SOME TESTS OF PERMUTATION SYMMETRY!

By R. WORMLEIGHTON

Unaversity of Toronto

Summary. The two-sample sign test is viewed as a test for the permutation
symmetry of a bivariate distribution, and extensions to k-variate distributions
are sought. Friedman’s rank test, [1], although originally intended as a sub-
stitute for the F-testin a two-way classification, is such an extension. Study of the
family of two-sample sign tests obtained by comparing the k coordinates pair-
wise has yielded a statistic with an asymptotic Chi-square distribution from
which a further test of symmetry can be constructed. The statistic is based on
more degrees of freedom than Friedman’s and is sensitive to a greater variety
of alternatives. This extension is analogous to that obtained by Terpstra [2]
from the Wilcoxon test.z In this case, however, the limiting distribution turns
out to be non-singular. The argument leading to the test is not restricted to the
case of complete symmetry but may be carried through with any specified de-
gree of asymmetry. The coordinates may also be compared m at a time, 2 < m =
k. The argument can be extended and, with a slight modification, includes the
derivation of Friedman’s test. Thus a hierarchy of tests of permutation sym-
metry are available: Friedman’s test corresponds to the case, m = 1; when
m = k, the corresponding test turns out to be Pearson’s Chi-square.

1. Introduction. Given n pairs of observations, ... sometimes called two
“matched’” samples, ... the sign test statistic for comparing the populations
from which the two matched samples were drawn is the number of cases in
which the first observation of a pair is greater than the second; a simple count.
The statistic and its distribution are easily computed, the test requires minimal
assumptions about the underlying probability distributions, and when these
distributions are normal, the efficiency of the test relative to the {-test is high
[3]. It is natural, therefore, to explore extensions of the test to three or more
matched samples.

In the case of three samples, J. W. Tukey has suggested the following ap-
proximate test. To make the test at level o/, conduct ordinary two-tailed sign
tests comparing each of the three pairs of samples, at level @ = «’/3. If one or
more of these three tests yields a significant result, the combined test is sig-
nificant. This is a convenient approximation, but it does not appear to be worth
while to extend this method to the case of more than three samples.

In the general case of ¥ matched samples of n—that is to say, n observations
on k-variate distributions—one extension has been given by Friedman [1]. The
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1006 R. WORMLEIGHTON

k coordinates of each observation are ranked in order of magnitude, and the mean
ranks calculated. The sum of squares of deviations of these & mean ranks from
their general mean is proportional to a statistic X; which, under the appropriate
null hypothesis, has asymptotically a Chi-square distribution with & — 1 de-
grees of freedom. Another extension is suggested in the preceding paragraph.
Consider the family of two-sample sign tests obtained by comparing the & co-
ordinates pairwise; the corresponding statistics form a set of Cs simple counts, the
number of times the ith coordinate exceeds the jth in the sample. This paper is
primarily concerned with this set of simple counts.

Underlying much discussion of the sign test is an intuitive picture of two in-
dependent and similar, if not identical, populations which are to be compared
for differences in iocation. Friedman’s rank test is the natural generalization.
However, regarding the two paired samples as a single sample from a bivariate
distribution, the sign test becomes a test of the permutation symmetry of the
distribution; the null hypothesis states that both orderings of the coordinates
are equally probable. In the case of a k-variate distribution, the most general
non-parametric test of permutation symmetry is based on the statistic (of di-
mension, k!) giving the number of times each of the k& possible orderings occurs
in the sample. While such a test is of use against any non-symmetric alternative,
it would appear that, unless the sample size is of the order k!, only the most
extreme departures from symmetry would be detected. If only certain kinds of
asymmetry are of interest then a more specific test is required; Friedman’s rank
is an example of such a specific test.

Suppose one wishes to determine whether a card-shuffling device is acceptable.
Ideally, no matter what the order of the cards before shuffling, all orderings
should be equally probable after shuffling. It would be acceptable, however, if it
were practically impossible for a card-player, knowing the initial order of the
cards, and the final position of some of them, to draw inferences about the posi-
tion of the remainder. A bridge player holding the Queen of Spades should not
be able to infer from the previous hand that the King of Spades is more likely to
be on his right than on his left. If the initial position of a card is ¢, let X; denote
its final position after shuffling. Then we are concerned with the symmetry of the
multivariate distribution of the {X;}. The most general test may very well require
an impossibly large experiment—>52! is a very large number. On the other hand,
Friedman’s rank test is too specific. A single cut, provided all possible places for
the cut are equally likely, (including no cut at all), is sufficient to ensure that the
expectation of X; is the same for all 7; and, as is shown below, this implies that
the expectation of X} is the same as it would be under the null hypothesis of
complete symmetry. Clearly, something intermediate is required.

2. Notation. Let
X(a) - (Xia)’ X;a)’ .. ,X;(f)), a=12 - , N,

represent n k-variate real-valued random variables. Assume, as null hypothesis,
that
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(2.1) PriX{? < X{ < -+ < X = 1/k!

for all permutations (21, %2, - -+, ) of the subseripts (1, 2, ---, k), and all a.
Let

(2.2) Y =1if X > x{ i

= 0 otherwise,
and define

2 n
(2.3) Bij = n El (Y — 1.

Since 8.; + B;; = 0, we need consider only one of each pair, {8;;, 8;:}. It will
appear (Lemma 1), that the choice does not affect our conclusions and we con-
sider, therefore, only the set {8;;} for which 7 < j.

The exact probability at any point {3;;} is given by a sum of multinomial terms.

TaroREM I:

1 n!
Pr (Bu) = n Z [T
B 11

(24)
a
h=1
where the sum s taken over all sets of non-negative integers {an}, (h = 1,2, - -+ | k!),
satisfying
k!
(2.5) Do =
h=1
and a set of C% linear equations of the form
k!
(2.6) 2 :4: Cijpotn = \/ﬁﬁu — n, ¢i;n = 1 or 0 as required.
=1

The moments of the 8;; can be computed directly. E{8;;} = 0. For any ad-
missible choice of {8:;}, the covariance matrix is non-singular and can be in-
verted.

TueoreM I1: Let (aii,;;+) be the covariance mairiz of the C%-dimensional random
variate {Bi;}. Let D be its determinant and let (¢** ") be its inverse. Then for all
permissible choices of the coordinates {8},

k(k—1)
(2.7) D=(k+1"/377
if i=4, =7 owgy =1 o = :’i(k_’:_“_]”
if =7, =7y = —1 not defined
if i=j, =7,
, ~3

or Z‘#j, i,=j, =% =m
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if 1= jl’ 7~ j,

. . . 3
or N i =7, = —3 =m
otherwise, =0 =0.

Outline of proof: In the determinant, D, rows can be replaced by linear com-
binations of rows to introduce blocks of zeros. Precisely, we replace o:r,;, by

1 ..
(28) Tii'jp = O’ jp — 1—) Z Oii' v s all (“I)~
(V2p)
D can then be written as a product of principal minors,
k
(2.9) D= H;i,,,

where d,, is of order (p — 1) with elements (2(p + 1))/3p on the diagonal, and
(p + 1)/3p, elsewhere.

p+ 1P
(2.10) d, —p[ 3p ] .

Hence, D = (k 4 1)*7!/3%¢-072

To verify the remainder of the theorem, we multiply the covariance matrix by
its stated inverse, and evaluate the sums, D qinom o™ " . A term of such a
sum will differ from zero only if the pair of indices (77) has an element in common
with each of the pairs, (hh') and (57).

For a diagonal element of the product, (hh’) = (jj'). There is one term in the
sum with (') = (hh’) of value, (3(k — 1))/(k + 1);and 2(k — 2) terms in
which (#') has one element in common with (hh’), each of value —1/(k + 1);
all other terms are zero, and the sum is unity.

For non-diagonal elements of the product, where (k') and (j7) have one or
zero elements in common, we have, for example:

k

. 4i',13 2,1 3,13 23,13 14’13

(1) Z 012, u'tf = 012 120 + g12 130 + 012,230 -+ Z 012,15'0 ! =0
T=4

(it’)

. it’,34 13,34 14,34 23,34 24,34 __
(ll) Z) 012,44'0 = 012,130 + orue T+ 012,230 + 012,240 = 0.
(it

3. The statistic x; . We now define the statistic on which our first test of
permutation symmetry is based. Let

(3.1) xi = 2, 2 o BB

i<t j<i’

x; is thus the quadratic form associated with the inverse of the covariance matrix
of B3, for a particular choice of the coordinates of 8. This particular choice is only
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TABLE 1
Distribution of xi for k = 3;n = 2,8, 4, 5, 6
% Pr (x] < %) x Pr (x} < %) x Pr (x} < %)
n =2 n =4 n =26

0 .167 0 .0694 0 .0399
1.5 .833 1.5 .5139 1.0 .3485
3.0 1.000 3.0 .6435 2.0 .4507
4.5 . 8657 3.0 .6977
n =3 6.0 .9193 4.0 7748
Lo 17 7.5 9954 5.0 8828
30 639 12.0 1.0000 6.0 8983
5.0 972 7.0 -9600
9.0 1.000 n=25 8.0 .9685
0.6 2302 9.0 9891
1 . 8 . 4244 10 -0 . 9968
3.0 7639 13.0 -9909
5‘4 .8912 !18.0 1.0000

6.6 .9529

7.8 .9838

10.2 .9992

15.0 1.0000

a notational convenience; the same statistic is obtained with any other admissible
choice, (Lemma 1).

The exact distribution of x;, for n finite, can be computed from the distribution
of 8 as given in Theorem I. This is an arduous process, except when k and n are
both small. A few values are given in Table I, for k = 3.

The asymptotic distributions of 8 and x; are given by

TureoreM III: The vector random variate, B = {Bi;}, has asymptotically a non-
singular multivariate normal distribution with density function Ce X, The statistic
x: is asymplotically distributed as Chi-square with C3 degrees of freedom.

Proor: B is the standardized sum of n identically and independently dis-
tributed vector random variates. Since all second moments are finite, the simplest
conditions for the central limit theorem in its multivariate form, [4], are satisfied.
Therefore, as n increases, the distribution of 8 tends to the multivariate normal.
The covariance matrix is non-singular and independent of n; hence, the density
function exists.

It is well-known that the exponent of the density function is distributed as
Chi-square, [5]. Hence, x; is asymptotically Chi-square with Cj5 degrees of
freedom.

The null hypothesis should be rejected whenever x; is large.

An indication of the accuracy of the asymptotic approximation is given in
Table II for £ = 3 and small n.
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TABLE II
Comparison of X} with approzimating Che-square, X5 , with 3 d.f. (k = 8)
x Pr(Xf = x) Pr(X; = %) x Pr(Xf = x) Pt(X§ = )
n =3 n =25
9.0 .028 .029 10.2 .0162 .0170
5.0 .361 172* 7.8 .0471 .0504
6.6 .1088 .0859*
n =4 n =26
12.0 .0046 .0074 9.0 .0315 .0295
7.5 .0807 .0576* 8.0 .0400 .0461
6.0 .1343 1117 7.0 .1017 .0720*

* Only in the cases marked by an asterisk is the approximation improved by a con-
tinuity correction.

4. Friedman’s rank test. There exists a hierarchy of tests of permutation
symmetry, one of which is the X?-test of the previous section. Another such test,
lying at one end of the chain, is Friedman’s rank test [1].

In the rank test, the & coordinates of an observation are ranked in increasing
order of magnitude. If r,, denotes the rank of coordinate X, , in the vth observa-
tion, then r;, — 1 = no. of coordinates less than X ;. Let

(4.1) m=1EQm—£;%.

Friedman proposed the statistic

2 12n
(42) x,kw+ngm
for testing the null hypothesis. Large values of x: lead to rejection of the hy-
pothesis.

Friedman tabulated the exact distribution of x? for small » and k, and gave
a proof that x_ is asymptotically distributed as Chi-square with (k — 1) degrees
of freedom.

We note that

1
(43) pi= g 2 By
(7#4)

Hence,

1=l
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and
(4.5) Xt =3 E] Bii — kxr
(<)
We also define
(4.6) Xa = Xi — x5 -

From Fisher’s Lemma [6], we can deduce that x4 is asymptotically Chi-square
with C¥ — (k — 1) = C%¥" degrees of freedom, and independent of xZ .
Friedman also showed that, for finite n,

(48) Bl =k —1 Varxf=n;12(k—l).

Similarly, we obtain, by direct calculation,

Bl = CE Var =-n;1k(k— 1)
(4.9)

BG =0 Vard =" Lk = 1)k — 2).

For each of these statistics, the mean is independent of n, and the variance is
an increasing function of n. This strongly suggests that the use of the asymptotic
distribution, (without a continuity correction), for defining the ecritical region
will lead to errors in the so-called ‘‘safe’” direction; i.e., the true size of the criti-
cal region will be smaller than the significance level. The computations carried out
by Friedman, and by the writer, support this.

x; and x} provides tests of the same null hypothesis. In most practical ap-
plications, the alternatives of interest—e.g., one or more coordinates tending to
be consistently higher than the remainder—can be distinguished by either test.
In the writer’s opinion, x? is usually the preferred test, and x: should be reserved
for special situations. An experimenter may, on occasion, wish to make two tests
based on x> and x4 . These two tests are asymptotically independent and are
sensitive to two distinct classes of alternatives. The classification of alternatives
is discussed in Section 9.

6. First extension: arbitrary null hypothesis. Although the argument has been
presented with one particular hypothesis as null hypothesis—viz., all orderings
of the {X;} equally likely—it could just as easily be carried through with an
asymmetric null hypothesis:

(5.1) Pr{X,, > X;,> -+ > Xy} = piyi,.. 5, >0

where p,i,...4, is a set of k! positive numbers which sum to unity.
As a notational convenience, we introduce symbols representing sums of the
constants in the null hypothesis.
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(5.2) Digigeeoin = Pr{Xs, > X5 > -+ > X, ), 2=<=m<k.

Random variables Y(“) are defined as before, (2.2), and the standardized
variates, 8;; , are defined similarly by

5.3 i T e Yf;’) i)
(53) b= i B

The vector variate, 8, is defined by Cj coordinates, 8;; , which satisfy no linear
relation.

Let 0iwv,j;» = Covar{B , Bii}. As before, Var(B:+) = 1, and when <, ¢/, 5, §'
are all distinct, o,ir,;» = 0. However, the covariance of two coordinates with
one subscript in common is more complex; e.g.

_ (1 = p)(1 — pi) _ (1 — pu)ps
012,13 ,‘/ P (p1as + Pizs) Pl — pr) D312

plz(l P13) P12 P13 .
(1 — D)1 * Ppas + /‘/(1 — 1) (pm + p321).

However, all variances and covariances are finite, and the central limit theorem
still applies; therefore, 8 has asymptotically a multivariate normal distribution.

It will be shown (Theorem IV) that the rank of the matrix (osx,;5») of order
C%  is also C% ; hence, its inverse (¢**'*”') exists. We can therefore define

(5.5) Z Z o BB

(t<1 ) (J<J )

Q. is the exponent of the density function of the asymptotic distribution and
we deduce, as before, that @, is asymptotically Chi-square with C% degrees of
freedom.

To test the null hypothesis, reject when @, is large. The critical region can be
determined easily, and approximately, with the asymptotic distribution.

(54)

6. Second extension: the Q,,-statistics. Instead of comparing the random vari-
ables, {X;}, two at a time, we could compare them m at a time (2 < m =< k).
We define new random variables of order m, by

(6.1) 2, = 1HXP > X0 > ... > X©
= 0 otherwise

where (71, %2, - -+ , Tm) is a subset of the first & positive integers.

There are k(k — 1) -+ (k — m 4+ 1) = 0, , say, such random variables of
order m.

If n observations are made, then Ea= Z&,...., = the number of times in
which the ordering X;, > X;, > --- > X;, occurs.

We define the standardized random variate of order m by

1 a)
(6.2) Q19900 0im — Z (Zf i - Pi ---im)-
Yiria V1Pisigeim(L = Piervim) =2 Pa
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For any fixed set of integers (%172 - - + ¢, ), the sum, over all permutations of the
set, of the Z{%),...;, , is unity.

The standardized random variates of order m satisfy r, = Ck independent
linear relations, (m = 2).

When m = 2, v,,;, = Bi,i, as defined in Section 5.

When m = 1, we extend the definition by defining

v; = standardized mean rank
71 = 1 (not C%, since the v, satisfy only one linear relation).

For every fixed m, a vector random variate Y = {¥iriz---i,) Of dimension 8, ,
is defined.

By the central limit theorem, the distribution of Yo , approaches the multi-
variate normal distribution. However, because the coordinates satisfy 7, linear
relations the distribution is singular in the full 6,-space.

We reduce the space to dimension 6,, — 7, by omitting one of the coordinates
appearing in each of the 7,, linear relations. (No coordinate appears in more than
one such relation, so that exactly 7, coordinates are omitted.) We denote the
resulting vector random variate of dimension (8,, — 7.) by v . It will be shown
in Theorem IV that the covariance matrix of v, is non-singular and therefore,
(at least in theory), can be inverted. Hence, we can define the statistic @, = the
quadratic form in v,s,...:, associated with the inverse of the reduced covariance
matrix. @,, is asymptotically Chi-square with (8,, — 7.,) degrees of freedom.

LemmMma 1: For fixed m, and a given simple null hypothesis, Q. ts a uniquely de-
Jfined function of the original sample.

Proor: Non-uniqueness could only occur when reducing the 6,-space to di-
mension (6, — 7,) by different choices of the coordinates to be retained.

Let Q.. be defined in terms of one set v, ...s,, of coordinates, and let @, be de-
fined in terms of a second set, ¥;,...:, , of these coordinates. Using the known
linear relations, each coordinate of the second set can be expressed as a linear
combination of coordinates in the first set; thus, @, is also a quadratic form in
the first set of coordinates. We must show, then, that corresponding coefficients
in the two forms are equal. It is clearly sufficient to consider only the asymptotic
distributions for, since the coefficients are independent of 7, equality of co-
efficients in the limit implies equality for all n.

Consider, therefore, two quadratic forms, Q, @, in the random variates Uy ,
Uy, ---, U, where U = {Uy, Uz, ---, Uy has an s-variate normal distribu-
tion and @ = U’AU, Q = U’AU, have Chi-square distributions with s degrees
of freedom. This implies that the forms Q, Q are of full rank and their associated
matrices A, A are non-singular.

Therefore, there exist linear transformations

(6.3) V =CU, V=_CU

transforming @, Q into sums of squares of s independent standard normal vari-
ates, where V, V denote s-dimensional column vectors and C, C non-singular
s X s matrices
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(6.4) Q=V7V, Q= V.

Clearly, V = CC™'V = PV, say. Since the coordinates of both V and V are
independent standard normal variates, P is an orthogonal matrix. Thus V'V =
VVandQ = V'V = V'V = Q.

Essential for the validity of the proof, and for the truth of the lemma, is the
fact that both quadratic forms are of full rank. Otherwise, C and C are singular
matrices without inverses, and V is not, in general, a linear transform of V.

7. Rank of @),,: Expectation of ),, . We have already used the fact that the
rank of the quadratic form @, is 8,, — 7., . We now give a proof of this statement.

TaeoreM IV : Let v, be the vector random variate of dimension (0, — 7.) defined
in Section 6 and let A ,, denote its covariance matrix of rank, v, . Then r, = 0 — Tm.

LeMMA 2: 7, < 0, — 7a if, and only if, a linear relation holds among the co-
ordinates of v, with probability one. Proof omitted.

LemmA 3: Each random variate v, i,...i, of order m can be expressed as a linear
combination of random variates of order (m + 1).

ProoF: Z,,,,...i, = 1 whenever the ordering X,, > X,;, > --- > X, occurs,
i.e. whenever one of the orderings (X; > X;, > --- > X, ), (X;; > X; >
X, > oo > Xip), o0, (Xiy > oo > Xy, > X;) occeurs, for fixed j not a
member of the set, (21 , iz y T, im). Z'il‘iz""im = Zﬁl"'im + Zilf'iz""im + R +
Ziyig.--ini - The y-variates are linear combinations of the z-variates of the same
order. The lemma, follows.

LemMMA 4: 7, = k! — 1.

Proor: When m = k there is only one choice for the set of integers 7122 - -+ 7, .
Let h index the permutations of this set. By direet calculations we obtain

Phr Pr’ .
1 = p)(1 — pw)

We omit the coordinate corresponding to & = k! to obtain A, .
The determinant of A, can be evaluated directly.

(71) Var(yw) =1,  Covar (va, ) = —

ki—1

Y4
72 A = I <
(7:2) | 4] ;g(l—m)?ﬁo
since by assumption, p; # 0
(7.3) s =kl — 1.

Proor or Tueorem IV: Suppose 7, < 6, — 7. for some m.

By Lemma 2 there exists a linear relation among the random variates v.,4,. .4,
of order m represented in A, . But, by Lemma 3 each of these can be expressed as
a linear combination of random variates of order (m + 1) represented in A,.41 .
Thus there exists a linear relation among the variates of order (m -+ 1) and
Tmi1 < Omy1 — Tmar - By induction, r, < k! — 1. But this contradicts Lemma 4,
hence r,, = 0 — Tm .
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The expected value of the statistic, @,, , for finite n, is given by
THEOREM V: E{Q,} = 00 — 7m .
Proor: We can write

(7.4) Qm, — Z Z 0'”“.“"']1‘“]7"72'1'-'57"'le"'jmr
(81" im) (i1=im)
where
St i _ Cofactor of E{v;,...ip, Viye- i} D Am
| Am |
and each summation is over the (6,, — 7..) sets of m integers (41, %2, - - , Tm)

which appear as subseripts of the v, ...;,, .

E{Q.) = X 1 Y. [Cofactor of E{vs,...c,,* Vi in}]

Grr i) | Am | 615w
(7.5) “B{Viyeiim Virewim}
An] _
(i1 im) | Am]
8. The Case m = k. Let h index the permutations of (1, 2, --- , k). Let n,

be the number of times that ordering, A, occurs in a sample of n, and let p; be
the probability of that ordering.

O0n — Tm.

Then
(nn — n-pr)
"V —
and

< 2 _ 5 (m = n-p)’
’; (1 ph)'Yh = ; T
which is immediately recognizable as Pearson’s Chi-square statistic.

TaEoREM VI: Q. = ity (1 — pa)vi.

Proor: It has been shown that @ is asymptotically Chi-square with (k! — 1)
degrees of freedom, and it is well-known that Pearson’s statistic has the same
limiting distribution. Regarding one of the v; as a linear combination of the re-
mainder, both statistics are quadratic forms of rank (k! — 1) in the same (k! — 1)
variates with the same asymptotic Chi-square distribution. This is exactly the
situation considered in Lemma, 1, (Section 6), and by an identical argument, the
two statistics are equal.

SoQr = Zh: (1 - Ph)’Y}zz-

9. Consistency and the classification of alternatives. To mak.: a symmetry
test of order m, we compute @,, and reject the null hypothesis if @, is large. But,
in a particular case, what order should the test be? The answer to this question
requires a consideration of the alternative hypothesis. Intuitively, the tests of
low order such as Friedman’s X} , provide a relatively high sensitivity to a small
class of alternatives, whereas the high order tests give a low sensitivity—thus
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requiring a large sample—against a large class of alternatives. This concept of
a classification of alternatives is made more precise by the following definition
and Theorem VII.

Definition: An alternative is déstinct from the null hypothesis at level m if, under
the alternative

B{Ziyiy i} 7 Digigeevin

for at least one choice and permutation of the digits (41, %2, - - , Tm).

Remark: Since Z;,;,...i, can be written as a sum of such counter variables of
higher order, it is immediate that, if an alternative is distinct at level m, it is
distinct at any level m’ > m.

TuarEOREM VII: The symmetry test of order m is consistent against any alternative
whach 1s distinct at level m, and only against such alternatives.

Proor: The null hypothesis is rejected whenever @,, > ¢, i.e., whenever the
point v, = {v4;...s,} lies outside the region, S, defined by

(9.1) S =lym|Qu = cl.

¢ is chosen so that the measure of S, computed with the asymptotic distribution
under the null hypothesis is 1 — «. S is then a fixed, finite region. Under any
hypothesis the measure of S tends to a specific value, P, as n approaches infinity:
we wish to show (1) that this value is zero under alternatives distinct at level m,
and (2) that this value is different from zero under alternatives not distinct at
level m.

The measure of S can be written in the form P + %, where P is the measure
of S under the approximating normal distribution with the same mean and vari-
ance-covariance matrix as the given distribution, and 7 is a correction term which
approaches zero as n approaches infinity. The variances and covariances of v,
are independent of n; and the mean of v, , and of the approximating normal var-
iate, has coordinates

(9.2) E{‘Y,‘l...im} = /‘/p“.“i (1 71 Dirooi )[E{Z“,m} b p“zm]

Under any alternative not distinet at level m, these coordinates are all zero: the
approximating normal distribution, and therefore P, is independent of n. Clearly,
P # 0, thus establishing the second part of the theorem.

Under an alternative distinct at level m, however, the distance, d, from the
mean of the distribution to the origin given by

: E{Ziyi} — Dy’
d2=n [ 1" im 21°**im. ¢0.
(ilz’i’m) Direovin(l — Digeein)
Thus the distance from the mean to the origin approaches infinity as n tends to
infinity.
It is well-known that the ordinate of a normal distribution tends to zero as the
distance from the mean increases; hence, the measure, P, of the fixed, bounded

(9.3)



TESTS OF PERMUTATION SYMMETRY 1017

set S, under the sequence of approximating normal distributions, tends to zero.
Since both P and % tend to zero under an alternative distinct at level m, as »
approaches infinity, the consistency of the test against such alternatives is
established. '
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