OPTIMAL SPACING IN REGRESSION ANALYSIS!

By H. A. Davip anp BeverLy E. ARENS
Virginia Polytechnic Institute

1. Introduction and summary. When a response (or dependent) variable y
can be observed for a continuous range of values of the independent variable z,
which is at the control of the experimenter, the question arises as to how a given
number of observations should be spaced. It will be assumed that x is measurable
without error and that y differs from the true response function f(x) by a random

term z with mean zero and constant variance o2. We suppose that the aim of the
experimenter is to estimate f(z), or possibly the mean response f(), on the basis

of n observations (z; , y.).

Various aspects of this problem of optimal spacing have been studied for the
case where f(z) is known apart from some parameters (see e.g. Elfving [3],
Chernoff [1], de la Garza [2], and Kiefer and Wolfowitz [8]). However, the func-
tional form of f(z) is often unknown or only approximately known. In the absence
of a specific model to the contrary, polynomial approximations to f(z) provide
a convenient approach. Section 2 deals briefly with the non-statistical case
o = 0 when the problem of choosing n abscissae in order to approximate to f(x)
by a polynomial of degree n — 1 reduces to one of optimum interpolation and
that of integrating f(z) reduces to Gaussian quadrature. For a fuller account of
this part see Hildebrand [5] or Kopal [6].

If the response contains a random element, a polynomial of degree n — 1 or
less may be fitted to the n observations by least squares. The error of approxima-
tion will now be due, in general, both to random error and the use of an incorrect
approximating function. We confine ourselves to the case of fitting a straight
line when the true response, while roughly linear, may contain a quadratic com-
ponent. Two criteria are considered in arriving at the two abscissae resulting in
an optimal fit. The first of these criteria ((3.2) below) has also been discussed in
a recent paper by Box and Draper [7] who have extended its use to the case of
several independent variables.

It is shown in Section 6 that for z-values symmetrically spaced about the centre
of the region of interest nothing is gained in fitting a straight line by the use of
more than two such abscissae. These optimal abscissae are determined in Sections
3 and 4.

The emphasis of the present approach is on attaining an optimal straight line
fit with a small number of observations, rather than on detecting departures from
linearity. For the latter purpose more than two abscissae would, of course, be
needed, but the number of observations required may well be uneconomically
large. In Section 7 comparisons with some other simple spacings are made.
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As an illustration, consider the calibration of a large number of instruments
for a range of z in which f(z) is known to be approximately linear. In this case
adequate accuracy may be attainable by the use of two observations only. If &
is not negligibly small several observations may be taken at each of two appro-
priately selected settings, especially if it is much easier to repeat measurements
at a given setting than to turn to a new one (compare de la Garza [2]).

An example illustrating the methods proposed is given in Section 8.

2. Optimal spacing in the absence of random error. We suppose that the region
of interest of the independent variable is finite and that it has been transformed
into the closed interval (—1, 1). If g,—1(z), a polynomial of degree n — 1, agrees
with f(z) at the n abscissae @1, 25, + - - 2, , and if f(z) has n continuous deriva-
tives in (—1, 1) the remainder R(z) = f(z) — g._1(x) may be expressed as

(n)
R@) = x(z) 118
where 7(x) = (x — 1) (¢ — 22) -+ (z — x,), and |§ < 1. In order to make
gn-1(x) a desirable approximating function it is natural to attempt to minimize
|R(x)| in some sense by an appropriate choice of abscissae. However, £ depends,
in general, not only on the abscissae but also on z and the nature of the function
f(x). It is therefore customary to content oneself with the minimization, in the
sense chosen, of |w(z)|. If f(z) is a polynomial of degree n, |R(x)| will also be
minimized, but more generally the minimization of |R(x)| will be only approxi-
mate (compare [5], Section 9.6).
We consider the following two alternative requirements:
1

(2.1) /_1 7°(z) dz = min,

(2.2) max |7(z) | = min.
(-11)
‘The first is a criterion of closest overall fit and gives the abscissae as the n zeros
of the Legendre polynomial P,(z) of degree n; the second results in abscissae
which are the zeros of the Tchebysheff polynomial T,.(z) = cos (n cos™ z).
Corresponding to these two cases we shall speak of Legendre and Tchebysheff
spacing. Generally, the latter would be regarded as more appropriate in the
problem of calibration outlined in the introduction.

Criteria (2.1) and (2.2) may also be given a statistical interpretation. To this
end we note that (2.2) can be shown (e.g. [5], Section 9.6) to be equivalent to
'or'(a)
L1 (1 — 2?)t

Suppose g.1(z) is required for a value of z chosen randomly in (—1, 1). Then,
clearly, &[x°(x)] is minimized by (2.1) if z is uniformly distributed in ( -1, 1)
and by (2.2) if cos™ z is uniformly distributed in (0, ).

A further advantage of the above spacings is that the integral approximation

(2.3) dx = min.
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(2.4) [1 w(z)f(x) dx = j: w(x)gna(z) do

is a Gaussian quadrature formula with weight function w(z) = 1 for Legendre
spacing and w(z) = (1 — x2)”5 for Tchebysheff spacing (see e.g. [6], Chapter
VII). Thus if the integral of f(z) over (—1, 1) is required it is given by

(2.5) ;ka(xk) + E.,

where the H, are tabulated weights, the z; are the zeros of the Legendre poly-
nomial of degree n, and the error of integration E, is given by

22n+l(n!)4 -
SO

The integration formula (2.5), although it uses only » ordinates, is therefore
of degree of precision 2n — 1, i.e., the integration is exact if f(z) is a polynomial
of degree 2n — 1 or less. For a general function f(z), (2.5) can be shown to be
optimal in the sense that the coefficient of f @™ () in (2.6) is smaller than for
any other integration formula of degree of precision 2n — 1.

(2.6)

3. Criteria for optimal spacing in the preseﬁée of random error in the observed
response. We take the observed response to be

y(x) = f(z) + =

where f(z) is the true response and z is a variate with zero mean and variance
o’ independent of z. As stated in the introduction we shall consider specifically
the case where f(z) is a quadratic while the fitted curve is a straight line. We -
suppose that in observations are taken at each of 1, za(21 < ) and that the
corresponding observed mean responses are ;, J2. The use of more than two
abscissae is discussed in Section 6.

The fitted straight line is then

Y(z) = & + &(z — ),

where
(3.1) bo=19 &= (F—§)/(x— m).
For ¢ = 0 we know from Section 2 that taking z;, 2. as the zeros of

Py(z) = %(32" — 1) or of Ta(z) = 24* — 1 will minimize respectively
1
[ 5@) = Y(@)F da,
max |f(z) — Y(z)|.

(-1,1)

Of course, in this case we would take n = 2.
If ¢ 5 0 it is a natural extension to try to choose z;, : so as to minimize
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respectively the expected mean square error & given by
_ 1 1 1
(62 E=-zs[ 1) - Y@Pd =1 [ &lfe) - Y@ &

or the mazimum expected squared error

(3.3) Erex = {E?Ji() &lf(z) — Y(z)

These criteria are equally applicable to the case where f(z) is a polynomial of
degree p = n while Y (z) is of degree p — 1, there being n locations. If f(z) and
Y (z) are of the same degree, (3.3) reduces to the minimization of the maximum
variance which has been considered by de la Garza [2], Guest [4], and Kiefer
and Wolfowitz [8].

4. Legendre and Tchebysheff spacing for ¢ > 0. Before obtaining the abscissae
z1, o2 satisfying (3.2) or (3.3) we consider briefly the effects of using Legendre
or Tchebysheff spacing when o # 0. For the former case it is convenient to ex-
press f(z) in terms of Legendre polynomials, viz.,

f(@) = co + aPi(z) + c2Pa(z).

Then for any two symmetrical locations (—xz; = ;) we have from (3.1)

(41) g(éo) = ¢ + 62P2(.’L‘2), S(él) =0

and
0'2 0'2

(4.2) var é = —, var & = —,, cov (&, &) = 0.
n nri

Thus, if 22 = 1/4/3, é and & are unbiased estimators of ¢, and ¢; . In this case
&f(z) — Y(2)] = cPa(x)

and
(43) [ I elf(z) — Y ()] dz = 0.

Thus Y (x) may be said to be “unbiased on the average’ as an estimator of f(z).
Interchanging the integration and expectation signs in (4.3) we see that the
expected area under Y(z) is equal to the area under f(z), a result which con-
tinues to be true if f(z) is a cubic, in line with the optimal integration properties
of Legendre spacing. With Legendre spacing we have also

8lf(x) — Y(x)f = var & + 2’ var &, + csPi(z)
= 16" + 3% + AP (z),
where ¢'* = 2¢°/n, so that the expected mean square error is

(4.4) EL = o+ ic.
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The results (4.1), (4.2) but not (4.3) hold also with obvious changes when
f(x) is expressed in terms of Tchebysheff polynomials, viz.,

f(x) = bo + biT(z) + bTo(x).
In this case & and & are unbiased estimators of by and by if z = 1/4/2.

6. Optimal spacing with two locations. We consider first the minimization of
E in (3.2) and to this end show that the search for optimal values of z; and =,
may be confined to the symmetrical spacing —x; = .

In place of (4.1) and (4.2) we now have

8(&0) = ¢ + af + 02152(90), S(él) = ¢ + 3¢T

and
. 1.2 N 20”2 a a
varby = }o",  varéi = o, cov (&, &) = 0,
where Py(z) = 3[Pa(z1) + Pa(z2)].

It follows that
glf(z) — Y(2)] = elPa(x) — Py(z) — 3&(z — )]

and

(5.1) 8lf(z) — Y(2)F = 3o™ + (—3—— (& — 2 + {8lf(z) — Y@}
Ty — xl)

Hence

(5.2) B=3o’ + gm0 -2+ 1+ 5 +aX,

where
X = {1+ Pi(z) +320(1 — &)° + (1 + 2)"] — 6Py(2)7}.
Let x, — 2; = 2a;then |£] £ 1 — a. WritingalsoZ = y,z1=y — o, 22 = y + q,
we have
X =34 3106y + 34" — 1)" + 65" — 9",
and for any given « this may be shown to have a single minimum at y = 0 pro-
vided |y] £ 1 — q, |a|] < 1. Corresponding to any given a, therefore, X and

hence £ are minimized by taking z; = —a, 22 = a.
From (5.2) we may now write

12
(52) B = 16" + (‘,)’—2 + A} + Pia)l.
T2

This is to be minimized with respect to x, . Setting dE/dx, = 0 we find 2» to
be a root of the equation
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TABLE 1
Values of —x1 = 72, as a function of b = o'/ | ¢z |, giving (1)
generalized Legendre and (ii) generalized T'chebysheff spacing

i Bl |

b

@ (i)
0 0.577 0.707
0.3 .599 721
0.6 .642 .755
0.9 .685 .800
1.2 725 .850
1.5 .762 .899
1.8 .796 .949
2.1 827 .997
2.4 .855 1.000
2.7 .882
3.0 .908
3.3 .932
3.6 .955
3.9 .976
4.2 .997
4.5 1.000 1.000

N.B. 2z, = 1for b = 4.243 in (i) and b = 2.121 in (ii).

(5.3) z3(3z3 — 1) = a,

where a = ¢°/(9¢3). Thus x, is a function of @ or equivalently, of b = ¢’/|c,.
Equation (5.3) is a cubic in 3 with only one real root which corresponds to the
required minimum. For ¢ = 0, (5.3) gives Legendre spacing.'On the other hand,
if ¢ % 0 but ¢; = 0, so that a is infinite, £ will be minimized by making x; as
large as possible, i.e., z; = 1. In fact, 23 = 1fora = 2. Fora > 2 or ¢’* > 18c;
we still take z; = 1. The dependence of x; on b is shown in Table 1.

We turn now to the minimization of the maximum expected squared error of
(3.3). In this case also we may take —x; = z,. By (5.1) it is therefore required
to maximize

72 2

X' = ‘—72—:6—2— + $er(2” — a3)°

with respect to x and subsequently to minimize this maximum with respect to
x2 . If we regard X’ as a quadratic in 2” for 0 £ 2° < 1, it is clear that its maxi-
mum occurs at z° = 0 or 1. For 2> = 0, X’ increases in z, from 0 to (9/4)cs
while for ¥ = 1, X’ decreases from o« to %¢’%. Thus if > = (9/2)cs, then 2, = 1
is the solution. Otherwise the solution is that value of x; between 0 and 1 which
equalizes X’ for z* = 0 and 2® = 1. This occurs for z; — 23 = a, so that for
optimal spacing



1078 H. A. DAVID AND BEVERLY E. ARENS

(5.4) ze = 31 4+ (1 + 16a)}t or 1,

whichever is smaller. For ¢ = 0, (5.4) gives Tchebysheff spacing The dependence
of x, on b in this case is also shown in Table 1.

The two types of spacing. may conveniently be referred to as generalized
Legendre and generalized Tchebysheff spacing.

6. Possible use of more than two locations. Suppose that more than two loca-
tions are available to us and that we fit a least squares straight line to the n

observations. If these are taken at z; < 2, < --- £ z., it seems natural to
continue to assume symmetry of spacing, i.e., z; = —Zp— (£ = 1,2, -+, n),
so that both D_ z; and D_ z} vanish. Then
(61) éo = g’ é1 = inyi/z (Lf%,
“ C P Z; A

(6.2) &(&) = ¢ + 2—2—;3(———) &(&1) = a,

0'2 g
(6.3) var ¢ = bl var é = 2—:;3 , cov (&, é) = 0.

Now comparison of (6.2), (6.3) with (4.1), (4.2) shows that the two sets of
equations become identical if ) 23 = nxi. In other words, corresponding to
any symmetrical configuration of » locations, a value z.(> 0) can be found such
that in observations at each of Xz, give estimators &, ¢ with the same ex-
pectations, variances and covariances. It follows that the two spacings are
equivalent from this point of view as well as on the basis of any criteria de-
pending on the first two moments only, such as (3.2) and (3.3). See also Box and
Draper [7], who obtain similar results on merely taking > z; = 0.

In certain situations it is advantageous to vary the independent variable as
little as necessary. Apart from its convenience the use of two locations will
obviously be optimal on this score also. Of course, more than two locations are
necessary to detect departures from linearity in f(x) but this is not our aim
here.

As before, we have taken n even which would be the usual situation. However,
if n is odd, the number of locations is reducible to three, and an odd number of
observations has to be taken at x = 0. Clearly, the narrowest spacing is given
by a single observation at x+ = 0 and %(n — 1) observations at each of
£aln/(n — DL

These equivalence results may be compared with those obtained by Elfving
[3] and de la Garza [2] in the case when the fitted function and the true response
are polynomials of the same degree, so that no bias enters. For ¢, = 0 the present
result is a special case of theirs; the equivalence continues to hold for c; & 0
beca,lzxse by (6.2), (6.3) the bias in & is, like the variance of ¢, a function of

Zi.
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TABLE 2
E and Epax as functions of b = o, for various spacings
E
b Gene(li'?‘tlized Legglll)dl'e (i ) ®

Legendre (—1/+/3,1/4/3) (-1,1) (=1,0,1) (0.2, +0.6, 1)
0 0.20 0.20 1.20 0.45 0.24
0.6 0.54 0.56 1.44 0.72 0.55
1.2 1.46 1.64 2.16 1.53 1.47
1.8 2.88 3.44 3.36 2.88 3.02
2.4 4.75 5.96 5.04 4.77 5.18
3.0 7.06 9.20 7.20 7.20 7.95
3.6 9.80 13.16 9.84 10.17 11.35
4.2 12.96 17.84 12.96 13.68 15.36
4.8 16.56 23.24 16.56 17.73 19.99

Emax
b Genelized | Tchebysheti_ o o N

Tchebysheff (=1/4/2,1/4/2) (-1,1) (-1,0,1) (0.2, £0.6, 1)
0 0.56 0.56 2.25 1.00 0.64
0.6 0.91 1.10 2.43 1.18 1.21
1.2 1.89 2.72 2.97. 2.05 2.90
1.8 3.44 5.42 3.87 4.30 5.73
2.4 5.76 9.20 5.76 7.45 9.69

7. Comparison of E and E.,, for various spacings. It is of interest to compare
our two optimal spacings with other simple spacings. The results of a number of
such comparisons are set out in Table 2. For definiteness, and without real loss of
generality, we have taken the true quadratic response as f( z) = ¢ + caPi(z) +
Py(z), so that b = ¢'. For various values of ¢’ Table 2 lists E which from (5.2")
and Section 6 is given by

E = d%05+ 6y") + (045 — 1.5y + 2.25/%),
where vy = Zx%/n; and also Emax which is the larger of 0.5¢"° 4 2.25v% and
0.5¢%(1 + v + 2.25(1 — v)°
8. An example. To illustrate Legendre and generalized Legendre spacing we
suppose that the true law under study is

(8.1) (') = 8 — 2’ + o, 0=z £10.
Put 2’ = 5 + 5z to transform this to
f(z) = 4 — $z + %a°, -1=z=1

= 3 — 5Pi(z) + $Py(x).
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LY
3 ki‘g? £(x)

<
D

&(y)
) y
f(x) = 4.25-25x +1.25x2
E(y) =49 -25x (FOR 0 = 1)
| y = 4.67 - 2.5x (FOR 0 = 0)
0
0o | 2 3 4 5 6 17 8 9 10
X'
-0 -0.8 -0.6 -0.4 -0.2 2 0.2 04 06 08 10

Fig. 1. Illustrating Legendre and generalized Legendre spacing

If this function may be observed for only two values of x the closest overall fit in
the case of no random error (¢ = 0) is obtained by taking —x; = 2. = 1/4/3,
which results in the straight line of approximation

Y(z) = 4 — 3=

The average error is zero and the mean square error is by (4.4) simply
c3/5 = 5/36.
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When ¢ # 0 the optimal spacing is given by Table 1 with b = 6¢'/5. Thus
for ¢’ < % the spacing is only slightly wider than the Legendre spacing while

for ¢’ > 3 the observations should be taken at # = —1, 1. The expected line
still has slope ¢; = —5/2 but is displaced upwards through a vertical distance
cP 2(562).

For ¢’ = 1 the situation is shown in Figure 1..In this case z» = 0.725 and
the expected mean square error £ = 1.014 by (5.2’) or from Table 2 (1.46 X
(5/6)%). This may be compared with £, = 1.139. For ¢/ = 2, we have z; = 0.855
and £ = 3.298, B, = 4.139.

In this example we have taken h(x’) as known so that the results could be
presented graphically. However, it is clear that the optimal locations are de-
termined completely by the coefficient of z’* in (8.1), the specified range of a’
~ and the standard deviation ¢’. Thus the same results hold approximately when
all that is known is that the response function is linear in the range (0, 10) apart
from a quadratic term with coefficient of the order 0.05.
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