AN APPROXIMATION USEFUL IN UNIVARIATE
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1. Introduction. The problem of minimizing a sum Y ;Pso, , where Pj and
o1 denote the area and conditional variance in the interval (z,_; , z») of a density
f(z), arises in the theory of optimum univariate stratification (see Dalenius,
[1]). In [1] Dalenius shows that the sum D_; Pios is minimized when the con-
ditions

(1) ar + (@ — )’ — o1 + @ — wrgn)’
ah Oh+1
are fulfilled, (h = 1,--- (n — 1), 1y = — o, £, = + o), where u; denotes

the conditional mean in the interval (zs_; , z1).

In order to avoid the computational difficulties presented by determining
{zs} such that the conditions (1) are satisfied, various approximations to (1)
have been proposed. A brief summary of these results is given in [2]. In this
article a new approximation will be derived and numerical examples will be
given.

We shall show, that under certain conditions' and for a density over a finite
range, points {z,} satisfying the equalities

(1)(‘) (xn — xp-1)Pp = Ca, h=12:-,n

where C, is a constant dependent on n, approximately satisfy the minimal
conditions (1). For a density over an infinite range the above is obviously not
applicable, in which case, however, a certain modification can be made, sub-
stituting the conditions (12), (13) below for (1)*. The basic result will be de-
rived under the assumption of a large n, i.e. correspondingly small intervals
(x» — 2xs-1); asymptotically as n approaches infinity the conditions (1) and
(1) will be proven equivalent. In practice, of course, n is often rather small,
hardly greater than 4 or 5, which certainly does not fulfill this requirement of a
large n. It is still possible that even for n = 2, 3, etc., the points satisfying
(1)® provide a good approximation to (1) in the sense of a ) i Paos near the
minimal value. In order to ascertain whether this may be the case or not, ac-
tual numerical computation has been carried out for three densities and for
n = 2, 3, 4, and 5. In the table under ‘“Numerical Examples’ the points {x}
obtained by applying (1) or the substitute conditions (12), (13), may be

Received February 28, 1958; revised July 3, 1958.

1 These conditions, which concern primarily the regularity of the density function f(z),
are imposed in order to facilitate the mathematical derivation of the final result, and
should be of no interest or concern to the reader desirous only of applying this result in
practice.
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220 GUNNAR EKMAN

compared with the points satisfying the actual minimal conditions (1); below
is given a comparison of the respective [Y_ Pxos)’:

Sx) =201 — x) fl@) = ¢e* f(x) = xe*
”
1)® (1) n)® 1) (n® 1)
2 0.01517 0.01505 0.2856 0.2855 0.6420 0.6370
3 0.00693 0.00688 0.1333 0.1332 0.3090 0.3075
4 0.00395 0.00393 0.0769 0.0768 0.1811 0.1804
5 0.00255 0.00254 0.0500 0.0500 0.1189 0.1185

It therefore seems not unlikely that the conditions (1)® are suitable substitutes
for the exact conditions (1); the differences in the above table are seen to be
comparatively small and decrease both absolutely and percentagewise as n
increases. It is nevertheless appropriate to mention a general type of density
for which (1)® may be expected to give rather poor results, namely such f(x)
with a long (finite) “tail” (for example a x’-distribution with a large number
of d.f.) or with f(z) = 0 in an end point. In this case it is advisable to use (12),
(13) unless these are difficult analytical expressions; in the case of an infinite
“tail” this is imperative.

The determination of points {z;} satisfying (1) or (12), (13) is by no means
entirely free of computational difficulties, although these points are of course
considerably easier to find than those satisfying (1). Trial and error or various
iterative methods may suffice in some cases, but the need for a more systematic
approach arises even for comparatively convenient expressions for f(z). It is
apparent that with a knowledge of the constant C, the determination of the
points becomes trivial, as they may then be found simply by ‘fitting” with the
aid of a table over the distribution function. An iterative method of finding C,
is described in the paragraphs “First approximation to the constant C,” and
“Adaption to Numerical Computation”. The mathematical arguments leading
to (1)™® following in the next paragraph are rather simple and straightforward,
involving only the use of Taylor series and elementary algebraic manipulation.
An outline of a method of finding the points satisfying the exact minimal con-
ditions (1) concludes the paper.

2. Approximation over a finite range. Consider a density f(z) over a finite
range (o, Z.). We assume that the derivatives f'(z) and f”(x) exist and are
continuous over the whole range. We introduce a function H(z) by defining

H" (x) = f(z),
H”(x) — [z H///(t) dt,

H'(z) L H" () dt,

H(z) = L H' () dt.
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H'(z) --- H®(x) exist therefore and are continuous. One finds by partial
integration:

f,, " 2

2(H(b) — H(a)] —20bH'(b) — aH'(a)] 4+ [W°H” (b) — d’H" (a)],

b
[ @ dz = ~1H'G) ~ H@) + bH®) — aH"(),

a

b
[ 1@ @ = @) - B @)

By substituting the expressions in the right hand members of these equalities
in

zh
Py = f xf(x) dz,
Zp—1

Pilos + uil = f ' 2’f(x) dz,

where Py, uxr, and o5 are the area, conditional mean and conditional variance
of f(z) in the interval (zs_; , z4), we obtain by some calculations:’

Piloh + (@ — )’ = Z{H (za) — [H (xr—1) + (@n — 2a-D)H' (22~

2
+ (xh 2'331»—1) H” (xh—l) :I} ,
Pilza — m] = {H'(z) — [H'(@r-1) + (@32 — zp)H" (ma-1)]},
P;. = [H”(x;.) - H"(x;._l)].
We note that the right hand members consist of H(zs), H'(xx) and H” (xs)

minus the first terms in their respective Taylor expansions about the point
z = xp—1. Continuing these expansions, the following results are obtained:

3
P h[o': + (zn — Hh)2] =2 [(xh—_—xL—L)" H’"(xh-l)

3!
(2) ( 4 5
+ Zh -;1 '33}»-1) H“)(xh—l) + (xh —5 'xh—l) H(s)(E L)] ,
(3) P h[xh - lth] = [91:2—:&1)-2 H" (xh—l) -+ (—%———ES!L—O“ H @ (x;.—l)
ROEES
P, = [(xh _l‘xh-—l) H'" (zh_1) + (x —2 ‘xh—-l) H“)(xh_ )
@ ' '

3
NESTE )

Zh
2 These identities may also be obtained by partially integrating f (zn — 2)¥ () dz,
Zhey
k=20,1,2.
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where £; are points in the interval (zi—;, zx). By multiplying (2) by (4) and
subtracting the square of (3), the following identity is obtained:

5) [Praw]® = Sc—h%h_l) {H" (zp_y) [H" (zaa) + (@ — za) HY (1a)] + Ri} .

Squaring both members of (2) we obtain:

Pilor + (@ — w)T’ = @'*)— {H"'(xh-l)[H'" (zh-1)
(6) @
H™ (zh1) (2

T - xh—l)] + Rz}-

+

R, and R; are terms of the second order or higher in (z, — z5-1). For large
n, that is for small intervals (z» — zs-1), these terms may be neglected, intro-
ducing thereby only a slight error. Substituting f(z) and f'(x) for H'”’(z) and
H®(z), and dividing (6) by (5), the following approximative identity is ob-
tained:

[012. + (on — nh)2]2 ~ 4(zn — 1)
Oh 3

(7 ,
) flan_) (@ — 2pe1) +f (Zh'—l)

Flxra) + f'(xh-1) (@h — 2r1)

In the numerator of the second factor of the right hand member of (7) we
have the first two terms of the Taylor expansion of P about the point z =
Zh—1 , whereas the denominator is the partial derivative of the numerator with
respect to z; , i.e. the first two terms of the expansion of f(z4) in the same point.
Approximating once again by neglecting terms of greater order in the expan-
sions of P and f(x), we obtain finally

®) I:G: + (2 — Mh)2]2 - 4(zh — 2h—1) P
oh 3f(xn) '
Proceeding in entirely the same fashion the analogous expression

[0':+1 + (zn — #h+1)2:|2 -~ 4(zpy1 — 24) P
3f(xs)

(xn — xh_1)2

(9)

Oh+1

may be derived.
Applying these results to the identity (1), one obtains

(10) (xh — Tp)Pp ~ (IIJ;.+1 — )Py .

Applying (10) finally with A = 1, ---, (n — 1), we find an approximation
to (1), namely
(11) (xn — Th1)Pr = Ca,

where C, is a constant.
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We have tacitly assumed f(x) > 0; the case f(z) = 0 will usually present itself
only for x = zy0r z = z, , in which case (12), (13) below may be used instead
of (11). When f(z) # 0, and assuming without loss of generality a range of unit
length, we see from (7) that the first neglected term in the numerator is
O(zn — xp1)%, which implies the same degree of approximation in (8), (9).
Accordingly the square roots of the members of (8), (9) differ by terms of the
third order. This in turn 1mp11es both that the partlal derivatives of Y Phox
(being in fact (f@)/2){[oh + (@n — m))/on — lohes + (@h —pns1)?l/onsn}) are
O(zn — xr1)* + O(2as1 — 72)? in the points satisfying (11), and that the approxi-
mate {z,} must be adjusted by D7 O — z1)® = O(z; — Zi)? = K, in
order to satisfy (1), since the members of (1) are of the first order. We deduce
from these results and from the expansion to Y (axKi + biKiKny1) of > Piox
about the points satisfying (11) that the approximate and true minimal values
of the sum differ by a sum of n terms each = O(z; — z;,)%, that is by
O(xz; — ;1) The conditions (11) thus generate points {z} differing from the
true minimal points by terms of greater order than the interval lengths and
result in an approximate minimal ) Pjo; differing from the true value by a
term of greater order than the sum itself, i.e., O(z; — z;); these differences
should furthermore decrease monotonically as n increases, that is as (z; — z;_1)
decreases. These conclusions are immediately extended to comprise even the case
f(z) = 0 in the end points, and are therefore valid for any reasonable density
over a finite range. By a truncation argument we may immediately ascertain the
asymptotic equivalence of the sums, when (12), (13) below are used to approxi-
mate (1), even over an infinite range, whereas in this case the two sets of points
do not necessarily converge, as may be seen by taking f(z) = ¢ *.

3. Approximation over an infinite range. If zo = — », 2, = 4+ «, the ap-
proximation (11) can still be applied for A = 2, -+, (n — 1). The identities
(8) and (9) with » = 1 and (n — 1) respectively suggest putting

(12) (zn — Zh)Pn = C,, h=2--,(n~-1),
3f(21) Uf + (0 — #1)2 ’ _ 3f (xn_1) Gi + (@ — ”")2 : _
o W] W [ e L,

g1 4 On

whereby an approximation over the infinite range is obtained. The functions in
the left hand members of (13) depend only on the variables z; and z,_, respec-

-

tively and are often convenient analytical expressions, e.g. for f(r) = ¢ %

3f (@n) [ai + (Tas — #n)z]z = 3

4

The result (11) may be compared to some analogous results discussed in [2].
In [5] it is proven that Puoy, = C, gives an approximate solution to (1). Now
under the assumption of small intervals (z» — z4-1), f(z) may be approximated
by a constant f(£) in this interval (z,_; < ¢ £ z3), in which case

o = (xh - xh_l)/ \/15

On
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Therefore this result [5] and (11) are substantially equivalent, each one follows
from the other. (11) might seem advantageous from a computational point of
view. From a theoretical point of view we have at the same time derived (8)
and (9), which permits (12) and (13) to be used in some cases mentioned in the
introduction, where both (11) and the result in [5] give comparatively poor
results.

In [4] it is shown that [y — zis—1] = Ca also gives {z.} approximating (1).
This result follows from (7) above, if there in the series expansions we neglect
even the second terms, obtaining then

ar + (@n — )’ -2

o \/-?; (xh - xh-l) )

and the analogous result for the right hand member of (1). It is therefore rea-
sonable to assume that Aoyama’s result gives a poorer approximation (at least
this is so asymptotically) than (11) or the resylt in [5], although computation-
ally, of course, (z» — zs—1) = Ch, is better than hoth of these; it has neverthe-
less the disadvantage of being restricted to a finite range.

The approximation Py, = C, has been proposed. We see from (11) that
asymptotically this would imply (x4 — zx-1)/us,= a constant, so that the interval
lengths would increase with h, whereas the P, necessarily decrease. This so-
called principle of equipartition might therefore be of use when dealing with
decreasing f(z), e.g. of exponential type.

4. First approximation of the constant C, . With a knowledge of C, the set
{zs} satisfying (11) or (12), (13) may easily be found, which set then approxi-
mately satisfies (1). The necessity of at least an approximation to C, arises.

We shall derive an approximation of C, under the assumption that C,_, has
already been obtained; this will be done by the following heuristic argument.
Suppose that for a density with a finite range (z. — o) a set of points z; , - - - ,
Zn-1 has been found such that the relations (11) are satisfied (there is always a
unique such solution, as can be seen immediately). The left side of the identity

(14) i (u't—_‘) P, = Gic"_

h=1 \ Tn — Lo n = 930)

may be considered as a weighted mean either of the (zx — Zx)/(zn — Z0)
weighted by the P, or vice versa. We noticed above that Aoyama’s approxi-
mation (z» — z3»1) = C = a constant is asymptotically correct when all terms
but the first are neglected in (5) and (6), so that for large n

(@ = 221)/ (@ — 20)] ~ 1/n,

and (14) becomes

= 1
Lr-iwts

S|+
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that is:
(15) Cn ~ (—x:‘_;—xo) .
n
As a first approximation C; to C, the expression
’ (n - 1‘)20,._,
(16) ¢ = —

may therefore be used.

Of course other first approxmatlons C. mlght be conceived of. There is for
example some logic in adjusting C’, as given by (16) by the factor Cn_r/Cr,
thereby obtaining

22
) ¢, = P Cox
nCrr

6. Adaption to numerical computation. The above results (11) and (12),
(13), together with (16), (17) suggest a reasonably simple method of finding a
set of points {z;} which approximatively satisfy the identities (1), that is, which
approximately minimize the sum Y { Pyos for a given density. The method to
be described is applicable to the case of a finite range; in the general case the
identities (13) are used instead of (z1 — Zo)P1 = (Tn — Za-1)Pa = Ca.

Assuming that the set {x4} satisfying (11) has been found for somen = n — r,
(e.g. for n = 2, z; may be found by trial and error), a first approximation to Ca
is obtamed by (16) or (17). A set {x;.} may be found such that (m general) all
(zn — zr_1)P3 but one are equal to C,. Let us assume that (x; — z1_1) P} % Chn
(e.g.j = n). Then a second approximation C’ to C, may be obtained by putting

(n — 1)Ch + (&7 — /) P;
m .

(18) Ch=

Proceeding in the same manner a set {z1} such that all (xh — z51)Py but
oneareequal to C’» may be found, and a new approximation C.' to C, is obtained
by an analogous formula to (18), ete. The C'” thus obtained converge to Cs,
and the sets {z:"} correspondingly to the set {z} satisfying (11).

6. Numerical examples. The method described above has been applied to
three densities, whereof two are over a semi-finite range. For n= 2 the point 2,
has been found by trial and error. As first approx1mat10ns C,, (16) with r = 1,
has been used in all cases but one (f(x) = ze *, n = 4), where (17) with r = 1
was used. The points {x} have been found to three decimals; as a rule a com-
parable degree of accuracy will not be necessary, at least for the first approxi-
mation.

The results are summarized in table I. The results under Min. are the points
satisfying the exact minimal conditions (1), with reservation for the last decimal,
which may differ by a unit from the true value. The exact minimal variances are
given in the last column.



226 GUNNAR EKMAN

We note that both f(z) = 2(1 — z) and f(z) = ze™” are densities of the type
mentioned in the introduction as being not quite suitable for application of
equations (1)®; here better approximations can be obtained by using (13) for
h = n in the first, h = 1 (and of course » = n) in the second case.

7. Note on the method used in obtaining the exact minimal points. The
method described above gives in many cases a fairly good approximate solution

TABLE 1
Numb .
t:)z: i:;: Agg‘g:; x x2 x3 x4 x5 C (ZPhon)?
2 1 |0.382|1.000 0.01517
min. | 0.354 | 1.000 C; = 0.2361 | 0.01505
P | 2 |02 05| 1000 o’ Z 01080 | 0-0uss
min. | 0.230 | 0.503 | 1.000 0'3'—0.1029 0.00688 f(z)
. . . . 3 = . .
4 1 |0.178 | 0.379 | 0.613 | 1.000 q;=o.0579 0.00395 = 2(1
0.177 | 0.376 | 0.615 | 1.000 Cy =0.0573 | 0.00395 | — z)
min. | 0.171 | 0.361 | 0.588 | 1.000 C." = 0.0573 | 0.00393
5 1 |0.141 | 0.204 | 0.466 | 0.668 | 1.000 | Cs = 0.0367 | 0.00255
2 | 0.140 | 0.292 | 0.463 | 0.669 | 1.000 | Cs' = 0.0364 | 0.00255
min. | 0.136 | 0.283 | 0.448 | 0.644 | 1.000 | Cs"' = 0.0365 | 0.00254
2 1 [1.233] « 0.2856
min. | 1.262 | o C, = 0.8737 | 0.2855
3 1 0742 2.045| o q§=o.3883 0.1334
s lo7es| 10| e Bopise
min. | 0.764 | 2.026 : 0’7"—0'4071 0.1332
. . . 3 - . .
4 1 |0.545|1.205|2.572| o q;=0.2292 0.0769 | f(z) =
2 |0.553|1.317 | 2.547 | o C. = 0.2349 | 0.0769 =
min. | 0.551 | 1.815 | 2.577 | o C(':=0.2345 0.0768
5 1 |0.430|0.977 | 1.730 | 2.995 | Cy = 0.1501 | 0.0500
2 |0.433|0.985|1.748 | 2.982 | q3:=o.1522 0.0500
min. | 0.431 | 0.982 | 1.746 | 3.008 | « | C;'' = 0.1521 | 0.0500
2 1 (2125 = 0.6420
min. | 2.291 | o C, = 1.3319 | 0.6370
3 1 [1.42312.976| o C3 = 0.5020 | 0.3125
2 | 1.467 [3.109| o Cy = 0.6328 | 0.3092
3 [1.472]3.123| o C:' = 0.6368 | 0.3090 \
min. | 1.571 | 3.252 | = C;":=O.6371 0.3075
4 1 |1.175]2.304 | 3.949 | o C,=0.3859 | 0.1809 | f(z) =
2 |1.157|2.259 | 3.835 | o C. =0.3720 | 0.1811 ze*
min. | 1.234 | 2.324 | 3.915 | « C." = 0.3696 | 0.1804
5 1 |0.955]1.785 | 2.792 | 4.277 | C, = 0.2365 | 0.1191
2 |0.960|1.796 | 2.814 | 4.327 | ¢y = 0.2396 | 0.1189
3 0.961 | 1.798 | 2.818 | 4.336 | o C:" =0.2401 | 0.1189
min. | 1.032 | 1.859 | 2.876 | 4.425 | « | C:'" = 0.2401 | 0.1185
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to the problem of minimizing Y Psox, from the point of view of generating
points {x,} fairly close to the true minimal values. When this is the case, the
‘“‘usual” iterative procedure of finding successively better approximations con-
verging to the true values may be employed, which method will be briefly re-
viewed for completeness.

To this end denote by A, the left hand member of (1), By the right hand
member, that is:

Ay = or + (on — )’

Oh.

?

2 2
Bi = o1 + (@ — way1)
Oht1 )

The minimal conditions (1) then take on the form
A,,—Bh+1=0, h=l,---,(n—1).

The conditions (1)'* or (12), (13) have resulted in approximative values of these
expressions, which may be denoted by A{”, B{}:.
Taylor expansions of 4, and Bj,, about :c;(.o_)l, :c;(.o),and x,(.°), x;.+1,respect1vely,

have then the form

Ax (x 1+ K ’ 17;. + Kh) ‘A}(.O) + (aAh) Ky, + (aAhh) Kh:

0z /0

Bhd—l(xh + K, ;xh+1 + KM—I) — B(o) + (th+l)o K, + (.a&"'_l)o Kh—f-l ,

Tp41

if terms of second order or higher are neglected and where the subscript 0 de-
notes the value of the partial derivatives in zs”, etc. We should now attempt
to find {K,} so that these expressions equalize, that is, we should solve the sys-
tem of linear equations:

94 04, 9Bhy1 _ (th+1)
(6x;._1>o Kia + [(61:;. )o ( oz )o] K 9Zp41 /o Ko

=B% -4, h=1-,(n—-1).

(a)

whereafter K, is added to 5" to obtain the new approximative z; . The matrix
of this equation will be >0 if the first approximation is good, since this matrix is
definite positive in the exact minimal points. The system may be solved in a rela-
tively simple manner by first finding for example K, by Cramer’s formula, and
by then successively determining K., K3, - - - from the equations for A = 1,
2, --- . It may be noted that the matrix is a so called continuant matrix, and
has a simple recursive form discussed in the literature. Equations (a) are of
course used iteratively, (if necessary), once the first set of {K,} has been found,
ete.
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It remains to find the expressions for the partial derivatives appearing in the
equations (a). We first multiply both numerator and denominator of 4, by P; .
From the expressions for Piloh + (2a — pa)’] and Pilzs — ] in the function
H and its derivatives, we find immediately

(%’: [Pi [or + (zn — wn)’l]l = 2Ps [22 — mil,

and by simple derivation

d

Fr [Palok + @ — )]l = — (s — 240)* F@a) -

Keeping in mind that the original minimal conditions were derived from

oPranl _ _ flza)

ax;.-l 2 Bh ’
O[Ph as] _ f(xn) A
axh 2 Ao

we then find by simple computation (the procedure is analogous for Bj;):

dAx _ f(xaa) | Ax Ba _ _ 2
axh.l - P h Oh I: 2 (xh xh-l) ]’

04r _ 1 [ZP;.(x;. — ) — f(;h) A}z.] ’

0xn  Phoa

By 1
azy, Phy1ona

(b)

[2 Pin(zh — pap) + f(;h) B;2»+1:|,
8By _ f(xh-f-l) [(xh-u _ xh)z _ Anp Br.+1:| - _ f(x;.+1) . dAnn )

0Zhi1 - Py onn f(xn) 9z

These expressions involve only the functions A, etc. themselves, and s,
ox, f(xa), etc., which have already been calculated to obtain A, , etc., and are
therefore not difficult to compute.

Using equations (a) on the approximate values found by (1)® for the three
densities above, the exact values (with reservation for the third decimal in a
few cases) were found with only one application of (a). This would seem to imply,
that no greater error is introduced by neglecting second order terms and higher
in the expansions of A, Bi1, and that application of the above method on the
points satisfying conditions (1)® very often provides a reasonably simple and
systematic method of finding points satisfying the minimal conditions (1).
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