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A GIVEN TYPE
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1. Introduction and summary. For well over two centuries mathematicians
have considered the conditions under which it is possible to obtain a good ap-
proximation of one probability distribution by another of a given type. How-
ever, the conditions which assure the existence of a best approximation of a given
type seem to have been virtually neglected. Because of their intrinsic interest
and because of their relevance for an estimation problem which is discussed
later, such conditions are examined here with respect to the following example:
Suppose that F and G are distribution functions and that an ordered real number
pair (a, b), with @ > 0, is desired such that F(az + b) is close to G(z) for all
real z. Is there a best pair? For instance, is there a pair (ao, bo) satisfying
(1) °°sx<1zp<w| Flaoz + b)) — G(z) | = . inf sup |F(ax+b) —G(z)]|?

<a<wo —ow<z <0
—00 <b <o

In this note we give an example in which a pair (@, bs) satisfying (1) does
not exist. We then prove two theorems each giving a simple sufficient condition
for the existence of such a pair. One or the other condition is almost always
satisfied in practice. For example, the first requires, merely, that both of the
sets {z|3 < F(z) < 3} and {z|% < G(z) = 3} be nondegenerate. Next, we
show that in any case if the set of minimizing pairs is nonempty then it is con-
vex. This fact is used to obtain a fairly precise description of the set of minimizing
pairs for the case F is increasing and continuous. In this case, simple conditions
on G imply the uniqueness of a minimizing pair. Applications, especially to an
estimation problem involving an unknown scale and location parameter, are
then discussed.

Throughout the paper, the right hand side of (1) is denoted by M. Also, F
and G are understood to be continuous on the right.

2. An example. Let F be the normal distribution function with mean 0 and
variance 1. Let 6G(z) = 1 — (1 — &) ifz <0, =5+ (1 — e )"’ if 2 2 0.
Here, M = } since M = } and

sup |F(az) — G(z)| = supecs<usa [G(2) — F(azx)] = G(1/a) — F(0)
which approaches 1 as a increases indefinitely. For any pair (a, b),

sup |F(az + b) — G(x)| Z sup |F(az) — G(z)| = sup [G(z) — F(az)] >}
since G(z) — F(ax) approaches 3 as x approaches 0 through positive values
of z and there is an ¢ > 0 such that the derivative with respect to z of G(x) —
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F(az) is positive if 0 < z < e. Thus a pair (as, bo) satisfying (1) does not exist
here.

3. Sufficient conditions for existence.

TuroreM 1. If both of the sets {z |3 < F(z) < 3} and {z |} = G(z) = 3} are
nondegenerate then there is a real number pair (ao , bo), with ap > 0, satisfying (1).

Lemma. If A is a closed bounded set of positive numbers and B is a closed bounded
set of real numbers then there is a number ao in A and a number by in B such that
(2) sup |Flaox+b) —G(z)| = inf sup |F(az+b)—G()|.

—o0 <z <™ acdA —wo<lz<®
beB

Proor oF LEMMaA. Let M’ denote the right hand side of (2). There is a se-
quence aq, a1, -+ - in A and a sequence by, by, - - in B such that

sup |F(a.z + ba) — G(z)| < M' + 1/n

for each positive integer n and by the Bolzano-Weierstrass theorem these se-
quences can be chosen so that
(3) lim a, = ao, lim b, = bo .
Let S be the set of numbers z such that F(asx -+ bo) is continuous in z at 2.
If z is in S then |[F(a.z + bs) — G(2)| < M’ + 1/n for each positive integer
n and thus, by (3), |[F(az + b) — G(2)| < M'. Since S is a dense subset of
the real numbers we have that sup |[F(az + b)) — G(z)| = M’ for z real which
implies the desired result.

Proor oF TaEoreM 1. We first prove that M < . The assumptions imply
the existence of numbers p; , Pz, @1, ¢e such that p1 < p2, 1 < @2, F(p; =) =
i/3 £ F(p:), G(g: —) = 4/3 = G(gs), e =1,2. Thus, each of

F(Pz—l’lx_l_pl(h—pqu)
2 — @ @2 —qQ

and G () is in theinterval [0, 3] if + < ¢, each isin [3, 2]if ¢y < < @, and
each is in [2, 1] if g < x. This implies that M < 3.

If M = X then the desired pair (a0, by) exists by the above paragraph. Suppose
M < i Let M < N < %. There are numbers 7o, - -+, 8 such that rp < n <
R<r, < <$<s,ysF(r)=%3%= G(s;) = %, = 1,2, and such
that each of the numbers F(r;) — G(s0), G(s1) — F(r), F(rs) — G(s2),
G(s;s) — F(r;) is greater than N. If (@, b) is a real number pair with @ > 0 and
at least one of the inequalities 7o < as; + b, 75 > asz + b, s < (r, — b)/a,
s > (r — b)/a is not satisfied, or equivalently if

(4) maX{To—a&,Tz—aSa}<b<min{7‘3—a82,1'1—a80}
is not satisfied, then
(5) sup |F(az + b) — G(x)| > N.

—00 <z <0
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For example, suppose 7, < as; + b is not satisfied. Then r, = as; + b and
|F(as; + b) — G(s1)| = G(s1) — F(asy + b) = G(s;) — F(ry) > N, implying
(6). Letco = (r2 —11)/(ss — s) and ¢, = (r5 — 1) /(82 — 81). Then0 < ¢ < ¢ .
Let A = [co, a1, do = infoeq max {ro — asy, 72 — asy}, dy = supg, min {r; — as; ,
r1 — aso}, and B = [do, dy]. If (a, b) is a real number pair with ¢ > 0 such that
either a is not in A or b is not in B, then (a, b) does not satisfy (4) and hence
satisfies (5). For example, if @ > ¢; then 7o — as; > 73 — as, and (4) is not
satisfied. Therefore, M = infees,5c5 SUP_wcacw [F(az + b) — G(2)| and the de-
sired result follows from the lemma.

TueoreM 2. If F is continuous and G is a step function with at most a finite
number of discontinuity points in each bounded interval, then there is a real number
pair (ao, bo), with ao > 0, satisfying (1).

Proor. The only case that needs to be considered here is the one for which
there is a number s satisfying G(s—) < 1 and 2 < G(s). The other case is taken
care of by Theorem 1. Let 2K = G(s) — G(s—). The assumptions imply that
K = M = max{K, G(s—), 1 — G(s)} and the desired pair (ao, by) is easily
seen to exist if M is equal to the right hand side of this expression. Suppose that
M is less. Then there is a number N satisfying ¥ < N < max {G(s—),
1 — G(s)} < §. There are numbers ro, ---, sy such that ro < 7 < 1, < 73,
<8 <8u<s8,8<s<8,F(rn)=%4Frn) =%G(s) =G(s—),G(s) =
G(s) and such that each of the numbers F(r) — G(sy), G(s5) — F(r:), and
max {G(s—) — F(r), F(rs) — G(s)} is greater than N. It follows that if a
pair (a, b) with @ > 0 does not satisfy bothasy +b<r <as+b <7 < as; + b
and max {r; — (as; + b), as; + b — ro} > 0, then sup |F(ax + b) — G(z)| > N.
It follows that there is a closed bounded positive number set A and a closed
bounded real number set B such that

M = infa:A,b:B SUP—w<z<0 lF(ax + b) - G(x)l
and the desired result follows from the lemma.

4. Convexity of the set of minimizing pairs. Let  be the set of minimizing
pairs. That is, let @ be the set of all pairs (a0, bo), with ay > 0, satisfying (1).

TrEOREM 3. If Q ©s nonempty, then Q s convex.

Proor. Suppose that (¢, d) and (e, f) are in Q and that 0 < A\ < 1. We are
to show that (a, b) isin @ where @ = (1 — XN)c + Xeandb = (1 — ) d + Nf.
Ifz satisfiescx +d < ex + fthencx +d S ax+b<ex+f,—M < F(cx + d) —
G(z) = F(ax +b) — G(z) < F(ex + f) — G(z) £ M, and

|F(ax + b) — G(z)| = M.

Similarly, the last inequality holds if z satisfies cx + d > ex + f. Thus, (a, b)
isin Q.

THEOREM 4. If F is increasing then there is a number t and a number k such that
at + b = k for each (a, b) in Q. If, in addition, F is continuous and Q contains
more than one element then

(6) |Flaz +b) — G(2)| < (G(t) — G(t—))/2 =M
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for each x # t and each (a, b) belonging to the interior of Q relative to the line that
contains Q.

‘Thus, if F is increasing then @ is a convex subset of a honvertical line. If F
is increasing and continuous and '@ contains more than one element then ¢ is the-
unique number « maximizing G(z) — G(z—), k is the unique number satisfying
2F (k) = G(t—) + G(t), M is easily calculated, and so forth.

Proor. Suppose the first assertion is not true. Then either there are three
points in @ not colinear or @ is a nondegenerate subset of a vertical line. Both.
possibilities imply, the former by the convexity of @, that there are pairs (a, c¢)
and (a, d) in @ such that ¢ < d. Let b = (¢ + d)/2. Then (a, b) is in Q. Either
sup [F(ax + b) — G(z)] = M or iof [F(ax + b) — G(x)] = —M. Suppose
the former is true, the other case being similar. Then there is an zo, such that.

sup [F(ax + b) — G(x)] = max {F(axy + b) — G(=),
F(lazo + b]—) — G(x0—)}.

Since F is increasing, the right hand side is less than the corresponding expres-

sion with b replaced by d which in turn is less than or equal to M. Thus,

sup [F(ax 4+ b) — G(z)] < M, a contradiction. The first assertion follows.
Suppose that F is continuous as well as increasing. Then, if (a, b) is in Q,

(@) inf Flar+b) = G@) = —M, _sup [Faz +1) — G(@)] = M.

For suppose otherwise. For example, suppose the second relation is not true.
Then sup [F(ax + b) — G(z)] < M and necessarily the first relation is true.
The assumptions on F imply that the left hand side of each relation is con-
tinuous and increasing in b. Hence, there is a number ¢ > b such that
iof [F(ax + ¢) — G(z)] > —M and sup [F(ax + ¢) — G(z)] < M. Thus,
sup |F(az + ¢) — G(z)| < M, a contradiction.

Now suppose that @ contains more than one point and that (a, b) is a relative
interior point of @. Then, if ¢ > 0,

—M < inof [F(ax + b) — G(x)],
(8) lz—t]|>e
| S‘ff; [Flax + b) — G(z)] < M.
Suppose, for example, that the second inequality is not true. Then there is an
xo # ¢ such that F(ax, + b) — G(xy—) = M. By assumption there are pairs
(a1, b)) and (az, bs) in Q such that @ = (a; + a2)/2 and b = (b, + b:)/2. Since
o #% t, axy + b is strictly between ary + by and asry + b.. Therefore,
M = maX;—i,e [F(aixo + bi) - G(xo—)] > F(axo + b) - G(xo—), a contra-
diction. By (7) and (8), M = F(k) — G(t—) = G(t) — F(k). Therefore,
2M = G(t) — G(i—) and the desired inequality in (6) follows from (8).
CoroLLARY. Suppose that F is increasing and continuous and that G is either
(i) continuous, or (ii) a step function with n > 1 discontinuity points at which G
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has jumps of size 1/n. Then there is a unique pair (ay , bo), with ay > 0, satisfy-

ing (1).
Remark. The condition on G is more special than need be. It could be re-
placed by the following condition: As x waries G(x) — G(x—) assumes its

mazimum value at least twice.
The corollary and remark are immediate consequences of Theorems 1 and 4.

b. Discussion. In practically all cases of interest the results of section 3 imply
that if G is a distribution function then there is, for example, a best normal
approximation to G.

We now discuss an estimation problem invoving a scale and location pa-
rameter. Suppose that F is an increasing and continuous distribution function.
Let » > 1 and suppose that X, ---, X, are independent random variables
each with the distribution function F(:; u, ¢) where F(x; u, 0) = F([x — p]/o)
for all real x. The parameter (u, ¢) is an element of the parameter space 2 which
is here taken to be the open upper half plane. Since F is continuous we may
restrict ourselves to the set ¥ of sample points (z;, - - - , z.) with all coordinates
distinct. For each (z;, -+, 2,) in X let G(-; 21, - -+, xa) be the corresponding
empirical distribution function. We ask whether or not there is an estimate
8 = (81, 82) of (u, o) such that

sup |F(.’1}, al(xly Tty xn)’ 62(1:1 y T xn)) - G(II); Xy, °, xn)l
(9) —0 <z <0

= inf sup IF(IE; uo) — Gz, -0+, xn)[
(B0)eQ —o0<z <0

for each (z;, ---, z,) in X. Such an estimate would be a minimum distance
estimate in the terminology of Wolfowitz who has studied the role of the em-
pirical distribution function in estimation in very general contexts (See [1] and
also the references listed in [1]). The corollary of the previous section implies
that a function 8 on ¥ satisfying (9) does exist and is unique. One question arises.
Is § measurable? It is easy to prove even more: § is continuous.
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