THE CAPACITY OF A CLASS OF CHANNELS!

By Davip BrackweLL, LEo BrREIMAN, AND A. J. THOMASIAN
Unaversity of California, Berkeley

1. Summary. Shannon’s basic theorem on the capacity of a channel is general-
ized to the case of a class of memoryless channels. A generalized capacity is de-
fined and is shown to be the supremum of attainable transmission rates when the
coding and decoding procedure must be satisfactory for every channel in the
class.

2. Definitions and Introduction. For any positive integer » and any set @ we
denote by @™ the set of ail n-tuples (z; , - - - , 2.) with each z; ¢ G.

A channel, denoted by (@, ®, P(y|)) or by P(y | x), consists of two finite
sets @, ® having a = 2, b = 2 elements, respectively, and a set of probability
distributions P(- |z) on ®, one for each x ¢@. P(y | ) is interpreted as the
probability of receiving y ¢ ® given that x ¢ @ was transmitted.

The n-extension of a channel (@, ®, P(y|x)) is the channel (@™, &™,
Pw|u)) where v = (g1, -+, yn) e®™, u = (21, -+, Ta) e&(") and
P(e|u) = JTiz P(y: | @0).

When considering a class of channels, (@, ®, P,(y|z)) for v ¢ @, where €
is an index set, we shall always assume that the @, ® sets are the same for each
channel in the class. We shall sometimes denote such a class of channels by €,
the index set.

A (G, €, n) code for a class € of channels for G = 1, e, = 0, n a positive
integer, is a sequence of [G] distinet elements of &("); U, *** , Urgr; Where [G]
is the largest integer < G, and a sequence of [G] disjoint subsets of 8™ ; By, - - - ,
Big; such that

P,(Bilu;) S €& for ¢=1,--- [G] andall yee€.

The set {u;, - -+, us} is called the set of input messages of the code and B;
is called the decoding set for u;. We think of an input letter u; of the code as
being selected arbitrarily and transmitted over an unknown one of the channels
P, , v ¢ €. The letter v is received with probability P,(v | u) and if v & B; it is
decoded as u; . Thus, the probability is < e, that any input message u; will be
transmitted so as to be not decoded as u; ; regardless of which channel in the
class € is used.

An R = 0 is an attainable transmission rate for a class € of channels if there
exists a sequence of (&*", ¢,, n) codes for € with e, — 0. Since @™ has only
a” points we know that any attainable rate R < log a. Clearly 0 is an attainable
rate for any class of channels. For any class of channels € we define T = T(@)
to be the supremum of the set of attainable rates for €.
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If (@, ®, P,(y|z)) for vy € € is a class of channels and Q(x) is a given prob-
ability distribution on @ then for each v ¢ @ we let P,(z, y) = P,(y|z)Q(x)
and we define on @ X ® the random variable J, by

Py(z, y)
Po(2) Py (y)

=0 if Py(z,y) =0.

J,(z,y) = log if P,(z,y) >0

The dependence of P, and J, on @ will usually not be exhibited. Since we will
often be interested in expressions of the form 2 log z it is natural to
define log 0 = 0. We will denote the expectation of a random variable X with
respect to the P, distribution by E,X. If @ has only one element we may drop
the subscript v. Finally for any class € of channels we define the capacity of the
class € by
¢(e) = C = supinf E,J,
Q(z) vee

where the sup is over all distributions @ on Q.

In the case considered by Shannon, € has only one element and our formula
reduces to C' = supq EJ, which is the usual formula for the capacity of a memory-
less channel. Shannon’s theorem then states that T = C. T = C, T < C are
called the direct and converse halves, respectively. This theorem for a single
channel has been proved in various ways and under various conditions by
Shannon [12], [13], McMillan [11], Feinstein [6], Khinchin [9], Wolfowitz [14],
Blackwell, Breiman, and Thomasian [1]. We will show that within the frame-
work that has been set up

T(e) = C(e)

always holds true. This result follows immediately from Theorem 1 which also
gives an exponential error bound for any rate R < C.

THEOREM 1: Let (@, ®, P,(y | z)) for v £ @ be any class of channels.

(a) For any integer n and any R > 0 such that 0 < C — R < 1/2 there is an

(%", €., m) code for € with
_te—mr)?

& = Ade B
10 13 2ab
A = [(_Cz—g%)—“’] and B = 2ab.

(b) For any integer n and B > C if e = 2 then any (e, €., n) code for
C must satisfy

where

C,__,_1052
=1 —
R___log2

n

The sequence of steps used in proving Theorem 1 will be outlined. Theorem 2
presents a basic inequality, for a single channel, which is contained implicitly
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in Feinstein [8]. This inequality is of independent interest since it gives the same
bound for thé maximum probability of error that Shannon [13] gives for the
average probability of error. Theorem 2 permits a simple proof of T = C for a
single channel. Lemma 2 shows that supe in the definition of C(@) can be re-
placed by maxg . Theorem 3 gives an exponential bound on the error of a code
for one channel, which depends only on a, b, (C' — R)®. This is convenient in that
the particular probabilities P(y | ) may. not be known and, in any case, need
not be computéd with. Results related to.Theorem 3 have been given by Elias
'[3] and [4], Feinstein [7], Shannon [13)], and Wolfowitz [14].

Lemma 3 generalizes the inequality of Theorem 2 to the case when € has a
finite number of elements, and Theorem 4 generalizes the exponential error
bound of Theorem 3 to this case.

Lemma 4 shows that for a given @, ® there is a large finite number of channels
on @, ® such that any channel on @, ® is close, in several senses, to one of them.
Lemma 5 shows that if a channel has a sequence of codes (e*", e,, n) with
€, = ¢ " for large n, with B > 0, then this same sequence of codes can be used
for all channels in a certain neighborhood of the channel. This result justifies
some of our attention to exponential error bounds. The technique of Lemma 5
can also be used to get some similar results when the channel probabilities vary
from letter to letter.

At this point the direct half of Theorem 1 is demonstrated by approximating.
the class @ of channels by a certain finite set of channels @ from Lemma 4;
obtaining an exponential error bound code for @’ from Theorem 4; and using
Lemma 5 to show that such a code must be satisfactory for €.

The converse half of Theorem 1 is then proved.

Before proceeding to the proofs we pause to clear up one point. It is obvious
that

¢(e) £inf sup £, J,,

ree Q(z)

i.e.,, C(€) = the capacity of.every channel in €. We now exhibit an example
where C (@)  inf of the capacities of channelsin €. Let @ = & = {1, 2, 3, 4},
€ = {1, 2}, and let P;(y | ) and Py(y | x) be defined by the left and right follow-
ing matrices, respectively.

53 00\/1 111
003 3|[+ 111
b rifl3roo0
111 \00 11
Let Q(x) be any distribution on @ and let H,(Y) = —Zy Pi(y) log P:(y),

H(Y|X) = =2 .Q(x) X, Pi(y|z) log Pi(y | z). Using the fact that log x =
(log 2)log: = we see that (log 2)"H:y(Y | X) = Q(1) + Q(2) + 2Q(3) +
2Q(4) = 1 4+ Q(3) + Q(4). Also from Feinstein [8], p. 15 we have
(log 2)'Hi(Y) = 2 so that EvJy = Hi(Y) — Hy(Y | X) < (log 2)(Q(1) +
Q(2)). Similarly E.J. < (log 2)(Q(3) + Q(4)) so that C(€) < (1/2) log 2.
The case Q(¢) = 1/4fori =1, --- , 4 shows that C(€) = (1/2) log 2; the case
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Q(1) = Q(2) = 1/2 shows the capacity of channel one to be log 2; the case
Q(3) = Q(4) = 1/2 shows the capacity of channel two to be log 2. Thus for
this example ,
Llog2 = C(@) < inf sup E, J, = log 2.
vee Q(z)

3. A basic inequality.

TaeoREM 2: For any channel (@, &, P(y|z)), any distribution Q(z) on @,
a>0,G = 1thereisa (G, ¢, 1) code for the channel with e = Ge * + P(J £ a).

Proor: It is clearly sufficient to construct an (M, ¢ 1) code with the same e
as in the theorem and with M = G. Let A = [J > o] and for any xo €@ let
Az = {(2,9) | (x0,y) eA}. P(J £ a) < eso that P(A) = 1 — ¢, hence there
is an z; such that P(4 | z1) 2 1 — e Let B; = A, . (Each By, will be a cylinder
set with base in ®. The base of B;, will be the decoding set for z; .) At the kth
step select 2; such that P(Bi | 2x) = 1 — e where

k—1

k
B.=U4,, -U4,,.
1 1
This process will terminate at some M = 1. For every x

P(A—An(f:]A,,.) x><1—e

otherwise we could add this z to z;, - - - , Tx contradicting the definition of Al.
Thus

P(4) =P (A n (l? Az,.)) + P (A — AN (ij Az;))

P(A;,) +1— e

=

.-Ma

Now if (z, y) € A then J(x, y) > aso'that P(y |z) > P(y)e®. For fixed 2 sum
both sides of this inequality over all y such that (z, y)e A. Then

1= P(A|z) = P(A,)e".

Thus P(A4,) < ¢ “foranyz e@so that P(4) < Me * + 1 — e Sirlce P(A) =
Ge * + 1 — ¢, wehave M = @G. Clearly the B, , - - - , By are disjoint and

P(Bklxk) =1 —ce€

fork = 1, --- , M so the proof is completed.

Consider a single channel (@, &, P(y|z)) and let Q(x) be specified and
determine P(z, y), J (=, y). Applying Theorem 2 to @™, ®™, P(v|u)) and
Q(u) = Q(z1) -+ Q(z,) Witha = n(R + EJ)/2,G = ¢"" we see that for any
R such that 0 < R < EJ there is an (", €., n) code for (@, ®, P(y | z)) with

R+EJ)
5 .

6 = ¢ TR 4 p (711 J' =
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Now
, _ P(u,v) .
J'(u,v) = log PP if P(u,v) >0
=0 otherwise.
Let J”(u, v) = 2.v Ju(zs, y:) where
- P(x'l. ) yt) :
J@(xzyyz) ‘“lOgm lf P(xzyyz) >0
=0 otherwise.

Clearly P(J' = J”) = 1 and J” is the sum of n independent random variables
each having the distribution of J(z, y). Since EJ > (R + EJ)/2 we see that
€. — 0. Now it is easily seen (and we will shortly prove even more) that for a
fixed channel EJ is a continuous function of (Q(z1), Q(z2), ---, @(x,)) and
since the domain of the function is a closed bounded subset of Euclidean space
the supremum is actually achieved. Thus for any channel (@, ®, P(y | 2)) there
is a distribution Q(z) on @ such that C = EJ. Using this Q(z) in the earlier por-
tions of this paragraph we obtain the direct half of Shannon’s theorem for a
memoryless channel: T = C.

By introducing a brief epsilon argument in the proof of the direct half of
Shannon’s *heorem we could clearly have ignored the question of whether or
not there is a maximizing Q(x). Although the fact that there is a maximizing
Q(x) in the general case of a class of channels is not vital in the following work,
we will pause to prove this fact now. The proof is based on Lemma 1 which will

be needed later.
LemMa 1: Let Q(x), Q' (x) be any two distributions on @ such that

| Q(z) — Q' (x) | < € < 1/e for all x Q.
Then
|H(X) — H'(X) | £ aé”
where H(X) = — >, Q(x) log Q(z) and H'(X) = — >, Q'(z) log @ (x).
Proor: Let
J(y) = [—(y + ¢ log (y + €)] — [~y log y]

where0 < e = 1/eand0 =y =1 — e Thenf(0) = — elog ¢ > 0 and f(1 — ¢)
= (1 —¢)log (1 =¢) <O0also

so that | f(y) | £ max {— elog e, —(1 — ¢) log(1 — €)}. Now

(l—e)log—l—é(l—e)(—L—1)=e§—eloge
1—e€ 1 —c¢
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since € < 1/e. Thus

1
e%lox:

1 Y
()
since /> — log 2 = 2 — log 4 > 0 for z > 0. Applying the result [f(y) | =

emtoy=p,e=q—pWhereO§p§q§landlq—plgl/eweseethat

|[—plogp] — [—qloggll < (|p — ¢|)**

which easily gives us the bound on | H(X) — H’(X) | completing the proof.

Lemma 2: For any class of channels (@, &, P,(y | z)) for v ¢ €,

C = maxinf E,J, .
Q(zy 7veC

ProorF: Let (@, B, P(y | z)) be a channel and Q(x) a distribution on @ deter-
mining P(z, y) = P(y | z)Q(x) and J (=, y). Clearly EJ = H(X) + H(Y) —
H(X,Y) where H(X) = — 2. P(z) log P(z), H(Y) = — X, P(y) log P(y),
H(X,Y)=— Y.,P(z, y) log P(z, y). Let Q' () be another distribution on
@ determining P'(z, y) = P(y|z)@'(z) and J'(=, y), and note that E'J’' =
H'(X) + H'(Y) — H'(X, Y) where the primed quantities have analogous
definitions. Assume that | Q(z) — Q'(x) | £ ¢ = 1/e for all x £@. Clearly
| P(z,y) — P'(z,y) | = P(y|z)|Q(z) — Q(x)| = eand | P(y) — P'(y) |
< > .| P(z,y) — P'(x,y) | £ ae. Applying Lemma 1 we get

|EJ — E'J'| = |H(X) — H(X) |+ |H(Y) — H(Y) |
aé”? + b(ae)'’® + abe'* < (a + 2ab) %

Thus not only is EJ continuous in @(z) but it is continuous in @(x) uniformly
in Q(z) and P(y | z). We easily take inf,ee on the inequalities

E,J, — (a4 2ab)é” £ E,J, < EyJy + (a + 2ab)e”

[f(y) | £ —elog e = <

1A

and see that infy.cE,J, is continuous in Q(z) so that once again there is a maxi-
mizing Q(z) and Lemma 2 is proved.

4. The error bound for one channel.
THEOREM 3: Let (@, B, P(y|x)) be any channel. For any integer n and any
R > 0suchthat0 < C — R < 1/2, thereis an (e*", e, , n) code for the channel with

(C—R)?
e = 26 10 ",
Proor: Applying Theorem 2 to (@™, ®™, P(v | u)) with Q(u) = Q(z1) - - -
Q(z,), where Q(z) is any distribution on @, G = €*", & = (R + 0)n we see that
for any R > 0, 8 > 0 there is an (¢*", ¢, , n) code for (@, ®, P(y | x)) with

ew=e¢"+ P(J” Zn(R+ 6))
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where, as shown in Section 3, J” is the sum of n independent random variables,
each having the distribution of J(z, y). Select R > 0,0 < EJ — R < 1/2 and
let§ = (EJ — R)>. ThenR + 0 < R+ (EJ — R)/2 = (EJ + R)/2.
Thus it remains only to show that )
(EJ—R)?
P(J”" £ n(EJ + R).) < ¢ 16a "

(we will need this result later) for we can then choose @ so that C = EJ
A method due to Chernoff [2] will be used to bound the probability in question

Let0 =t = 1, then
EJ+R)
— e___Jn

n(EJ+R) tn(
P(Oéf'(_E%tR_)_J”)éEet[ 2 —J]=e
t(EJ+R)

— [6_————2 Ee— tJ] n

so that we need show only that for a proper selection of ¢

t (EJ+R) (BJ—R)?2
e 2  Ee¥ < ¢ 16w

Now
2
Be¥ =1 — tEJ + % EJ%e™, 0<6<1.

We need consider only (z, y) with P(z, y) > 0. Terms in EJ% " are of the

form
PP\, » P(zy) 1 Y . P(z,y)
) () 8 pesets 5 P () 108 ety
1—t 2 P(IE y) 1—t¢ 2
=< (P(z,y)) " log P&PQ) = (P(z,y)) " log” P(x,y)
where the last inequality followed from P(z, y) < P(2)P(y)/P(z,y) < 1/P

t

(z, y). Also
1—¢ 1—¢t
(P, ) Tog Pla, )P = (1 24) [P0 T log Playy) T
< (_2_) Lo 1
“\1—-t/ &~ (1 —1?
Thus ,
ab _tw+§3(—la_b—;;-;

<e

—tJ <
Ee "' =1 —1tEJ + 5 (1 =

so that
t(BI+R)
e * Ee¥ <0
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where

2 ab
f(t) = (BEJ — R)t — ¢ a=n

Lett = (EJ — R)/4ab < 1/8so that 1/(1 — ¢)* £ (8/7)?, then

1(55a") = g [1- ) 3] = P

completing the proof.

6. The error bound for a finite set of channels. Lemma 3 is needed in the proof
of Theorem 4.

LemMma 3: Let (@, ®, Py(y |x)) forye € = {1, 2, --- | L} be a finite class of
channels and let Q(x) be a distribution on @, determining Py (x, y), J,(x, y).

(a) Define a channel (@, &, P(y|=z)) by P(y|z) = (1/L) 25 Py(y|2)
and let Q(z) determine P(x,y), J(z,y). Then for all a, &

PUSa)s ?E:‘I P,(J, S a +0) + Le™.
(b) Foranya > 0,G = 1,56 > 0 thereisa (G, ¢ 1) code for @ with
e=LGe ™ + L ® + ijP,(Jy < a+9).
Proor: We first prove part (a).
PUSa)= LY P(JSa)S TP/, S atd)

+P7(J7>a+5;J§a)]

so that we need only prove that P,(4,) < Le *where Ay = (Jya + §;J < a).
For any (z, y) ¢ A, with P,(z, y) > 0 we have

FP(y) 2 Py|2) 2 1 Py(y|2) 2 1 €Py(y)

so that P,(y) < Le °P(y). Summing this last inequality over all y such that
there is an  with (z, y) € A, we get P,(4,) < > P,(y) < Le ® which completes
the proof of part (a).

Applying Theorem 2 to the channel P(y | z) defined in part (a) and then
using part (a) to bound P(J = a) we find that there is a (G, &, 1) code for
P(y | z) with

€ = G + P(J £ a) <G + Iljz P(J, < a+8) + L.
Y

Now P,(y |2) < LP(y | z) so that if x, is an input letter for the (@, &, 1) code
and B, is its decoding set, then P,(Bi|z;) < L P,(Bi|z:;) £ Le . Thus the
(G, &, 1) code for P(y | z) is a (G, Le , 1) code for € and the lemma is proved.
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THEOREM 4: Let (@, B, P,(y | z)) forye @ = {1,2, - -+, L} be a finite class of
channels. For any R > 0 such that 0 < ¢ — R < 1/2 there is an (e*", €., n) code
with

(0—R)?
e = 2% Toab ™,

ProoF. Applying part (b) of Lemma 3 to the class of channels @, @™,

Py(v|w)) with Q(u) = Q(z1) --- Q(x.) and Q(x) a distribution for which
C = infyee B Jyand G = ", a = (R + 6/2)n, 8§ = 6n/2 we see that there is an
(", €, n) code for € with

[] L
= (L+L2)e_2"+ZI:P~,(%J.,é.R+0).

Let 6 = (C — R)*and note that R + (C — R)’ < R+ (C — R)/2< R+
(E,J, — R)/2 = (E,Jy + R)/2. Thus,

(C—-Ii!)2

en < (L + L')e 1020 +ZP( 7_2(R+EJ1))
Now
P‘r(,'ll y = 2(R+E1J~/))= 7(;,1‘7/J7§%(R’+E~,J.,)>

where R’ = E,J, — (C — R) 2 Rand 0 < E,J, — R’ £ 1/2. Therefore, we
can apply the result obtained in the proof of Theorem 3 and get

(ByJy—R)? (c-R)?

P, (%Jv = 3 (R + E’YJ‘Y)) Se 100 =¢ 1620

Now L = 2 so that 2L + L? = L(L + 2) < 2L? and since Theorem 4 reduces
to Theorem 3 for L = 1, the proof is completed.

6. The direct half of Theorem 1. Lemmas 4 and 5 are needed for the proof of
part (a) of Theorem 1.

LEMMA 4: Let @, ® be given. For every integer M = 2V there is a class of channels
(@, ®, Pi(y | x)) with e Dy , where Dy has at most (M + 1)® elements, such that
for any channel (@, ®, P(y | x)) there is a channel (@, ®, P'(y |x)) in Dy such
that:

(a) | P(y|=) — P'/(y|z) | = b/M forall z, y.

(b) P(y|z) <™ P'(y| ) forallz,y.

(¢) For any distribution Q(z) on @ let P(z, y) = P(y|z)Q(x), P'(x, y) =

P'(y | 2)Q(x), then /
- b 1/2
|EJ — E'J'| < 2b(H) .

Proor. Let D, be the class of channels (@, 8, P(y | z)) such that for all z, y
we have MP(y | z) = an integer. Clearly Dy has at most (M + 1) elements.
Given the distributions P(y | ) we will first construct P’(y | ) and prove (a),
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(b). For this purpose it is enough to carry out the construction for one .
Arrange the ‘“b” numbers P(y | xo) in ascending order and designate them by
PEp = - < Py . For i = 1 -, (b=1) selectp, uniquely by p; < p.
pi+ 1/M, Mp; = an integer. p; w111 be P’(y | xo) with the y being the one corre-
sponding to p; . Clearly
<2, < b
pi < ¢¥pi and |p;—pi| < 37

for t=1--, (b — 1). It remains to show that if pb =1- > pt then
pb =0 and pb , pb satisfy the same relations. Now

, = 1 b .1 b_1 1 1
—_ . _ —_— 2> —m > D e = .
=1 ;(‘JFM)g”” M=b M=b 2 3

Thus p{ , p£ form a distribution and p;, = pé = p» — b/M so that
| po — po| < b/M.
Also "
20" 1 20° -,
— - <eM
pb__pb-l‘ = +M2b_ (1+ )_6 Do

completing the proof of parts (a) and (b).
In the proof of part (¢) we will use part (a) and Lemma 1. In order to use
Lemma 1 we observe that b/M =< 1/2b < 1/4 < 1/e. We also note that

| P(y) = P'(9) | £ 2=| P(y|2) — P'(y|2) | Q) < b/M.

Now
|ET — E'J'| £ [—; P(y) log P(y)] — [—Zy: P'(y) log P'(y)] |

+|[=2 P2,9) log P(2,y)] — [~ X P'(,9) log P'(z, )] | < b (%)l/2
- ; %) [_Zu: P(y|z)log P(y|2)] — [—; P'(y|z)log P'(y|x)]]

b\ (b 12
) 2
o (2 (2
and the lemma is proved.

LemwMa 5: Let (@, ®, P'(y | z)), (@, ®, P(y | xz)) be two channels and A a non-
negative number such that P(y|xz) < e¢“P'(y|z) for all z, y. Any (e*", €., n)
code for (@, B, P'(y | x)) is an (", ene‘”, n) code for (@, G, P(y | z)).

ProoF: Let u = (21, ++ ,%a) @™, v = (y1, -+, yn) € ™. Then

POl = [1Pailz) 5 e [T P(si]2) = 4P/ |w).

(n)

Thus for any subset D of 8™ and any u ¢ @™ we have

P(D|u) < e P'(D|u).
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Let u; £ @™ be an input message and B; the corresponding decoding set of an
(€™, e, n) code for (@, ®, P'(y | )). Then

P(Bi|us) < e*" P'(Bi|u;) < e*" e

and the proof is completed.

We turn now to the proof of part (a) of Theorem 1. For each P(y|z) ¢ €
select a P’'(y | z) ¢ Dy according to Lemma 4 and let €’ denote this set of chan-
nels. Let ¢’ = C(¢€’). Since €’ has at most (M + 1)® elements we know from
Theorem 4 that if R > 0,0 < ¢’ — R’ < 1/2 then there is an (¢* *, €, , n)

code for @’ with
(c'—r")?

en = 2(M + 1) 1o

n
.

For each P(y | z) € @ there is a P'(y | z) € € such that

262

P(y|z) < el W12
so that from Lemma 5 the code which we have for €’ is an (e* '", € , 1) code for
@ with

_ 2ab _ (C" — R _ 20’
€ = 2(M + 1) exp {W ﬁ n

Let C = C(@) and let @(z) be a maximizing distribution for €. We wish to show
that C’ cannot be very much smaller than C. For every P’/(y | ) £ €’ there is a
P(y|z) € @ such that EJ < E'J’ + 2b(b/M)"* where we use Q(z) in both
cases. Thus for every P'(y|z) e

b\
C=infEJ S E'J +2b (—)
e M

b 1/2 b 1/2
< i ry ~-) =< -
C = lé}fEJ +2b(M) =C +2b<M) .
Let B > 0 be given such that 0 < ¢ — R = 1/2. We must show how to select
R’ and M to get our result'into the final form.

We select an integer M such that

so that

2%ab® 2%ab®
—_— < < __~T 77
(C—R)2=M and (M+1)=(C—R)2
so that ,
" _C—R 28" _ (C — R)?
< T
2 <M) 5 0 3= g

We define R’ by

1/2
C'—R =C — R—2b(> =02R 0.
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Clearly ¢’ — R’ < 1/2 so that we have an (¢* '”, € , 1) code for € with

2ab C—-R)} (C—-R)
2(M + 1) exp _{(4(16ab)) - 5ab ) }

29ab8 2ab {(C _ R)2
< . X 77
=2 [(C = R)2] R I
The inequality ¢ < ¢’ + 2b(b/M)"? shows that B’ = R and an (¢ ", e, , n)

code for € can easily be reduced to an (", e, , n) code for € so that part (a)
of Theorem 1 is proved.

7. Converse half of Theorem 1. The proof is based on Lemma 6.
LemMA 6: Let G be an integer, @ a finite set and let uy, - - - , ug be distinct ele-
ments of @'™. Define Q(z) on @ by

IIA

€n

B
Q(z) = % > (the number of times that z appears in u;).
J=1

Then any (G, €, n) code, for a channel (@, B, P(y | x)) which uses these uy , * -+ , Ug
for inputs must satisfy

(1 — e)logG@ — log 2 < nEJ

where Q(x) vs used to define P(x, y) and J(x, y).

Proor: Define a distribution »(u) on@™ by »(u) = 1/Gif uisoneof uy, - -,
ug and »(u) = 0 otherwise. Define a distribution P(u, v) on @™ X &™ by
P(u, v) = P(v|u)v(u) where P(v|u) is obtained from the n-extension of
(@, ®, P(y|x)). Now define n distributions on @ X & by

PPz, y) = P(y|z)»"”(x)
fori = 1, ---, n where

v(’i)(x) = E V(xl, e X1y Ty Tig1, t ’xn)

ESTRRETE YIS TE 2 NS PLEL: 7

and observe that Q(z) = (1/n) > i »”(z). Thus, the lemma will be proved
if the following chain of inequalities is proved.

(1 —elogG —log2 < uz P(u, ) log lfz;?;})zzz)
2 ) (3)
= Z;%P(z)(l‘;y) lOgF(I‘;—(‘x—g%(%g—y‘)‘ = n%P(x, y) log}fzi_‘;:’l)?zl)/_)_

Using log = (log 2) log,x to convert a result from Feinstein [8], pp. 29, 39, 44;
which is due to Fano [5]; we obtain the first inequality. The second inequality
follows from page 30 of Feinstein [8]. We proceed to prove the third inequality.

Now ‘
lé ; P®(z, y) llog P(y|z) — log P (y)]
= ;,, P(z,y)log P(y|x) — %gl ; P9 (y) log P (1)
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but

-I> 2 POy log PO(y) = =20 (n 2 P“’<y>) log (n 2 P"’(y))

=1 v =1 =1

= —Xu: P(y) log P(y) = —,Z,, P(z, y) log P(y)

where this last inequality follows from Lemma 4 on page 16 of Feinstein [8].
Combining the above, we complete the proof of the third inequality and hence
of the lemma.

From Lemma 6 we immediately obtain that if G is an integer then for any
(@G, ¢, n) code for a class @ of channels there is a @(z) on @ such that

(1 — e)logG — log2 = nlnfEJ.,_nC

Now ¢"" may not be an integer but

log [¢""] = log (¢*" — 1) = nR + log(1 — ¢ **) = nR — log 2

so that
(1 —€) (nR —log2) < nC + log2

which completes the proof of part (b) of Theorem 1.
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