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The lower left hand group of blocks constitutes the design (b), and the lower
right hand group of blocks is the GD design with parametersv = b = 14, r =
Ek=4Xx=0x=1m =7 n = 2. The groups are (D, E), (N, R), (P, U),
@, T), (L, M), 0, 8), and (H, I). Thus, for example, D occurs zero times with
E in the GD design and once with N, R, P, U, Q, T, L, M, O, S and I.

A design with these parameters was obtained in [4] using the method of dif-
ferences and is listed as number R24 in [5]. For s = 3 the resulting design has
parameters,

v=b=78r=k=9, =0, n=1m=13,n = 6.
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ALTERNATIVE PROOF OF A THEOREM OF BIRNBAUM AND
PYKE

By Nicoraas H. Kuiper

Landbouwhogeschool, Wageningen, Netherlands

Let Uy, U, -+, U, be an ordered sample of a random variable (r.v.) X
having a uniform distribution (0, 1). If 7* is the value of 7 = 1,2, -- - , n at which
i/n — U, is maximized and U* = U, then U* is a r.v. with values (0, 1). The
probability that the sample cannot be ordered or that ¢* is not uniquely defined
is zero, and hence these possibilities are neglected. Theorem 3 [1] states that U*
has a uniform distribution (0, 1). Another proof of this fact was given in [2].
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In this note an alternative proof is given which entails little computation and is
self-contained.

Replace the interval (0, 1) by the reals modulo 1, considered as a circle of
circumference 1. Let ¢ be an arbitrary point on the circle. Moving from ¢ in the
direction corresponding to increasing values (0, 1), one meets successively the
points Uky1, Uryz, -++, Un, Uy, ---, Ui where k, so defined, is a r.v. de-
pending on ¢. Rename these points Uy, Us, - - - , US respectively. Defines = i(5)
by U; = U;. Let u; denote the (arc) distance of US from ¢ taken in the in-
creasing direction. Therefore,

i=k+7; uj = Upyj — ¢ fory=1,---,n—k
t=k+j—n; uj=Uiyjn+1—c forj=n—%k+1,---,n
With the indicated relation bet§veen ¢ and j observe that
jmn—uji=@—k)/n—U;+c=1in—U;+c— k/n.

For a fixed ¢ and a given sample, ¢ and k are constants and hence j/n — u§
attains its maximum at the same point U* = U,. as does i/n — U;.

Given a sample U,, ---, U,, the point U* on the circle of reals mod. 1 is
therefore independent of the choice of the initial point ¢ taken instead of 0
on this circle. Since the distribution of X mod. 1 is uniform, that is, is invariant
under translations, the distribution of U* mod. 1 is also invariant under transla-
tions. Thus U* has a uniform distribution on (0, 1). q.e.d.
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QUASI-RANGES OF SAMPLES FROM AN EXPONENTIAL
POPULATION

By Paur R. RipEr
Wright Avr Development Center

In a study of the use of ranges and quasi-ranges in estimating the standard
deviation of a population, Harter [4] has compared the results for samples from
a normal population with those for samples from certain other populations, in-
cluding the exponential. In this note are given the distributions of quasi-ranges
from the exponential population and also formulas for the cumulants of these
quasi-ranges.
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