THE MOST-ECONOMICAL CHARACTER OF SOME BECHHOFER AND
SOBEL DECISION RULES!

By WM. Jackson HALL

Unaversity of North Carolina

1. Introduction. R. E. Bechhofer [1] has considered a single-sample multiple-
decision procedure for choosing, among a group of normal populations with
common known variances, that population with the largest mean, and, with M.
Sobel [2], a procedure for choosing the normal population with the smallest
variance. Several other analogous problems have also been considered.? They
suggest, with only intuitive justification, choosing the population with the
largest (smallest) sample mean (variance), and give tables for finding the
minimum sample size (assumed equal for all populations) which will guarantee
a correct decision with prescribed probability when the extreme population
parameter is sufficiently distinct from the others. This paper gives justification
for a wide class of such procedures, proving that no other rules can meet this
guarantee with a smaller (fixed) sample size; that is, such rules are most eco-
nomical [4].

Proof of the most-economical character of these rules is achieved by proving
their minimax character when a suitable loss function is introduced. R. R.
Bahadur and L. A. Goodman [5] have considered a class of multiple-decision
rules which they have called impartial (invariant under permutations of the
populations). Their results are applicable to such problems of choosing the best
population and imply that Bechhofer and Sobel’s rules are minimax rules (in
fact, uniformly minimum risk rules) among the class of impartial decision rules.
The present paper removes this restriction of impartiality. Thus, in the present
context, impartiality is no restriction when looking for minimax rules, as is
well-known to be the case for certain other kinds of invariance.

The main result is stated in Section 2 and proved in Section 3. It is applicable
to any analogous problem of choosing the population with the most extreme
parameter when, for each sample, there is a numerical sufficient statistic with a
monotone likelihood ratio® and the (numerical) parameter is a location or scale (but
not range) parameter® in the distribution of the statistic. The theorem is applicable
to Bechhofer’s procedure and the corollary to Bechhofer and Sobel’s. (In the
latter example, if the means are unknown, it will be necessary to invoke invariance
under changes in scale.) In Section 4, the result is further extended to problems
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2 For a review, see the introduction in [3].

3 For definition, see [6], for example.
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of ranking the populations according to the parameter values, or of grouping
them by ranks, as formulated by Bechhofer [1].

The requirement that the parameter be one of location or scale is dropped in
Section 5. Then the guarantee holds only at a specified location; for many prob-
lems, a least favorable location can be determined so that the guarantee can be
made to hold irrespective of location. For example, the procedures of M. Sobel
and M. J. Huyett [7] for choosing the largest of several binomial parameters are
proved to be most economical. In Section 6, the broader optimality of these
latter procedures is discussed.

These results, some of which appeared in [8], are obtained from application
of most economical decision theory [4]. As indicated by Bechhofer [1], if the popu-
lations differ in a known way (normal populations with different known variances,
for example), optimal allocation of the sample sizes is apparently exceedingly
complex; such problems are not treated here.

2. Theorem.

(1) Let {fo}, 0 ¢ @ C Ry, be a homogeneous class of density functions' w.r.t.
a fized measure. Let {X;;} (i = 1, m;j =1, ---,n) denote mn z'ndependent
random variables where X ;; has the denszty functwn fa' , 0: Q¢ =1, , m,
and let Oy = -+ -+ = Opwy be the ordered values of the 0s. Set 6 = (6, - - - m)

(ii) Suppose ti = ti(za,  +, Tw) 18 a numerical sufficient statzstw for
(Xa, + -+, Xiw), that t; has a monotone likelihood ratio, and that 6; is a location
parameter in the induced distribution of t; (¢ = 1, ---, m).

(iii) Let D, denote any decision rule for choosing which 0; is 0im based on an
observation on the mn random variables {X;;}, and let DY denote that D, which
chooses as Oy that 0; corresponding to the largest of the t.’s with ties broken by ran-
domization. Suppose N s the least n for which

fﬂ”u+6—0hwa%+2 ( f)

[P+ 8) = Bl + 5 — OF PG+ 5 — O dFA(0) 2
®>Q0<7<n

(1)

where Fo,(t) = F,(t — 0) s the c.d.f. of t with parameters 0 and n.

Then Dy satisfies

(a) Pr{correct decision using D, | 8} = v for all 8 for which 0y — Opmn = 8 and

(b) there does not exist a decision rule D, satisfying (a) withn < N.

CoROLLARY: Replace in (i) “Ry” by “positive R,”; replace in (ii) “location”
by “scale”; replace in (iii) “t 4+ 6" by “t8”, “6 > 07 by “6 > 17, “F.(t — 0)” by
“Fu(t/8)”; replace in (@) “Otmi — Otm—11” bY “Otm1/Opm—1”-

Note: The summation term in (1) accommodates the possibility of ties—when
r = 2, ---, mt-values may be largest—and drops out if Fy,, is absolutely con-

4 The region of positive density is independent of 6.
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tinuous; hereafter, for simplicity of presentation, we make this assumption and
thereby replace (1) by

(1) [P+ o) arao) = .

3. Proof of theorem. Set w; = {0 ‘ 0, = O[m] , 0[,,,] - 0[,,,_1] = 5}, and p@(ﬁ) =
Pr {choosing 0; using D, | 6},7 = 1, - - - , m. Then (a) is equivalent to: p;(8) = v
for0ew, (z=1,--+,m).

Let \; be a distribution over w; which assigns probability one to the 8-point
with all coordinates equal to 6, (arbitrary) except the ith coordinate which
equals 6, + 6;i.e., Oy = Opm) = 6o = 6, — 8. Denote this point 6, .

We first show that, for n fixed, D), is minimax for choosing among 0, , - - -, 8,,
where the loss function is —1/v if a correct decision is made and zero otherwise,
and that, when using DY, p:(8;) = [F3'(t 4 8) dF.(t) for all 5. Secondly, we
show that the \/’s are least favorable in the sense that inf,,p:(8) = p:(0;) =
Jw,pi(8) d\;, as shown in the special case of Bechhofer in [1]. Application of
Theorems 7 and 9 from [4] completes the proof of the theorem. The corollary
may be proved by applying a log transform to ¢, 6, and é.

1.° According to well-known results of Wald (e.g., see Section 1.B of [4]), a
minimax rule for choosing among the 8,’s with the specified loss is one which
chooses 6; as the largest 6 if a;h; = a;h; for all 7 where h(t, 8) is the joint density
ofty, -+, tn when the parameteris , h; = h(t,0;),and a;, - - - , an are positive
constants chosen so that pi(8;) = --- = 9.(0,). Denoting the density of ¥
by ¢ and of Fs by gs (dropping the subscript » assumed fixed), h(t, 8) =
95,(t1)gs,(82) « - go,,(tm) so that a:h; = a;h; implies

(2) agoo+s(ti)goy(ti) = aigo,(t:)goo4s(2;),

or equivalently, since 6 is a location parameter, the subseripts on the ¢’s can be
subtracted from the arguments. Denoting r(f) = gs,+5(t)/ge,(t) for fixed 6,
and &, defined throughout the region of positive density for ¢, (2) implies r(¢;) <
r(t:)a;/a; . Since ¢ has a monotone likelihood ratio, r(¢) increases with ¢, the
inverse function exists, and (2) may be written ¢; < r '[r(t:)a;/a;]. Therefore,
the probability that the minimax rule chooses 6; as largest when 6 = 0, is

p:(0;) = Pr {a;h; = a;jh; forall j|o = 6}
& Pr{a;h; = ajh; forall jlt; =1vy,0 =0

= [ T Prgals @)/ 0} dFspssn().

This is independent of 7 if @, = a; = -+ = an., in which case 6; is chosen if
h; is largest. Because of the monotone property of h;, the minimax rule is thus
D), . Upon setting the a.’s equal and transforming ¢t = y — 6, — 8, (3) becomes
pi(0;) = [Fn'(t + 6) dF.(t), and is thus independent of the choice of 6, .

2.° Similarly to (3) above, for D}, we have p;(8) = Pr{t; = ¢; for all j|8} =

(3)
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ST 2ilo; 0 (y) dFs; w(y) = [MeiFa(u + 6; — 0;) dF.(u) which increases with
6; — 0; for each j # . For 8 € w;, 6; — 6; = .6 so that the infimum over w; of p;
is attained at 6; — 6; = & for j ¥ ¢ and, in particular, at 6 = 0.

4. Extension to procedures for grouping by ranks. The results in Section 2 can
be extended to the problem of ranking the populations according to their 6-
values, or more generally, of selecting the m, “best’’ populations, the m,_; “second
best”, etc., the m; “worst” populations, givenm, , - -+, mi(s £ m, >_m; = m)—
the “general goal” expressed by Bechhofer in Section 3.B of [1]. The rule Dy is
to rank according to ¢-values, choose N by a rule analogous to (1) or (1’) (see
[1]), and then the probability of a correct grouping will be at least v when the
groups are sufficiently far apart. Most economical theory is used for discriminat-
ing among the m!/(m;! my!--- my!) possible alternative decisions. The
proof differs little except for the notational complexities.

5. Extension to other ordering parameters. Intuitively, a procedure which
ranks the 6’s according to the values of the sufficient statistic ¢ should be optimal
whenever 6 is some kind of ordering parameter in the distribution of ¢. That ¢
should have a monotone likelihood ratio is such an ordering requirement. A less
stringent requirement is that the c.d.f. of ¢ be monotone in 6 for all ¢; that is,
denoting by T a random variable with distribution parameter 6.(8; < 6,),
Pr{T, > ¢} = Pr{T: > t} for all ¢, in which case T is said to be stochastically
larger than T, . E. L. Lehmann has shown (Theorem 1 in [9]) that a monotone
likelihood ratio assumption implies the latter type of ordering. That 6 be a loca-
tion parameter is an additional ordering requirement—that F, be a particular
kind of monotone function, namely F(¢ — 6). It was required in the theorem so
that the probability in (a) could be computed on the condition that the best
population was sufficiently distant from the second best without regard to the
location of the best population; that Fs be monotone was also required, but this
follows from the monotone likelihood ratio assumption. Thus, the location
requirement in (ii) can be removed by adding it in (a), so that replacing F (¢ 4 6)
by Fe,—s(t) and dF by dF,, in (1) and (1’) and replacing (a) by (a’) in which
the inequality is required to hold for all 8 for which 6, = 6 and O — Oy = &
for some specified value 6, of the parameter, the theorem and proof remain valid.
The guarantee of a correct decision is only calculated at one location, specified
by 0[) .

In many such problems, it will be possible to find a least favorable location
0o, i.e., a value of § which minimizes [F57 (t) dFs(t), in which case (a) need
not be replaced by (a’). Sufficient conditions are that © be bounded and closed.
If not, it may be possible to find a least favorable sequence, applying Theorem
8 of [4].

In this revised form, the theorem applies to all such problems of choosing
the best population whenever there is a numerical sufficient statistic with a
monotone likelihood ratio, and therefore, in particular, if its distribution is in
the exponential family. Thus, it holds for Sobel and Huyett’s procedures [7],



968 WM. JACKSON HALL

the condition (a) corresponding to their “original specification’’ using a least
favorable 6,, and (a’) to their “alternative specification.”

6. A distribution-free extension. It can be shown that Sobel and Huyett’s
procedure is optimal not only for choosing the best binomial population but for
the more general problem they describe of choosing the population with the
largest “survival probability”’, with no parametric specification of the under-
lying distributions. If the distributions differ only in location, then the problem
is equivalent to that of choosing the population with the largest median. This
application is adapted from an example by W. Hoeffding [10].

Let the class of density functions under consideration include all densities,
f, w.r.t. a fixed measure u on the real line such that 0 < u({z = a}) < 1 for
some specified a. The {X,;} are assumed independent with 8; = Pr{X,; = a},
constant over j = 1, ---, n(¢ = 1, ---, m). If X;; represents a lifetime, then
6; is the probability of survival to age a, and none of the distributions need
coincide except in their #-values.

Extension of the theorem can be accomplished as indicated briefly here: Subsets
{w;} of density functions are specified in terms of the #’s as in Section 3; a prior:
distributions over these sets are specified, somewhat as in example 5 in [4], which
reduces the problem to that of choosing the best of m binomial distributions.
The decision procedure is to choose 6, as the largest of the 6.’s if more of the
Zx;’s exceed a than do the z;;’s for any other ¢. That these a prior: distributions
are least favorable follows as in Section 3, using Theorem 7 from [4], and noting
that the probability of a correct decision depends only on the 6-values. A least
favorable 6, can be chosen, if desired, as in [7]. Thus, the procedure of Sobel and
Huyett is most economical for this distribution-free problem in the sense that
(a), or (a’), and (b) are satisfied.
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