 — ba)"

Obviously z = 1 is a zero of the denominator of the expression on the right hand
side of (16); in addition to this it has n other zeros z,, 2;, - -+ , 2, . We consider
here the case where 2;, 22, ---, 2, are all distinct and different from unity;
however, the general case can be treated along similar lines. When (1, 21, 2,
.-+, 2,) are all different we can break up V(z) into partial fractions of the form

. d
(7) V() =do+ 2 —>

p=1 1 - z/zp

where obviously dy = a” and the d,’s are given by

d, = lim (1 - ;) V()

2>2p P,

a"(1 — (1 — b (1 - i) _ a/"(l - 1/2)
& pazy/(1 — bzp) — 1

(18)

= Eﬁ, a* — z(1 — be)»

(p = 1’27 "',n)-
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Now let A be the least among the quantities 1,| 21|, | 22|, - - - , | 2s |; thenfor|z| <A
we can express each term under the summation sign in (17) as a power series.
Thus

%+E Z@(),

p=l

V@) = &+2@Z@y

=0

whence we obtain

v =do + Zld,, = lim Vi) =1
(19) = =

__” dp ) — PP —
”’“,,2.16,7’ G=12---,K—1),

so that

1 — (1/2)"
do + Z dp (I/Zp)

K—1 n K—1 1 i
Zva=do+2dp_2(—)
=0 p=1 =0

.
It follows that the stationary probabilities u; are given by
_ N1 = (/2"
w={+ £ 6 00
qudp(—l—), ¢G=12---K~-1).

Zp

From (20) we see that the stationary distribution of the dam storage is the
weighted sum of n geometric distributions, each of which is truncated at Z =
K — 1, and has a modified initial term.

(20)

Ui

3.3. Poisson input. Finally we consider the case where the input has the
Poisson distribution with mean p,

7
(21) g; = Pr{X, =j} = e"’;-.’-,, (G =0,1,--).
The rigorous procedure here consists of writing down V(z) and obtaining the
coefficients v; by complex variable methods. We shall, however, argue heuris-
tically and consider (21) as the limiting case of the negative binomial (15) as
n— o,a—1and p = nb/ ais held fixed. In fact, puttinga = 1/ (1 + p/n),
b = p/(n + p), it is seen that the p.g.f. of (15) reduces to

-1 -n
1+ p/n)'”{l —%p<l +%p> z} — g7+

which is the p.g.f. of (21). Also, dy — ¢ *, and

an(l - l/zp) — e_p(l - l/zp)

d = paz,/(1 —bzp) —1 * pzp, — 1
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where 21, 22, - - - are the roots (other than unity) of the equation
(22) e =,

(which are infinite in number). Hence the stationary probabilities of the dam
storage are given by

_ ) - 3 e—p(l "']-/zp) 1 - (1/310) -1
o= T T (1

Us uoiM<£>‘, (1:_—_1’2,..-’1{_.1)‘

=1 p2p— 1 2p

(23)

4. The problem of emptiness in the finite dam. The analogy between the
dam process and the random walk has already been pointed out by several au-
thors (see the discussion in [3]). In fact, putting U, = X, — 1, we see that the
storage Z; in a dam of capacity K satisfies the relations

Z:+ U, fo0<Z,+ U, <K-1
(24) Ziyn =140 if Z,+U, =0
K-—-1 if Zi+ U, =2K -1

which, however, define a random walk with impenetrable barriers at Z = 0
and Z = K — 1. If K = o, there is only the first barrier and the problem of
‘duration of the game’ (i.e. the distribution of time required for the dam to
become empty for the first time) has been discussed by Kendall [7] for the case
where the input is of the Gamma type and the release is continuous. For finite K
this problem is much more difficult; however, for this case we propose to dis-
cuss the probability of absorption at Z = 0 (i.e. the conditional probability V;
that, starting with a storage Z, = ¢, the dam becomes empty (Z, = 0) before
it overflows). This is a familiar problem in random walk theory, and has been
discussed, for instance, by Feller ([2], pp. 300-303); it is seen that the probabil-
itles V; (¢ = 1,2, .-+, K — 2) satisfy the relations
K—2

V1=j§19,-Vf+go

K—2
Vi=Zlgj—i+1Vj, (’1:=2,3,"',K—2).
j=i—
These equations simplify to some extent if we note that the states 0 and K — 1
are absorbing, so that Vo = 1, Vg1 = 0; for we can then write
' K—1

(25) Vi=2 lg,-_i+1V,‘, (’i= 1,2,“',K—2).

=i

Clearly, the coefficients on the right hand side of these equations correspond to
the rows of the transition-matrix (4). It will now be found easiest to start at the
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bottom right hand corner and work up to the left: thus
gVies + giVrko + he:0 = Vg
so that

1 -
Vx—a = g Vx—z )

go

and similarly

14 _ (1 - g) Vs — ge Vi_s

K—4 = ’
Go

etc. This shows that the ratios of the quantities

(26) w; = Vg1

are again independent of K (wy = 0, wx—y = 1); rewriting the equations (25)
in terms of these quantities we obtain

(27) w; = Zogiwi—j+l’ (7' = 1: 2: "'rK - 2)
=

Consider the system of equations (27) for ¢ = 1, 2, --- ad. inf., and put

(28) W) = 2 2 it
1=1 U
we have
2W() = E Y giWiji1
i=1 W1 j=0
553D oLTEE ST
= =)
=Zg,E -i Y PP
J=1 i=1 =2 W1

GRW(2) — go,

whence we obtain the relation

2 =0

(29) W(2) 6@ =z

Folowing the same lines of argument as for V(z), we can prove that W(z) can
be expanded as a power series convergent for suitable values of |z[. Let W(z) =
> P-0wip?'; then since wgy = wx—y/wy = 1/wy, we must have

(30) w; = .‘»s (i = 17 2’ R} K — 2)
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which are, therefore, the required solutions to the equations (27). The absorp-
tion probabilities V; can then be obtained from (26).

Let us now consider the particular case where the input is geometric with
probabilities g; = ab’, (=0, 1, 2,---), and G(z) = a(l — b2)™*; then (29)
gives

- a _ (1 — b2
W) = al —b2)r—2 (@A —2)(10 — p2)
a 1 0 .
31 l—p{l—z l—pz} ifps1
B 1— bz .
a—:—z)-2 lfp—l.
Hence it follows that
i
a(—ll—_—&p——z ifp=1
(82) @i = (i 1)
a4+ 1) ifp=1
and
1-—/.1"+1 .
1= ox ifp*1
(33) w; = =12 -, K~ 2).
141 —
4 ifp=1

Thus the absorption probabilities V; in the case of the geometric input are given
by

1—-9p .
s ol
(34) Vi= ; G=12---,K —2).
1-——= if p =

A similar procedure could be used, when the input is of a more general type,
to obtain the exact expressions for the probabilities V;. However, in many
cases, it may suffice to know the bounds within which V; lie, and these bounds
are given by Feller ([2], inequalities 8.11 and 8.12 on p. 303). In fact, noting that
E(U;) = E(X; — 1) = p — 1, where p is the mean input, we have that

at -z )
=y SVis1 ifp<1
20 -1
03 K—1 .
(35) ?19-—'*;_? SVisa ifp>1
— 20
1—_ <=Vis1 ifp=1

K -1
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where 2 is the unique positive root (other than unity) of the equation 7
Pr{U,=j} =1, ie. D jugi#’ =2, and 2 = 1 according as p S 1.

6. Concluding remarks and acknowledgements. When the input X, has a
continuous probability distribution, it is seen that the stationary distribution
function of Z; 4+ X, satisfies an integral equation, which has been solved by the
author in a recent paper (Prabhu, [12]) for the special case when the input dis-
tribution is of the Gamma type. A more realistic problem on which some work
is in progress at the moment is the one dealing with the finite dam process in
continuous time; however, our solutions for discrete time may be taken as useful
approximations to this continuous case.

I am indebted to Dr. J. Gani and the referee for many helpful suggestions.
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