COMPLEX REPRESENTATION IN THE CONSTRUCTION
OF ROTATABLE DESIGNS!

By R. C. Bose anp R. L. CArRTER?
University of North Carolina and Illinois Institute of Technology

0. Summary. Response surface techniques are discussed as a generalization of
factorial designs, emphasizing the concept of rotatability. It is shown that the
necessary and sufficient conditions for a configuration of sample points to be a
rotatable arrangement of a speeified order are greatly simplified if, in the case
of two factors, the factor space is considered as the complex plane. A theorem
giving these conditions is proved, with an application to the conditions governing
the combination of circular rotatable arrangements into configurations possessing
a higher order of rotatability. This is done by showing that certain coefficients
must vanish in the ‘“design equation” whose roots are the (complex) values of
the various sample points. A method is presented by which any configuration of
sample points (for example, some configuration fixed by extra-statistical condi-
tions) may be completed into a rotatable design of the first order by the addition
of only two properly ¢hosen further sample points.

1. Introduction. Response surface techniques are a generalization of the well-
known factorial principle of experimental design. Since the total set of treatments
in the conventional factorial is the set of all combinations of the factors taken
at fixed levels, the sample points form a rectangular lattice in the factor space
(whose dimension is the number of factors). The physical law relating the re-
sponse with the controllable factors may be represented by a k-dimensional
surface (taking k& as the number of factors) in the (¢ 4 1)-dimensional space
defined by the factors and the response; this is known as a ‘“response surface’.
The exploration of this response surface may often be performed more efficiently
if the concept of the factorial design is extended to include any configuration of
sample points whatever within the factor space.

The requirements of experimental design in the chemical industry led to the
work of Box and Wilson in 1951 [2]. Their problem may be stated as follows:
suppose the true response surface, expressed as a function of the k controllable

factors x;, 2, -+ + , Xk, 18
(1.1) n =@, 22, ", Th),

i.e., the true response at the uth sample point (v = 1,2, --- , N) is
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(1.2) N = O (Tauy Tou, **° ) Tha),

where 2, is the value of the sth factor at the uth sample point. The observed
response, ¥, , varies about a mean of 7, , with a common variance of ¢° for all
values of u, these N errors being uncorrelated. It is required to find, with a mini-
mum number of experiments, a maximum or minimum of the response surface
(i.e., an optimum set of operating conditions) within a region of interest in the
k-dimensional factor space, which is fixed by the experimental conditions.

It is assumed that the response surface may be represented within a given
sub-region by its Taylor expansion to terms of order d, that is,

(1.3) 7 =Bxo+ Br + Bata + -+ + Buzl + -+ + Bu@sta + -+ + Bzl -+,

where, in the subscript of 8, the number of times each factor-number appears is
the appropriate power of that factor (and z, is conventionally defined as unity).

This problem has been further investigated by Box and Hunter in a recent
paper [1]. The notation and terminology of the Box-Wilson paper are used, but
the values of the z;, are subject to the scaling conventions,

(1.4) D=0, > al=N, for all 4.

They have obtained a general expression for the information given by a
specified design at any point of the factor space, information being defined as
the reciprocal of the variance of the predicted response at that point, and have
considered the advantages of using “rotatable’ designs, in which the information
contours are hyperspheres centered at the origin of the k-dimensional sample
space. This property is not possessed by the conventional factorial designs.

They have shown that the necessary and sufficient condition for the design
to be rotatable of order d is that the generating function ¢ of the moments up
to order 2d, given by

(1.5) Q= N“g (14t + tza + -+ + )™,

should be of the form

(1.6) Q= ;:)om.(tf +i4+ -+ 8

where a,, are constants independent of ¢, , %, - - - , & . Denoting the moment

N
(1.7) N7 aflas? oo ok

U=l

by [1%, 2%, ... | k™|, they deduce by equating the coefficients ¢'t3? - - - t&*
in (1.5) and (1.6), that for rotatability of order d it is necessary and sufficient
that

[1%,2%, ... [ k™ =0, if one or more a; are odd,
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k

(18) I et .
=Na——5——, if all a; are even,
22 IT (Bew)
4=l
where @ = oy + a2 + -+« + ar < 2d, and \, is a constant depending on a, but
independent of the way in which « is partitioned into ey , @z, -+ , ax . Note that

Mo = 1, since 2y = 1, and A\, = 1 by the scaling convention. A distinction is made
between an “arrangement” and a “design” of order d, the former being any
configuration of sample points satisfying the necessary moment properties,
and the latter being an arrangement which also permits estimation of the con-
stants in the dth order model. Arrangements not having this property may,
when properly chosen, be combined to form designs. In particular, any rotatable
arrangement of the second order can be converted to a design by the addition of
center points.

2. Conditions for rotatability in terms of complex variables. In Box and
Hunter’s paper referred to, necessary and sufficient conditions for rotatability
are given in terms of real variables. If, however, the factor plane, whose co-
ordinates (z and y) are the levels of the two factors, is considered as the complex
plane, some interesting and useful results may be developed. In particular, we
have the following theorem, which is valid for two-factor rotatable arrangements
of any configuration whatever (not necessarily based on regular figures or circles)
and for rotatability of any order.

TaeorEM 1. The necessary and sufficient condition that a two-factor arrangement,
in which the uth sample point is specified by (x4 , Yu), should be rotatable of order
d s
(2.1) > A7 =0,

Jor all integers a and b satisfying 0 < a < 2d,0 < b < a/2, where z is the complex
variable z + 1y and % is its complex conjugate z — iy.*

Now from the result of Box and Hunter quoted in Section 1, the necessary
and sufficient conditions for the design to be rotatable of order d are that the
moment generating function

N
(2.2) Q = N—lzl(l + tze + ty)%,
should be expressible in the form
d
(2.3) Q= Z.;aa.(tf + )’

where the constants az, depend upon the design points, but are independent of
tiand & . Put

3 The present short proof was suggested by the referee. For an alternative see [4].
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(2.4) Zu = Tu+ Wu, B = Fu— W,
(2.5) o= Zh + Yo = 245, 2u = 1,6 Z, = ree Y,
so that (r,, 6,) are the polar coordinates of the point (z, y). Similarly put
(2.6) t=1t + i, t=t — i,
(2.7 C=84+6=10  t=npe* I=pe*
so that (p, ¢) are the polar coordinates of the point # , £; . Now
(2.8) Zu + 2w = (i + t0) (@ — ) + (b — t) (2u + Yu)
= bZu + bYu .
Hence from (2.2)

Q=N [1 + 2 (2d) (2 + fz,,)“]

u=1

as) 5 B[00 2 (0 ]
(e

2d
t+ 3]s e 3 2,

a=1 u=l

fl

Cc=q

where
2d!
(2.10) Mo = 2d — b — o) lble!
Again from (2.3) and (2.7)
d
(2.11) Q= ;o@sp”’.

Since the constants az, do not depend on #; and ¢, and are therefore independent
of ¢, one sees by comparing (2.9) and (2.11) that the necessary and sufficient
condition for rotatability of order d is that the quantity

N
(2.12) > My e DB 25,

btc=a u=1

is independent of the arbitrary angle ¢. This is satisfied if and only if
N

(2.13) 322 =0, unlessb=¢, (0<b+c=as=2d),
w=1

and this is precisely what Theorem 1 states.

3. The design equation. We now combine the results of the preceding section
with a consideration of the elementary symmetric functions of the roots of an
equation by which the design is specified. For any two-factor arrangement
whatever of N sample points, whose locations in the complex factor plane are
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given by 2, 22, - - - , 2w, the design equation is defined as that equation having
these values as roots. Thus this equation may be written
(3.1) 0=(z—2z)(z—2) - (2 — 2zn)

=+ pd " 4 4 o+ Pz + .

The relation between the coefficients, p, , in this equation, and the sums of
the powers of its roots, s, = 2 .24, is given by Waring’s formulas [3],

(32) =3 (= l)tmntul')!g (w=1,2 --+,N),

where ¢t = ) . t, and the summation is over all sets of non-negative integers
(tr, t2, -+, ty) such that Y, ut, = m. Conversely,

(3°3) Z( l)qn H (v=1,2,---,m),

where ¢ = D, ¢, and the summation is over all sets of non-negative integers
(g1, 4, , ¢m) such that >, vg, = m. Alternatively, these quantities may be
calculated by means of Newton’s recursion,

8m + Pi8m + DSz + o0 + P + Pum = 0, m<N;

(3.4)
Sm + P1Sm—1 + PSm2 + -+ + PwSmy = 0, m = N.

Now by Theorem 1 the necessary and sufficient conditions for any rotatable
design of the first order are

3.5) 1= 2.2,.=0, &= 2.20=0.
(

From the formulas above, we have
(3.6) M= —8, P2 = (1/2)(6{ - ).

Hence for any first-order rotatable design, both of these coefficients vanish,
and the design equation is of the form

(3.7) N4 pd A pd o + praz + py = 0,

the first two powers of z below the highest power being absent.

This may be generalized to a rotatable arrangement of any order, d, as follows.
By Theorem 1 all the sums of powers of 2., up to order 2d, vanish; that is, s, ,
8y, + -+ , 8 are all equal to zero. But (3.3) gives an expression for p, explicitly
as a polynomial in s;, 82, - ++, 8m. Thus py, P2, - -+, D are also all equal to
zero, and we have

THEOREM 2. A necessary condition that an arrangement be rotatable of order d is
that the first 2d terms after the initial term in the destgn equation be equal to zero.

N.B. Now when d = 1, as shown above, this condition is also sufficient, but,
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for greater values of d, the summations involving the complex conjugate must
be considered also. At this point, the importance of the circular arrangement
will become apparent.

4. Rotatable circular arrangements. The arrangement formed by the N points
21, 22, - , 2y of the complex factor plane, may be called a circular arrangement
if the N points lie on a circle with the origin as center. If the points also form a
rotatable arrangement of order d, i.e., satisfy the moment conditions for ro-
tatability of order d, then they may be said to form a rotatable circular ar-
rangement of order d. We shall now prove

TuaeoreMm 3. If the points 2z;, 22, - - -, 2y form a circular arrangement, then
the necessary and sufficient conditions for them to form a rotatable circular
arrangement of order d are

(4.1) 5_;5,: =0, for0 < a = 2d.
Let r be the radius of the circle on which 2, 22, - - - , 2y lie. Then

(4.2) 28, = 1, u=12--,n.

Let a and b be integers satisfying

(4.3) 0<a=<2, O0=b<a/2

Then

(4.4) Zu: 2 =P ; P

It follows from Theorem 1, that conditions (4.1) are necessary and sufficient
for a circular arrangement to be rotatable of order d, which proves Theorem 3.

Let (3.1) be the design equation of a circular arrangement. It follows from
what has been shown in Section 3, that the conditions (4.1) are equivalent to
pr=p= - =pa=0.

Hence Theorem 3 may be stated in the alternative form

TaroreM 3A. If N points form a circular arrangement then the necessary and
sufficient conditions for them to form a rotatable circular arrangement of order d
are that the first 2d terms after the initial term in the design equation be equal to
zero.

Suppose we combine g rotatable arrangements each of order not less thand — 1,
where the points of the wth arrangement are

(4'5) Zwly Buw2y " 5 RwNy ) 'w=1,2,---,g.
Then by Theorem 1 we have
(4.6) S g, =0, a=12--,2(d—1),0=b<a/2

that is, the combined arrangement satisfies the conditions for rotatability up
to order d — 1. In order that this combined arrangement shall be a rotatable
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arrangement of order d, the radii and relative orientations of the component
arrangements must be adjusted so as to satisfy the remaining conditions,

(4.7) > aiE. =0, a=2—-1,24;b=0,1,---,d — 1.
These remaining conditions may also be written

(48) Z Z (zwuz-wu)bzcwu = 0’

where ¢ = a — 2b and has the values 1, 2, --- , 2d — 2, 2d — 1, 2d. Now if the
component rotatable arrangements are also circular arrangements, the quantity
ZuwuZou is constant for any fixed w, and u = 1,2, - -+ , Ny . Let 2yuZuu = . Then
(4.8) may be written as

(4.9) DR 2] = 0.

But by (4.6) these conditions are already satisfied fore¢ = 1,2, --- , 2d — 2.

Hence the only further conditions dre
(4.10) Xt =0 M=o

Combining this result with Theorem 2 we have:

TuaeoreM 4. If a number of circular rotatable arrangements of order not less than
d — 1 are combined together, the necessary and sufficient condition that the resulting
arrangement be a rotatable arrangement of order d is that the first 2d terms after the
initial term in the design equation be equal to zero.

6. Combination of first order rotatable circular designs. We can use Theorem 4
for obtaining rotatable arrangements of the second order by combining suitable
rotatable circular arrangements of the first order. Box and Hunter [1] have
shown that the points of a regular ngon with center at the origin constitute a
rotatable arrangement of the dth order if and only if n = 2d + 1. Thus points
of an equilateral triangle or a square (inscribed in circle with the center at origin)
constitute a rotatable arrangement of the first order but not of the second.
However we can combine equilateral triangles or squares to form rotatable
arrangements of second order.

Suppose, for example, that we wish to combine m equilateral triangles (each
of which is a rotatable circular arrangement of the first order) in such a way
that the combination is a rotatable arrangement of the second order. The design
equation of the wth equilateral triangle (w = 1,2, ---, m) is

(5.1) 2 —a,=0.

The design equation for the combined arrangement is
(5.2) @-—a) (@ —a@) (@ —an) =0,
which may be written
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2= (m+ @t an)d
+ (@ + 0103 + -+ + Gpa@n)e 0 = oo (=1 " @03 - am = 0.

It follows from Theorem 4, that for the combined arrangement to be rotatable
of the second order, we require only that

(5.4) a+a+ -+ an=0.

For instance, if m = 2, we have a; = —a;, and thus the triangles must form a
regular hexagon.
Similarly, if we combine m squares, the mth square having the design equation,

(5.5) 2 —a, =0,
the design equation for the combined arrangement is

2" — (a4 a+ - + an)™
(5.6) 4

(5.3)

+ (@02 + 103 + -+ + Cna@n)Z" " — oo+ (=1)" @02 - - am = 0.
As before, for a rotatable arrangement of the second order, we require only that
(5.7) Gt a+ - F+an=0.

Thus, to any m — 1 squares we can always add the square whose design equa-
tion is
(5.8) d+(@m+a+ -+ an1) =0,

in order to make a rotatable arrangement of the second order.

Since the moments of a rotatable arrangement must equal those of a spherical
distribution [1], previous work in this field has concentrated on arrangements in
which the sample points are equally spaced on the surface of a hypersphere (or
combinations of such arrangements). Thus in the case of two factors only regular
polygons have been used. One of the authors [4] has by using an iterative process
calculated a table of circular rotatable arrangements of the first order each with
seven points, not situated at the vertices of a regular heptagon. It is hoped to
publish the details of the computational procedure and the table of designs as a
separate paper. We shall now show how these arrangements may be used as
building blocks for second order rotatable arrangements.

Let the design equations of the three arbitrarily selected seven-point designs be

7+t + i+ +on =0,
(5.9) 2+ puwd +p -+ pm =0,
Z + pwt + pud’ + -0 + pu =0,

where the terms in 2° and 2* are absent, in virtue of Theorem 2. These designs,
as tabulated, have a unit radius and one sample point on the positive z-axis.
In order to combine them in such a way that the resulting arrangements is
second-order rotatable, we must change the radii to r,, 72, and r;, and rotate

-
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the designs through the angles ¢, , ¢ , and ¢; respectively. We define the complex
variables:

v, = r1(cos ¢1 + % sin ¢y),
(5.10) v2 = 73(CO8 ¢ + % 8in ¢p),
V3 = 7’3(003 ¢s + 7 8in ¢3).

Thus the required transformation is equivalent to multiplying the roots of the
design equations by v, , v2, and v; respectively, and the design equations for the
transformed designs are

7+ pwid + puidd + oo + pwl = 0,
(5-11) z7 + p23?)gZ4 + p%v;z:* + . + pﬂv; = 0’
2+ puvid' + pavid® + -+ + pavi = 0.

The design equation for the combined arrangement of transformed designs is the
product of these three equations,

221 + (vai + pzavg + paa”g)zls
+ (pwt + Doy + pas)2 + - -+ + PupmpPavivs = 0.

But, by Theorem 4, in order for the combined arrangement to be rotatable of
the second order, the terms in 2" and 2" must vanish. Thus the transformations

must be such as to satisfy the equations

(5.12)

(5.13) plzsvi$ + pzavg + pasv§ =0,
' Pt + P + pavs = 0.
These equations may be written

Pgav:liz = (plav:li + p%vg)4,
(5.14) 3 12 4 4
pavs = — (P11 + Pasv2),
or, eliminating v; from between them,
(5.15) (P} + Puwv3)* = — (Pavi + Pav3)’,

where Py = P1s/Dss , P12 = D23/Ds3, Par = D1a/D3s, and Pz = Pay/pss. The trans-
formations corresponding to the values of »; and v, which satisfy this equation
will yield a rotatable arrangement of the second order; without loss of generality,

v may be taken as unity.

6. Completion of designs. It frequently occurs in experimental practice that
sample points cannot easily be taken in accordance with a prescribed design, but
must rather be taken at locations dictated by the experimental conditions.
Again, the statistician is often faced with the problem of analyzing data collected
in a manner over which he has had no control. In such cases, it is of importance
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to consider applications of the methods of Section 3 to the specification of a few
additional sample points which, combined with those already utilized, will result
in a rotatable arrangement (thereby providing circular information contours).

For example, suppose that N observations have been made at the points
(1, 1), (%2, ¥2), -+, (zx, yn). It will be shown that we may complete this
configuration into a rotatable design of the first order by taking observations at
two more points, (2, , ¥a) and (25, ¥5). We define

(6.1) A=Z“:(a:,.+z'yu)=zu:zu, B=;(x,,+iyu)2=zu:z.’;,

where # = 1, --- , N. Since in the final (first-order rotatable) design we must
have, by Theorem 1,

(62) Zzﬂ:oy ZZE=0, (v=1727"'yN’a’b)’
weset —A = 2, + 2, —B = 22 + 23 . Thus we have:

(6.3) 2% = (1/2)(A" + B).

Hence 2, and 2, are the complex roots of the equation

(6.4) &+ Az + (1/2)(4*+ B) = 0.

(If the roots are equal, two observations are made at the corresponding sample
point.)
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