RANDOM GRAPHS

By E. N. GILBERT

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

1. Introduction. Let N points, numbered 1, 2, ---, N, be given. There are
N(N — 1)/2 lines which can be drawn joining pairs of these points. Choosing a
subset of these lines to draw, one obtains a graph; there are 2" ™/? possible
graphs in total. Pick one of these graphs by the following random process. For
all pairs of points make random choices, independent of each other, whether or
not to join the points of the pair by a line. Let the common probability of join-
ing be p. Equivalently, one may erase lines, with common probability ¢ = 1 — p
from the complete graph.

In the random graph so constructed one says that point 7 s connected to point j
if some of the lines of the graph form a path from < to j. If 7 is connected to j
for every pair %, 7, then the graph is said to be connected. The probability Py
that the graph is connected, and also the probability Ry that two specific points,
say 1 and 2, are connected, will both be found.

As an application, imagine the N points to be N telephone central offices and
suppose that each pair of offices has the same probability p that there is an idle
direct line between them. Suppose further that a new call between two offices
can be routed via other offices if necessary. Then Ry is the probability that
there is some way of routing a new call from office 1 to office 2 and Py is the
probability that each office can call every other office.

Exact expressions for Py and Ry are given in Section 2. These results are
unwieldy for large N. Bounds on Py and Ry derived in Section 3 show that

(1) Py~1— Ng"™
and
(2) Ry ~1 —2¢""

asymptotically as N — .

Other related results appear in a paper by Austin, Fagen, Penney, and Riordan
[1]. These authors use a different random process to pick a graph and they find
a generating function for the distribution of the number of connected pieces in
the random graph.

2. Exact results. Py may be expressed in terms of the number Cx,., of connected
graphs having N labeled points and L lines. Since each such graph has proba-
bility p g “t" ¥ of being the chosen graph, it follows that

L —L+N(N—1)/2
PN=ZCN,qu ",
L
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In this formula the range of summationis N — 1 £ L < N(N — 1)/2. In [3]
and [4] a generating series for Cx,;, was given in the form

3 e 28 = log (1 +3 ’i&!.iﬂ) :
N, L

N! =1 2!

This result is easily converted into a generating series for Py, viz.,

@ _—i(i—1)/2

0 N —N(N-1)/2 0
(3) ZPNLL——=log<1+Z”—q—.——>-
¥=1 N! i=1 2!

It may be noted that, when 0 < ¢ < 1 and z # 0, neither series in (3) con-
verges. The equality in (3) merely signifies that Py may be found by formally
expanding the logarithm into a power series and collecting coefficients of z".
One can perform the expansion analytically to obtain an explicit formula

__1\n1 _ IN 1 (N2—127)—. .. —N27p) /2
Tl TN 7'1! e rN!(l!)'l v (N!)TN

The sum is extended over all non-negative integer solutions of r, + 2r + -+ +
Nry = N (i.e. over all partitions of N). The letter n in the sum isn = r, 4
DY —l—- rN .

The first few instances of this formula are

P 1 = 1

P 92 = 1-— q

Py =1 -3¢ + 2¢°

Pi=1—4¢" — 3¢" + 12¢" — 6¢

Ps =1 — 5¢* — 10¢" + 204" + 30¢° — 60¢° + 24¢"

Ps=1— 6¢° — 15¢" + 20¢° + 120¢" — 90¢” — 270¢" + 360¢™ — 120¢".
For larger values of N the number of terms in the formula for Py increases

rapidly. Py may then be computed more easily by means of the recurrence rela-
tion

N—1
) 1-py =2 (Y 21 pae.

K=1 -
The kth term of (4) is the probability that point 1 is connected to exactly &k — 1
of the N — 1 other points. Then (4) follows by noting that point 1 is connected
to 0,1, ---, or N — 1 other points with probability 1.

The argument which was used to derive (4) may be modified to give the

following formula for Ry :

N—1
(5) 1 — Ry = Z (ZZ : 12> quk(N——k).

k=1
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TABLE 1

g= 1 3 5 7 9

P, .90000 .70000 .50000 .30000 .10000
Py .97200 .78400 .50000 .21600 .02800
P, .99581 .89249 .59375 . 21865 .01293
P .99949 .95751 .71094 . 25626 .00810
P .99994 .98497 .81569 .31690 .00624
R, .90000 .70000 .50000 .30000 .10000
R, .98100 .84700 .75000 .36300 .10900
ERs .99980 .98143 .85353 .52528 13134
R, .9999980 .99850 .96302 .70634 .16118

The kth term of (5) is the probability that point 1 is connected to exactly k&
of the N — 2 points 3, --- , N. Then the sum is the probability that points 1
and 2 are not connected.

Using these results, R. W. Hamming and the author computed numerical
values of Py and Ry which appear in Table 1.

3. Bounds. The formulas of Section 2 solve the problem for small N only. In
this section we estimate Py and Ry for large N. As N increases, the number of
paths by which points 1 and 2 may be joined increases. Then it is not surprising
that Ry — 1 as N — o for every fixed p > 0. That Py — 1 too is less obvious
since increasing N also increases the number of pairs of points to be connected.
Indeed, Table 1 shows Py decreasing for N < 6 when ¢ = .9. The more pre-
cise results (1) and (2) follow from the bounds which we now derive.

THEOREM 1:

{1 _ N2— qu——l} NqN—l <1 — Py

and
1= Py < ¢"{(1+ ¢"™PM)" = PO 4 A+ THT -1
THEOREM 2:
2= =1 - Ry 22470+ ")

The lower bound in Theorem 2 is just the probability that at least one of the
two points 1, 2 is connected to no other point.

A similar idea is used in Theorem 1. A lower bound on 1 — Py is the proba-
bility 7' that at least one of the points 1, 2, ---, N is connected to no other
point. Let E; denote the event that point 4 is connected to no other point; then
T is the union of the events E;, ---, Ex. A lower bound on T (and hence on
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1 — Py) is provided by an inequality of Bonferroni (see Feller [2], p. 100):
2 P(B) — 2 P(EEy) < T.
% 1<J

Since P(E;) = ¢" ' and Pr (E:E;) — ¢"™°, we obtain the lower bound stated.

The upper bounds are obtained using (4) and (5). In both cases we bound
Py, by 1. To bound qk(N ™ we use the fact that (N — z) is a convex function
of z. Then

k(N—k)g(_N_“_%)_kﬂ ifléké-];—r,
KN — k) = (N_z)(Nz"“)JFN if%rékéN—l,
and
qk(N—k) é qN/2 {q(N—2)k/2 _|_ q(N—2)(N—k)/2}

for1 = kK = N — 1. When these bounds are inserted into (4) and (5), the
sums reduce to the expression shown in Theorems 1 and 2.

When N becomes large the bounds are in close agreement. It follows from
Theorems 1 and 2 that

PN =1— NqN—l + 0(N2q3Nl2)’
and
RN = 1 _ 2qN—-l + O(Nqulz)-

Checking these approximate formulas against Py and Ry in Table 1, it appears
likely that N¢"™" and 2" will represent 1 — Py and 1 — Ry to within 3%.
when ¢ £ .3 and N = 6. For the same degree of approximation, larger values
of ¢ will require larger values of N.
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