THE CAPACITY OF A CLASS OF CHANNELS1

By David Blackwell, Leo Breiman, and A. J. Thomasian

University of California, Berkeley

- 1. Summary. Shannon's basic theorem on the capacity of a channel is generalized to the case of a class of memoryless channels. A generalized capacity is defined and is shown to be the supremum of attainable transmission rates when the coding and decoding procedure must be satisfactory for every channel in the class.
- **2. Definitions and Introduction.** For any positive integer n and any set α we denote by $\alpha^{(n)}$ the set of all n-tuples (x_1, \dots, x_n) with each $x_i \in \alpha$.

A channel, denoted by $(\mathfrak{C}, \mathfrak{G}, P(y \mid x))$ or by $P(y \mid x)$, consists of two finite sets $\mathfrak{C}, \mathfrak{G}$ having $a \geq 2$, $b \geq 2$ elements, respectively, and a set of probability distributions $P(\cdot \mid x)$ on \mathfrak{G} , one for each $x \in \mathfrak{C}$. $P(y \mid x)$ is interpreted as the probability of receiving $y \in \mathfrak{G}$ given that $x \in \mathfrak{C}$ was transmitted.

The *n*-extension of a channel $(\mathfrak{A}, \mathfrak{B}, P(y \mid x))$ is the channel $(\mathfrak{A}^{(n)}, \mathfrak{B}^{(n)}, P(v \mid u))$ where $v = (y_1, \dots, y_n) \in \mathfrak{B}^{(n)}, u = (x_1, \dots, x_n) \in \mathfrak{A}^{(n)}$ and $P(v \mid u) = \prod_{i=1}^n P(y_i \mid x_i)$.

When considering a class of channels, $(\alpha, \alpha, P_{\gamma}(y \mid x))$ for $\gamma \in \mathbb{C}$, where \mathbb{C} is an index set, we shall always assume that the α , α sets are the same for each channel in the class. We shall sometimes denote such a class of channels by α , the index set.

A (G, ϵ_n, n) code for a class \mathfrak{C} of channels for $G \geq 1, \epsilon_n \geq 0, n$ a positive integer, is a sequence of [G] distinct elements of $\mathfrak{C}^{(n)}$; $u_1, \dots, u_{[\sigma]}$; where [G] is the largest integer $\leq G$, and a sequence of [G] disjoint subsets of $\mathfrak{C}^{(n)}$; $B_1, \dots, B_{[G]}$; such that

$$P_{\gamma}(B_i^c \mid u_i) \leq \epsilon_n$$
 for $i = 1, \dots, [G]$ and all $\gamma \in \mathbb{C}$.

The set $\{u_1, \dots, u_{[\sigma]}\}$ is called the set of input messages of the code and B_i is called the decoding set for u_i . We think of an input letter u_i of the code as being selected arbitrarily and transmitted over an unknown one of the channels P_{γ} , $\gamma \in \mathbb{C}$. The letter v is received with probability $P_{\gamma}(v \mid u)$ and if $v \in B_i$ it is decoded as u_i . Thus, the probability is $\leq \epsilon_n$ that any input message u_i will be transmitted so as to be not decoded as u_i ; regardless of which channel in the class \mathbb{C} is used.

An $R \geq 0$ is an attainable transmission rate for a class \mathfrak{C} of channels if there exists a sequence of (e^{Rn}, ϵ_n, n) codes for \mathfrak{C} with $\epsilon_n \to 0$. Since $\mathfrak{C}^{(n)}$ has only a^n points we know that any attainable rate $R \leq \log a$. Clearly 0 is an attainable rate for any class of channels. For any class of channels \mathfrak{C} we define $T = T(\mathfrak{C})$ to be the supremum of the set of attainable rates for \mathfrak{C} .

Received February 16, 1959.

¹ This research was supported by the Office of Naval Research under Contract Nonr-222(53).

1229

If $(\mathfrak{C}, \mathfrak{G}, P_{\gamma}(y \mid x))$ for $\gamma \in \mathfrak{C}$ is a class of channels and Q(x) is a given probability distribution on \mathfrak{C} then for each $\gamma \in \mathfrak{C}$ we let $P_{\gamma}(x, y) = P_{\gamma}(y \mid x)Q(x)$ and we define on $\mathfrak{C} \times \mathfrak{G}$ the random variable J_{γ} by

$$J_{\gamma}(x,y) = \log \frac{P_{\gamma}(x,y)}{P_{\gamma}(x)P_{\gamma}(y)} \quad \text{if} \quad P_{\gamma}(x,y) > 0$$
$$= 0 \qquad \qquad \text{if} \quad P_{\gamma}(x,y) = 0.$$

The dependence of P_{γ} and J_{γ} on Q will usually not be exhibited. Since we will often be interested in expressions of the form $x \log x$ it is natural to define $\log 0 = 0$. We will denote the expectation of a random variable X with respect to the P_{γ} distribution by $E_{\gamma}X$. If $\mathfrak C$ has only one element we may drop the subscript γ . Finally for any class $\mathfrak C$ of channels we define the capacity of the class $\mathfrak C$ by

$$C(\mathfrak{C}) = C = \sup_{Q(x)} \inf_{\gamma \in \mathfrak{C}} E_{\gamma} J_{\gamma}$$

where the sup is over all distributions Q on α .

In the case considered by Shannon, \mathfrak{C} has only one element and our formula reduces to $C = \sup_Q EJ$, which is the usual formula for the capacity of a memoryless channel. Shannon's theorem then states that T = C. $T \geq C$, $T \leq C$ are called the direct and converse halves, respectively. This theorem for a single channel has been proved in various ways and under various conditions by Shannon [12], [13], McMillan [11], Feinstein [6], Khinchin [9], Wolfowitz [14], Blackwell, Breiman, and Thomasian [1]. We will show that within the framework that has been set up

$$T(e) = C(e)$$

always holds true. This result follows immediately from Theorem 1 which also gives an exponential error bound for any rate R < C.

THEOREM 1: Let $(\mathfrak{A}, \mathfrak{B}, P_{\gamma}(y \mid x))$ for $\gamma \in \mathfrak{C}$ be any class of channels.

(a) For any integer n and any R > 0 such that $0 \le C - R \le 1/2$ there is an (e^{Rn}, ϵ_n, n) code for C with

$$\epsilon_n = Ae^{-\frac{(C-R)^2}{B}n}$$

where

$$A = \left[\frac{2^{10}ab^3}{(C-R)^2}\right]^{2ab}$$
 and $B = 2^7ab$.

(b) For any integer n and R > C if $e^{Rn} \ge 2$ then any (e^{Rn}, ϵ_n, n) code for C must satisfy

$$\epsilon_n \ge 1 - \frac{C + \frac{\log 2}{n}}{R - \frac{\log 2}{n}}.$$

The sequence of steps used in proving Theorem 1 will be outlined. Theorem 2 presents a basic inequality, for a single channel, which is contained implicitly

in Feinstein [8]. This inequality is of independent interest since it gives the same bound for the maximum probability of error that Shannon [13] gives for the average probability of error. Theorem 2 permits a simple proof of $T \ge C$ for a single channel. Lemma 2 shows that \sup_Q in the definition of $C(\mathbb{C})$ can be replaced by \max_Q . Theorem 3 gives an exponential bound on the error of a code for one channel, which depends only on $a, b, (C - R)^2$. This is convenient in that the particular probabilities $P(y \mid x)$ may not be known and, in any case, need not be computed with. Results related to Theorem 3 have been given by Elias [3] and [4], Feinstein [7], Shannon [13], and Wolfowitz [14].

Lemma 3 generalizes the inequality of Theorem 2 to the case when C has a finite number of elements, and Theorem 4 generalizes the exponential error bound of Theorem 3 to this case.

Lemma 4 shows that for a given \mathfrak{A} , \mathfrak{A} there is a large finite number of channels on \mathfrak{A} , \mathfrak{A} such that any channel on \mathfrak{A} , \mathfrak{A} is close, in several senses, to one of them. Lemma 5 shows that if a channel has a sequence of codes (e^{Rn}, ϵ_n, n) with $\epsilon_n = e^{-Bn}$ for large n, with B > 0, then this same sequence of codes can be used for all channels in a certain neighborhood of the channel. This result justifies some of our attention to exponential error bounds. The technique of Lemma 5 can also be used to get some similar results when the channel probabilities vary from letter to letter.

At this point the direct half of Theorem 1 is demonstrated by approximating the class C of channels by a certain finite set of channels C' from Lemma 4; obtaining an exponential error bound code for C' from Theorem 4; and using Lemma 5 to show that such a code must be satisfactory for C.

The converse half of Theorem 1 is then proved.

Before proceeding to the proofs we pause to clear up one point. It is obvious that

$$C(\mathfrak{C}) \leq \inf_{\gamma \in \mathfrak{C}} \sup_{Q(x)} E_{\gamma} J_{\gamma}$$
,

i.e., $C(\mathfrak{C}) \leq \text{the capacity of. every channel in } \mathfrak{C}$. We now exhibit an example where $C(\mathfrak{C}) \neq \text{inf of the capacities of channels in } \mathfrak{C}$. Let $\mathfrak{C} = \mathfrak{C} = \{1, 2, 3, 4\}$, $\mathfrak{C} = \{1, 2\}$, and let $P_1(y \mid x)$ and $P_2(y \mid x)$ be defined by the left and right following matrices, respectively.

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Let Q(x) be any distribution on \mathfrak{A} and let $H_i(Y) = -\sum_y P_i(y) \log P_i(y)$, $H_i(Y \mid X) = -\sum_x Q(x) \sum_y P_i(y \mid x) \log P_i(y \mid x)$. Using the fact that $\log x = (\log 2) \log_2 x$ we see that $(\log 2)^{-1} H_1(Y \mid X) = Q(1) + Q(2) + 2Q(3) + 2Q(4) = 1 + Q(3) + Q(4)$. Also from Feinstein [8], p. 15 we have $(\log 2)^{-1} H_1(Y) \leq 2$ so that $E_1 J_1 = H_1(Y) - H_1(Y \mid X) \leq (\log 2)(Q(1) + Q(2))$. Similarly $E_2 J_2 \leq (\log 2)(Q(3) + Q(4))$ so that $C(\mathfrak{C}) \leq (1/2) \log 2$. The case Q(i) = 1/4 for $i = 1, \dots, 4$ shows that $C(\mathfrak{C}) = (1/2) \log 2$; the case

Q(1) = Q(2) = 1/2 shows the capacity of channel one to be log 2; the case Q(3) = Q(4) = 1/2 shows the capacity of channel two to be log 2. Thus for this example

$$\frac{1}{2}\log 2 = C(\mathfrak{C}) < \inf_{\gamma \in \mathfrak{C}} \sup_{\varrho(x)} E_{\gamma} J_{\gamma} = \log 2.$$

3. A basic inequality.

THEOREM 2: For any channel (α , β , P(y|x)), any distribution Q(x) on α , $\alpha > 0$, $G \ge 1$ there is a (G, ϵ , 1) code for the channel with $\epsilon = Ge^{-\alpha} + P(J \le \alpha)$.

PROOF: It is clearly sufficient to construct an $(M, \epsilon, 1)$ code with the same ϵ as in the theorem and with $M \geq G$. Let $A = [J > \alpha]$ and for any $x_0 \in \mathbb{C}$ let $A_{x_0} = \{(x, y) \mid (x_0, y) \in A\}$. $P(J \leq \alpha) \leq \epsilon$ so that $P(A) \geq 1 - \epsilon$, hence there is an x_1 such that $P(A \mid x_1) \geq 1 - \epsilon$. Let $B_1 = A_{x_1}$. (Each B_k will be a cylinder set with base in $\mathfrak B$. The base of B_k will be the decoding set for x_k .) At the kth step select x_k such that $P(B_k \mid x_k) \geq 1 - \epsilon$ where

$$B_k = \bigcup_{1}^k A_{x_i} - \bigcup_{1}^{k-1} A_{x_i}.$$

This process will terminate at some $M \ge 1$. For every x

$$P\left(A - A \cap \left(\bigcup_{1}^{M} A_{x_{i}}\right) \middle| x\right) < 1 - \epsilon$$

otherwise we could add this x to x_1, \dots, x_M contradicting the definition of M. Thus

$$P(A) = P\left(A \cap \left(\bigcup_{i=1}^{M} A_{x_{i}}\right)\right) + P\left(A - A \cap \left(\bigcup_{i=1}^{M} A_{x_{i}}\right)\right)$$

$$\leq \sum_{i=1}^{M} P(A_{x_{i}}) + 1 - \epsilon.$$

Now if $(x, y) \in A$ then $J(x, y) > \alpha$ so that $P(y \mid x) > P(y)e^{\alpha}$. For fixed x sum both sides of this inequality over all y such that $(x, y) \in A$. Then

$$1 \ge P(A \mid x) \ge P(A_x)e^{\alpha}.$$

Thus $P(A_x) \leq e^{-\alpha}$ for any $x \in \mathbb{C}$ so that $P(A) \leq Me^{-\alpha} + 1 - \epsilon$. Since $P(A) = Ge^{-\alpha} + 1 - \epsilon$, we have $M \geq G$. Clearly the B_1, \dots, B_M are disjoint and

$$P(B_k \mid x_k) \geq 1 - \epsilon$$

for $k = 1, \dots, M$ so the proof is completed.

Consider a single channel (\mathfrak{A} , \mathfrak{B} , $P(y \mid x)$) and let Q(x) be specified and determine P(x, y), J(x, y). Applying Theorem 2 to ($\mathfrak{A}^{(n)}$, $\mathfrak{A}^{(n)}$, $P(v \mid u)$) and $Q(u) = Q(x_1) \cdots Q(x_n)$ with $\alpha = n(R + EJ)/2$, $G = e^{Rn}$ we see that for any R such that 0 < R < EJ there is an (e^{Rn}, ϵ_n, n) code for (\mathfrak{A} , \mathfrak{B} , $P(y \mid x)$) with

$$\epsilon_n = e^{-(EJ-R)n/2} + P\left(\frac{1}{n}J' \le \frac{R+EJ}{2}\right).$$

Now

$$J'(u, v) = \log \frac{P(u, v)}{P(u)P(v)}$$
 if $P(u, v) > 0$
= 0 otherwise.

Let $J''(u, v) = \sum_{i=1}^{n} J_i(x_i, y_i)$ where

$$J_i(x_i, y_i) = \log \frac{P(x_i, y_i)}{P(x_i)P(y_i)}$$
 if $P(x_i, y_i) > 0$
= 0 otherwise.

Clearly P(J'=J'')=1 and J'' is the sum of n independent random variables each having the distribution of J(x,y). Since EJ>(R+EJ)/2 we see that $\epsilon_n\to 0$. Now it is easily seen (and we will shortly prove even more) that for a fixed channel EJ is a continuous function of $(Q(x_1), Q(x_2), \cdots, Q(x_n))$ and since the domain of the function is a closed bounded subset of Euclidean space the supremum is actually achieved. Thus for any channel $(\mathfrak{C}, \mathfrak{G}, P(y|x))$ there is a distribution Q(x) on \mathfrak{C} such that C=EJ. Using this Q(x) in the earlier portions of this paragraph we obtain the direct half of Shannon's theorem for a memoryless channel: $T \geq C$.

By introducing a brief epsilon argument in the proof of the direct half of Shannon's 'heorem we could clearly have ignored the question of whether or not there is a maximizing Q(x). Although the fact that there is a maximizing Q(x) in the general case of a class of channels is not vital in the following work, we will pause to prove this fact now. The proof is based on Lemma 1 which will be needed later.

LEMMA 1: Let Q(x), Q'(x) be any two distributions on α such that

$$|Q(x) - Q'(x)| \le \epsilon \le 1/e \text{ for all } x \in \mathfrak{A}.$$

Then

$$|H(X) - H'(X)| \le a\epsilon^{1/2}$$

where
$$H(X) = -\sum_{x} Q(x) \log Q(x)$$
 and $H'(X) = -\sum_{x} Q'(x) \log Q'(x)$.

Proof: Let

$$f(y) = [-(y + \epsilon) \log (y + \epsilon)] - [-y \log y]$$

where $0 < \epsilon \le 1/e$ and $0 \le y \le 1 - \epsilon$. Then $f(0) = -\epsilon \log \epsilon > 0$ and $f(1 - \epsilon) = (1 - \epsilon) \log (1 = \epsilon) < 0$ also

$$f'(y) = -\log(y + \epsilon) - 1 + \log y + 1 = \log \frac{y}{y + \epsilon} < 0$$

so that $|f(y)| \le \max \{-\epsilon \log \epsilon, -(1-\epsilon) \log (1-\epsilon)\}$. Now

$$(1-\epsilon)\log\frac{1}{1-\epsilon} \le (1-\epsilon)\left(\frac{1}{1-\epsilon}-1\right) = \epsilon \le -\epsilon\log\epsilon$$

since $\epsilon \leq 1/e$. Thus

$$|f(y)| \le -\epsilon \log \epsilon = \frac{\epsilon^{\frac{1}{2}\log_{\epsilon}^{\frac{1}{2}}}}{\left(\frac{1}{\epsilon}\right)^{\frac{1}{2}}} \le \epsilon^{\frac{1}{2}}$$

since $x^{1/2} - \log x \ge 2 - \log 4 > 0$ for x > 0. Applying the result $|f(y)| \le \epsilon^{1/2}$ to y = p, $\epsilon = q - p$ where $0 \le p \le q \le 1$ and $|q - p| \le 1/e$ we see that

$$|[-p \log p] - [-q \log q]| \le (|p - q|)^{1/2}$$

which easily gives us the bound on |H(X) - H'(X)| completing the proof. Lemma 2: For any class of channels $(\mathfrak{A}, \mathfrak{B}, P_{\gamma}(y|x))$ for $\gamma \in \mathfrak{C}$,

$$C = \max_{Q(x)} \inf_{\gamma \in \mathcal{C}} E_{\gamma} J_{\gamma}.$$

PROOF: Let $(\mathfrak{A},\mathfrak{B},P(y\mid x))$ be a channel and Q(x) a distribution on \mathfrak{A} determining $P(x,y)=P(y\mid x)Q(x)$ and J(x,y). Clearly EJ=H(X)+H(Y)-H(X,Y) where $H(X)=-\sum_x P(x)\log P(x)$, $H(Y)=-\sum_y P(y)\log P(y)$, $H(X,Y)=-\sum_{x,y} P(x,y)\log P(x,y)$. Let Q'(x) be another distribution on \mathfrak{A} determining $P'(x,y)=P(y\mid x)Q'(x)$ and J'(x,y), and note that E'J'=H'(X)+H'(Y)-H'(X,Y) where the primed quantities have analogous definitions. Assume that $|Q(x)-Q'(x)|\leq \epsilon \leq 1/e$ for all $x\in\mathfrak{A}$. Clearly $|P(x,y)-P'(x,y)|\leq P(y\mid x)|Q(x)-Q'(x)|\leq \epsilon$ and $|P(y)-P'(y)|\leq \sum_x |P(x,y)-P'(x,y)|\leq a\epsilon$. Applying Lemma 1 we get

$$|EJ - E'J'| \le |H(X) - H'(X)| + |H(Y) - H'(Y)| + |H(X, Y) - H'(X, Y)| \le a\epsilon^{1/2} + b(a\epsilon)^{1/2} + ab\epsilon^{1/2} \le (a + 2ab)\epsilon^{1/2}.$$

$$\leq a\epsilon^{-1} + b(a\epsilon)^{-1} + ab\epsilon^{-1} \leq (a + 2ab)\epsilon^{-1}$$
.

Thus not only is EJ continuous in Q(x) but it is continuous in Q(x) uniformly in Q(x) and $P(y \mid x)$. We easily take $\inf_{x \in C}$ on the inequalities

$$E'_{\gamma}J'_{\gamma} - (a+2ab)\epsilon^{1/2} \le E_{\gamma}J_{\gamma} \le E'_{\gamma}J'_{\gamma} + (a+2ab)\epsilon^{1/2}$$

and see that $\inf_{\gamma \in \mathbb{C}} E_{\gamma} J_{\gamma}$ is continuous in Q(x) so that once again there is a maximizing Q(x) and Lemma 2 is proved.

4. The error bound for one channel.

THEOREM 3: Let $(\mathfrak{A}, \mathfrak{B}, P(y \mid x))$ be any channel. For any integer n and any R > 0 such that $0 \le C - R \le 1/2$, there is an (e^{Rn}, ϵ_n, n) code for the channel with

$$\epsilon_n = 2e^{-\frac{(C-R)^2}{16ab}n}.$$

PROOF: Applying Theorem 2 to $(\mathfrak{A}^{(n)}, \mathfrak{B}^{(n)}, P(v \mid u))$ with $Q(u) = Q(x_1) \cdots Q(x_n)$, where Q(x) is any distribution on \mathfrak{A} , $G = e^{Rn}$, $\alpha = (R + \theta)n$ we see that for any R > 0, $\theta > 0$ there is an (e^{Rn}, ϵ_n, n) code for $(\mathfrak{A}, \mathfrak{B}, P(y \mid x))$ with

$$\epsilon_n = e^{-n\theta} + P(J'' \le n(R + \theta))$$

where, as shown in Section 3, J'' is the sum of n independent random variables, each having the distribution of J(x, y). Select R > 0, $0 \le EJ - R \le 1/2$ and let $\theta = (EJ - R)^2$. Then $R + \theta \le R + (EJ - R)/2 = (EJ + R)/2$.

Thus it remains only to show that

$$P(J'' \le n(EJ + R)\frac{1}{2}) \le e^{-\frac{(EJ - R)^2}{16ab}n}$$

(we will need this result later) for we can then choose Q so that C = EJ.

A method due to Chernoff [2] will be used to bound the probability in question. Let $0 \le t \le 1$, then

$$P\left(0 \leq \frac{n(EJ+R)}{2} - J''\right) \leq Ee^{t\left[\frac{n(EJ+R)}{2} - J''\right]} = e^{\frac{t n(EJ+R)}{2}} Ee^{-J''}$$
$$= \left[e^{\frac{t(EJ+R)}{2}} Ee^{-tJ}\right]^{n}$$

so that we need show only that for a proper selection of t,

$$e^{\frac{t(EJ+R)}{2}} Ee^{-tJ} \le e^{-\frac{(EJ-R)^2}{16ab}}$$

Now

$$Ee^{-tJ} = 1 - tEJ + \frac{t^2}{2}EJ^2e^{-\theta tJ},$$
 $0 < \theta < 1.$

We need consider only (x, y) with P(x, y) > 0. Terms in $EJ^2e^{-\theta tJ}$ are of the form

$$P(x,y) \left(\frac{P(x)P(y)}{P(x,y)} \right)^{\theta t} \log^2 \frac{P(x,y)}{P(x)P(y)} \le P(x,y) \left(\frac{1}{P(x,y)} \right)^{\theta t} \log^2 \frac{P(x,y)}{P(x)P(y)}$$

$$\le (P(x,y))^{1-t} \log^2 \frac{P(x,y)}{P(x)P(y)} \le (P(x,y))^{1-t} \log^2 P(x,y)$$

where the last inequality followed from $P(x, y) \leq P(x)P(y)/P(x, y) \leq 1/P(x, y)$. Also

$$\begin{split} \left[\left(P(x,y) \right)^{\frac{1-t}{2}} \log P(x,y) \right]^2 &= \left(\frac{2}{1-t} \right)^2 \left[\left(P(x,y) \right)^{\frac{1-t}{2}} \log P(x,y) \right)^{\frac{1-t}{2}} \right]^2 \\ &\leq \left(\frac{2}{1-t} \right)^2 \frac{1}{e^2} \leq \frac{1}{(1-t)^2}. \end{split}$$

Thus

$$Ee^{-tJ} \le 1 - tEJ + \frac{t^2}{2} \frac{ab}{(1-t)^2} \le e^{-tEJ + \frac{t^2}{2} \frac{ab}{(1-t)^2}}$$

so that

$$e^{\frac{t(EJ+R)}{2}} E e^{-tJ} \le e^{-\frac{1}{2}f(t)}$$

where

$$f(t) = (EJ - R)t - t^2 \frac{ab}{(1-t)^2}.$$

Let $t = (EJ - R)/4ab \le 1/8$ so that $1/(1-t)^2 \le (8/7)^2$, then

$$f\left(\frac{EJ-R}{4ab}\right) \ge \frac{(EJ-R)^2}{4ab} \left\lceil 1 - \left(\frac{8}{7}\right)^2 \frac{1}{4} \right\rceil \ge \frac{(EJ-R)^2}{8ab}$$

completing the proof.

5. The error bound for a finite set of channels. Lemma 3 is needed in the proof of Theorem 4.

LEMMA 3: Let $(\mathfrak{A}, \mathfrak{B}, P_{\gamma}(y \mid x))$ for $\gamma \in \mathfrak{C} = \{1, 2, \dots, L\}$ be a finite class of channels and let Q(x) be a distribution on \mathfrak{A} , determining $P_{\gamma}(x, y), J_{\gamma}(x, y)$.

(a) Define a channel (α , β , $P(y \mid x)$) by $P(y \mid x) = (1/L) \sum_{\gamma=1}^{L} P_{\gamma}(y \mid x)$ and let Q(x) determine P(x, y), J(x, y). Then for all α , δ

$$P(J \leq \alpha) \leq \frac{1}{L} \sum_{\gamma=1}^{L} P_{\gamma}(J_{\gamma} \leq \alpha + \delta) + Le^{-\delta}.$$

(b) For any $\alpha > 0$, $G \ge 1$, $\delta > 0$ there is a $(G, \epsilon, 1)$ code for \mathfrak{C} with

$$\epsilon = LGe^{-\alpha} + L^2e^{-\delta} + \sum_{1}^{L} P_{\gamma}(J_{\gamma} \leq \alpha + \delta).$$

PROOF: We first prove part (a).

$$P(J \leq \alpha) = \frac{1}{L} \sum P_{\gamma}(J \leq \alpha) \leq \frac{1}{L} \sum \left[P_{\gamma}(J_{\gamma} \leq \alpha + \delta) \right]$$

$$+ P_{\gamma}(J_{\gamma} > \alpha + \delta; J \leq \alpha)]$$

so that we need only prove that $P_{\gamma}(A_{\gamma}) \leq Le^{-\delta}$ where $A_{\gamma} = (J_{\gamma} \alpha + \delta; J \leq \alpha)$. For any $(x, y) \in A_{\gamma}$ with $P_{\gamma}(x, y) > 0$ we have

$$e^{\alpha}P(y) \ge P(y \mid x) \ge \frac{1}{L} P_{\gamma}(y \mid x) \ge \frac{1}{L} e^{\alpha+\delta}P_{\gamma}(y)$$

so that $P_{\gamma}(y) \leq Le^{-\delta}P(y)$. Summing this last inequality over all y such that there is an x with $(x, y) \in A_{\gamma}$ we get $P_{\gamma}(A_{\gamma}) \leq \sum P_{\gamma}(y) \leq Le^{-\delta}$ which completes the proof of part (a).

Applying Theorem 2 to the channel $P(y \mid x)$ defined in part (a) and then using part (a) to bound $P(J \leq \alpha)$ we find that there is a $(G, \epsilon_0, 1)$ code for $P(y \mid x)$ with

$$\epsilon_0 = Ge^{-\alpha} + P(J \le \alpha) \le Ge^{-\alpha} + \frac{1}{L} \sum_{\gamma} P_{\gamma}(J_{\gamma} \le \alpha + \delta) + Le^{-\delta}.$$

Now $P_{\gamma}(y \mid x) \leq LP(y \mid x)$ so that if x_i is an input letter for the $(G, \epsilon_0, 1)$ code and B_i is its decoding set, then $P_{\gamma}(B_i^c \mid x_i) \leq L P_{\gamma}(B_i^c \mid x_i) \leq L\epsilon_0$. Thus the $(G, \epsilon_0, 1)$ code for $P(y \mid x)$ is a $(G, L\epsilon_0, 1)$ code for P(x) code for

THEOREM 4: Let $(\mathfrak{A}, \mathfrak{B}, P_{\gamma}(y \mid x))$ for $\gamma \in \mathfrak{C} = \{1, 2, \dots, L\}$ be a finite class of channels. For any R > 0 such that $0 \le C - R \le 1/2$ there is an (e^{Rn}, ϵ_n, n) code with

$$\epsilon = 2L^2 e^{-\frac{(C-R)^2}{16ab}n}.$$

Proof. Applying part (b) of Lemma 3 to the class of channels $(\mathfrak{A}^{(n)}, \mathfrak{B}^{(n)},$ $P_{\gamma}(v \mid u)$) with $Q(u) = Q(x_1) \cdots Q(x_n)$ and Q(x) a distribution for which $C = \inf_{\gamma \in \mathbb{C}} E_{\gamma} J_{\gamma}$ and $G = e^{Rn}$, $\alpha = (R + \theta/2)n$, $\delta = \theta n/2$ we see that there is an (e^{Rn}, ϵ_n, n) code for C with

$$\epsilon_n = (L + L^2)e^{-\frac{\theta}{2^n}} + \sum_{1}^{L} P_{\gamma} \left(\frac{1}{n}J_{\gamma} \leq R + \theta\right).$$

Let $\theta = (C - R)^2$ and note that $R + (C - R)^2 \le R + (C - R)/2 \le R +$ $(E_{\gamma}J_{\gamma}-R)/2=(E_{\gamma}J_{\gamma}+R)/2$. Thus,

$$\epsilon_n \leq (L+L^2)e^{-\frac{(C-R)^2}{16ab}n} + \sum_{1}^{L} P_{\gamma} \left(\frac{1}{n}J_{\gamma} \leq \frac{1}{2}(R+E_{\gamma}J_{\gamma})\right).$$

Now

$$P_{\gamma}\left(\frac{1}{n}J_{\gamma} \leq \frac{1}{2}(R + E_{\gamma}J_{\gamma})\right) \leq P_{\gamma}\left(\frac{1}{n}J_{\gamma} \leq \frac{1}{2}(R' + E_{\gamma}J_{\gamma})\right)$$

where $R' = E_{\gamma}J_{\gamma} - (C - R) \ge R$ and $0 \le E_{\gamma}J_{\gamma} - R' \le 1/2$. Therefore, we can apply the result obtained in the proof of Theorem 3 and get

$$P_{\gamma}\left(\frac{1}{n}J_{\gamma} \leq \frac{1}{2}(R' + E_{\gamma}J_{\gamma})\right) \leq e^{-\frac{(E_{\gamma}J_{\gamma} - R')^{2}}{16ab}n} = e^{-\frac{(C-R)^{2}}{16ab}n}.$$

Now $L \ge 2$ so that $2L + L^2 = L(L+2) \le 2L^2$ and since Theorem 4 reduces to Theorem 3 for L = 1, the proof is completed.

6. The direct half of Theorem 1. Lemmas 4 and 5 are needed for the proof of part (a) of Theorem 1.

Lemma 4: Let α , α be given. For every integer $M \geq 2b^2$ there is a class of channels $(\mathfrak{A}, \mathfrak{B}, P_j(y \mid x))$ with $\varepsilon \mathfrak{D}_M$, where \mathfrak{D}_M has at most $(M+1)^{ab}$ elements, such that for any channel $(\mathfrak{A}, \mathfrak{B}, P(y \mid x))$ there is a channel $(\mathfrak{A}, \mathfrak{B}, P'(y \mid x))$ in \mathfrak{D}_{M} such that:

- (a) $|P(y|x) P'(y|x)| \le b/M$ for all x, y. (b) $P(y|x) \le e^{2b^2/M} P'(y|x)$ for all x, y.
- (c) For any distribution Q(x) on α let $P(x, y) = P(y \mid x)Q(x)$, P'(x, y) = $P'(y \mid x)Q(x)$, then

$$|EJ - E'J'| \le 2b \left(\frac{b}{M}\right)^{1/2}$$
.

PROOF. Let \mathfrak{D}_M be the class of channels (\mathfrak{A} , \mathfrak{A} , $P(y \mid x)$) such that for all x, ywe have $MP(y \mid x) = \text{an integer. Clearly } \mathfrak{D}_M \text{ has at most } (M+1)^{ab} \text{ elements.}$ Given the distributions $P(y \mid x)$ we will first construct $P'(y \mid x)$ and prove (a),

(b). For this purpose it is enough to carry out the construction for one x_0 . Arrange the "b" numbers $P(y \mid x_0)$ in ascending order and designate them by $p_1 \leq p_2 \leq \cdots \leq p_b$. For $i = 1, \dots, (b-1)$ select p_i' uniquely by $p_i \leq p_i' < p_i + 1/M, Mp_i' =$ an integer. p_i' will be $P'(y \mid x_0)$ with the y being the one corresponding to p_i . Clearly

$$p_i \le e^{rac{2b^2}{M}} p_i'$$
 and $|p_i - p_i'| \le rac{b}{M}$

for $i=1,\dots,(b-1)$. It remains to show that if $p'_b=1-\sum_{i=1}^{b-1}p'_i$ then $p_b' \ge 0$ and p_b' , p_b' satisfy the same relations. Now

$$p_b' \ge 1 - \sum_{i=1}^{b-1} \left(p_i + \frac{1}{M} \right) \ge p_b - \frac{b}{M} \ge \frac{1}{b} - \frac{b}{M} \ge \frac{1}{b} - \frac{1}{2b} = \frac{1}{2b}.$$

Thus p_1' , ..., p_b' form a distribution and $p_b \ge p_b' \ge p_b - b/M$ so that

$$|p_b - p_b'| \leq b/M.$$

Also

$$p_b \le p_b' + \frac{b}{M} \le p_b' + \frac{2b^2}{M} \frac{1}{2b} \le p_b' \left(1 + \frac{2b^2}{M}\right) \le e^{\frac{2b^2}{M}} p_b'$$

completing the proof of parts (a) and (b).

In the proof of part (c) we will use part (a) and Lemma 1. In order to use Lemma 1 we observe that $b/M \le 1/2b \le 1/4 < 1/e$. We also note that

$$|P(y) - P'(y)| \le \sum_{x} |P(y|x) - P'(y|x)| Q(x) \le b/M.$$

Now

$$\begin{split} \left| EJ - E'J' \right| &\leq \left| \left[-\sum_{y} P(y) \log P(y) \right] - \left[-\sum_{y} P'(y) \log P'(y) \right] \right| \\ &+ \left| \left[-\sum_{x,y} P(x,y) \log P(x,y) \right] - \left[-\sum_{x,y} P'(x,y) \log P'(x,y) \right] \right| \leq b \left(\frac{b}{M} \right)^{1/2} \\ &+ \sum_{x} Q(x) \left| \left[-\sum_{y} P(y \mid x) \log P(y \mid x) \right] - \left[-\sum_{y} P'(y \mid x) \log P'(y \mid x) \right] \right| \\ &\leq b \left(\frac{b}{M} \right)^{1/2} + b \left(\frac{b}{M} \right)^{1/2} \end{split}$$

and the lemma is proved.

LEMMA 5: Let (a, a, P'(y | x)), (a, a, P(y | x)) be two channels and A a nonnegative number such that $P(y \mid x) \leq e^{A}P'(y \mid x)$ for all x, y. Any (e^{Rn}, ϵ_n, n) code for $(\mathfrak{A}, \mathfrak{B}, P'(y \mid x))$ is an $(e^{Rn}, \epsilon_n e^{An}, n)$ code for $(\mathfrak{A}, \mathfrak{B}, P(y \mid x))$.

PROOF: Let $u = (x_1, \dots, x_n) \in \mathfrak{A}^{(n)}, v = (y_1, \dots, y_n) \in \mathfrak{B}^{(n)}$. Then

$$P(v \mid u) = \prod_{i=1}^{n} P(y_i \mid x_i) \leq e^{An} \prod_{i=1}^{n} P'(y_i \mid x_i) = e^{An} P'(v \mid u).$$

Thus for any subset D of $\mathfrak{B}^{(n)}$ and any $u \in \mathfrak{A}^{(n)}$ we have

$$P(D \mid u) \leq e^{An} P'(D \mid u).$$

Let $u_i \in \mathfrak{A}^{(n)}$ be an input message and B_i the corresponding decoding set of an (e^{Rn}, ϵ_n, n) code for $(\mathfrak{A}, \mathfrak{B}, P'(y \mid x))$. Then

$$P(B_i^c \mid u_i) \leq e^{An} P'(B_i^c \mid u_i) \leq e^{An} \epsilon_n$$

and the proof is completed.

We turn now to the proof of part (a) of Theorem 1. For each $P(y \mid x) \in \mathfrak{C}$ select a $P'(y \mid x) \in \mathfrak{D}_M$ according to Lemma 4 and let \mathfrak{C}' denote this set of channels. Let $C' = C(\mathfrak{C}')$. Since \mathfrak{C}' has at most $(M+1)^{ab}$ elements we know from Theorem 4 that if R' > 0, $0 \le C' - R' \le 1/2$ then there is an $(e^{R'n}, \epsilon'_n, n)$ code for \mathfrak{C}' with

$$\epsilon'_n = 2(M+1)^{2ab} e^{-\frac{(C'-R')^2}{16ab}n}.$$

For each $P(y \mid x)$ ε \mathfrak{C} there is a $P'(y \mid x)$ ε \mathfrak{C}' such that

$$P(y \mid x) \leq e^{\frac{2b^2}{M}} P'(y \mid x)$$

so that from Lemma 5 the code which we have for \mathfrak{C}' is an $(e^{R'n}, \, \epsilon_n \, , \, n)$ code for \mathfrak{C} with

$$\epsilon_n = 2(M+1)^{2ab} \exp -\left\{\frac{(C'-R')^2}{16ab} - \frac{2b^2}{M}\right\} n.$$

Let $C = C(\mathfrak{C})$ and let Q(x) be a maximizing distribution for \mathfrak{C} . We wish to show that C' cannot be very much smaller than C. For every $P'(y \mid x) \varepsilon \mathfrak{C}'$ there is a $P(y \mid x) \varepsilon \mathfrak{C}$ such that $EJ \leq E'J' + 2b(b/M)^{1/2}$ where we use Q(x) in both cases. Thus for every $P'(y \mid x) \varepsilon \mathfrak{C}$

$$C = \inf_{e} EJ \le E'J' + 2b \left(\frac{b}{M}\right)^{1/2}$$

so that

$$C \leq \inf_{e'} E'J' + 2b \left(\frac{b}{M}\right)^{1/2} \leq C' + 2b \left(\frac{b}{M}\right)^{1/2}.$$

Let R > 0 be given such that $0 < C - R \le 1/2$. We must show how to select R' and M to get our result into the final form.

We select an integer M such that

$$\frac{2^8 a b^3}{(C-R)^2} \le M \quad \text{and} \quad (M+1) \le \frac{2^9 a b^3}{(C-R)^2}$$

so that

$$2b\left(\frac{b}{M}\right)^{1/2} \leq \frac{C-R}{2} \quad \text{and} \quad \frac{2b^2}{M} \leq \frac{(C-R)^2}{2^7ab}.$$

We define R' by

$$C' - R' = C - R - 2b \left(\frac{b}{M}\right)^{1/2} \ge \frac{C - R}{2} > 0.$$

Clearly $C' - R' \leq 1/2$ so that we have an $(e^{R'n}, \epsilon_n, n)$ code for \mathfrak{C} with

$$\epsilon_n \le 2(M+1)^{2ab} \exp\left\{-\left\{\frac{(C-R)^2}{4(16ab)} - \frac{(C-R)^2}{2^7ab}\right\}\right\}$$

$$\le 2\left[\frac{2^9ab^3}{(C-R)^2}\right]^{2ab} \exp\left\{-\left\{\frac{(C-R)^2}{2^7ab}\right\}.$$

The inequality $C \leq C' + 2b(b/M)^{1/2}$ shows that $R' \geq R$ and an $(e^{R'n}, \epsilon_n, n)$ code for C can easily be reduced to an (e^{Rn}, ϵ_n, n) code for C so that part (a) of Theorem 1 is proved.

7. Converse half of Theorem 1. The proof is based on Lemma 6.

LEMMA 6: Let G be an integer, \mathfrak{A} a finite set and let u_1, \dots, u_G be distinct elements of $\mathfrak{A}^{(n)}$. Define Q(x) on \mathfrak{A} by

$$Q(x) = \frac{1}{nG} \sum_{i=1}^{B}$$
 (the number of times that x appears in u_i).

Then any (G, ϵ, n) code, for a channel $(G, B, P(y \mid x))$ which uses these u_1, \dots, u_G for inputs must satisfy

$$(1 - \epsilon)\log G - \log 2 \le nEJ$$

where Q(x) is used to define P(x, y) and J(x, y).

PROOF: Define a distribution $\nu(u)$ on $\mathfrak{C}^{(n)}$ by $\nu(u) = 1/G$ if u is one of u_1, \dots, u_G and $\nu(u) = 0$ otherwise. Define a distribution P(u, v) on $\mathfrak{C}^{(n)} \times \mathfrak{G}^{(n)}$ by $P(u, v) = P(v \mid u)\nu(u)$ where $P(v \mid u)$ is obtained from the n-extension of $(\mathfrak{C}, \mathfrak{B}, P(y \mid x))$. Now define n distributions on $\mathfrak{C} \times \mathfrak{B}$ by

$$P^{(i)}(x, y) = P(y \mid x) v^{(i)}(x)$$

for $i = 1, \dots, n$ where

$$\nu^{(i)}(x) = \sum_{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n} \nu(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$$

and observe that $Q(x) = (1/n) \sum_{i=1}^{n} \nu^{(i)}(x)$. Thus, the lemma will be proved if the following chain of inequalities is proved.

$$(1 - \epsilon) \log G - \log 2 \leq \sum_{u,v} P(u,v) \log \frac{P(u,v)}{P(u)P(v)}$$

$$\leq \sum_{i=1}^{n} \sum_{x,y} P^{(i)}(x,y) \log \frac{P^{(i)}(x,y)}{P^{(i)}(x)P^{(i)}(y)} \leq n \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}.$$

Using $\log x = (\log 2) \log_2 x$ to convert a result from Feinstein [8], pp. 29, 39, 44; which is due to Fano [5]; we obtain the first inequality. The second inequality follows from page 30 of Feinstein [8]. We proceed to prove the third inequality. Now

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \sum_{x,y} P^{(i)}(x,y) & \left[\log P(y \mid x) - \log P^{(i)}(y) \right] \\ &= \sum_{x,y} P(x,y) \log P(y \mid x) - \frac{1}{n} \sum_{i=1}^{n} \sum_{y} P^{(i)}(y) \log P^{(i)}(y) \end{split}$$

but

$$\begin{split} -\frac{1}{n} \sum_{i=1}^{n} \sum_{y} P^{(i)}(y) \log P^{(i)}(y) & \leq -\sum_{y} \left(\frac{1}{n} \sum_{i=1}^{n} P^{(i)}(y) \right) \log \left(\frac{1}{n} \sum_{i=1}^{n} P^{(i)}(y) \right) \\ & = -\sum_{y} P(y) \log P(y) = -\sum_{x,y} P(x,y) \log P(y) \end{split}$$

where this last inequality follows from Lemma 4 on page 16 of Feinstein [8]. Combining the above, we complete the proof of the third inequality and hence of the lemma.

From Lemma 6 we immediately obtain that if G is an integer then for any (G, ϵ, n) code for a class $\mathfrak C$ of channels there is a Q(x) on $\mathfrak A$ such that

$$(1 - \epsilon)\log G - \log 2 \le n \inf_{\gamma \in e} E_{\gamma} J_{\gamma} \le nC.$$

Now e^{Rn} may not be an integer but

$$\log [e^{Rn}] \ge \log (e^{Rn} - 1) \ge nR + \log(1 - e^{-Rn}) \ge nR - \log 2$$

so that

$$(1 - \epsilon) (nR - \log 2) \le nC + \log 2$$

which completes the proof of part (b) of Theorem 1.

REFERENCES

- [1] DAVID BLACKWELL, LEO BREIMAN, A. J. THOMASIAN, "Proof of Shannon's transmission theorem for finite-state indecomposable channels," *Ann. Math. Stat.*, Vol. 29 (1958), pp. 1209–1220.
- [2] Herman Chernoff, "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Stat., Vol. 23 (1952), pp. 493-507.
- [3] Peter Elias, "Coding for noisy channels," I.R.E. Convention Record (1955), part 4, pp. 37-44.
- [4] Peter Elias, "Coding for two noisy channels," Proceedings of the London Symposium on Information Theory, Butterworth Scientific Publications, London, 1955.
- [5] R. M. Fano, "Statistical theory of communication," notes on a course given at the Massachusetts Institute of Technology, 1952, 1954.
- [6] AMIEL FEINSTEIN, "A new basic theorem of information theory," I.R.E. Trans. P.G.I.T., September, 1954, pp. 2-22.
- [7] AMIEL FEINSTEIN, "Error bounds in noisy channels without memory," I.R.E. Trans. P.G.I.T., September, 1955, pp. 13-14.
- [8] AMIEL FEINSTEIN, Foundations of Information Theory, McGraw-Hill, New York, 1958.
- [9] A. I. KHINCHIN, "On the fundamental theorems of information theory," Uspekhi Mathematicheskikh Nauk., Vol. 21 (1956), pp. 17-75.
- [10] A. I. KHINCHIN, Mathematical Foundations of Information Theory, Dover Publications, Inc., 1957.
- [11] Brockway McMillan, "The basic theorems of information theory," Ann. Math. Stat., Vol. 24(1953), pp. 196-219.
- [12] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal, Vol. 27 (1948), pp. 379-423, and 623-656.
- [13] CLAUDE E. SHANNON, "Certain results in coding theory for noisy channels," Information and Control, Vol. 1 (1957), pp. 6-25.
- [14] J. Wolfowitz, "The coding of messages subject to chance errors," Illinois J. Math., Vol. 1 (1957), pp. 591-606.