OPTIMUM TOLERANCE REGIONS AND POWER WHEN
SAMPLING FROM SOME NON-NORMAL UNIVERSES!

By IrwiNn GUuTTMAN

McGill University

1. Introduction and summary. We assume familiarity with the concepts de-
fined in [1] and [2], where optimum g-expectation tolerance regions and their
power functions were found for k-variate normal distributions. The method used
is to reduce this problem to that of solving an equivalent hypothesis testing prob-
lem. It is the purpose of this paper to find optimum B-expectation tolerance re-
gions for the single and double exponential distributions, and to exhibit the cor-
responding power functions.

Let X = (X1, -+, X.) be a random sample point in n dimensions, where
each X is an independent observation, distributed by some continuous probabil-
ity distribution function. It is often desirable to estimate on the basis of such a
sample point a region, say S(Xi, ---, X,), which contains a given fraction 8 of
the parent distribution. We usually seek to estimate the center 100 8% of the
distribution and/or one of the 100 3% tails of the parent distribution.

2. The single exponential distribution. The probability density function of the
single exponential is given by

v

1 -le-w
(2.1) fx)dr =Ze-° dz, T2
ag
If we wish to construct tolerance regions S(z1, - - - , X,) which have the ability
to pick up sets on the right hand tail of (2.1), then a reasonable choice of ‘‘the
measure of desirability” @ is

1 —i(y-—n)
(2.2) AQuoe = — e = " dy,
ag

yZup
where a > 1. This clearly gives more measure to sets on the right hand tail of
(2.1). The problem now separates itself into three cases.

Case I. p known, ¢ unknown. Without loss of generality, put 4 = 0. We con-
sider the analogous hypothesis testing problem. [see p. 171 [1]]. Let Xy, --- , X,
Y be independent, each X; having the distribution (2.1), and let ¥ have the dis-
tribution (2.2), all with ¢ = 0. If a tolerance region is desired which tends to
cover the right hand tail of (2.1), then the hypothesis testing problem has the
form

(2.3) Hypothesis: « = 1; Alternative: o = a3 > 1.
If £ = ') -1 ; , then it can easily be verified that (Z, y) is a sufficient statistic

Received October 7, 1958.
1 Prepared in connection with research sponsored by the Office of Naval Research, while

the author was at Princeton University.
926

&5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

www.jstor.org



OPTIMUM TOLERANCE REGIONS 927

for this problem. We now apply the invariance method expressed in terms of this
sufficient statistic. Consider the group G of transformations given by

i = cx
(24) G=1, ce (0, ).

Yy =aqa
The function W = y/% is invariant under this group, and is in fact the maximal
invariant function. It is shown in Appendix 1 that the density element of W is®

(2.5) g(w; @) dw = "0 (na + w)~" duw.

In terms of W, the hypothesis and alternative of (2.3) are simple, and we now
apply the Neyman-Pearson fundamental Lemma. Then, the most powerful test
function ¢(w) is based on the probability ratio

a{.nn+l(ml + w)—(n+l)
nn+1(n + )~ ’

or, as this ratio is a monotone increasing function of w, ¢(w) is based on W.
Hence, the most powerful invariant test function is

1 if W>a

(26) ¢<W)={ ,
0 if W<a

where the as are chosen to give the test size B, that is
00

(2.7) [ g(w:1) dw = B.
ap

Because the test does not depend on a; , provided it is greater than 1, and be-
cause it is based on the maximal invariant function, our most powerful invariant
test function is minimax, most stringent and similar of size 8. From the definition
of W and following [1], we have that the S-expectation tolerance region which is
minimax and most stringent is given by

(2.8) S(a1, -+, @) = lagk, =).

Values of ag for n = 1(1)20, 40 and 60 are given in Table I, for /3 = .99, .95,
.90 and .75. The power of the procedure summarized by (2.8) is discussed in
Section 4.

Case II. p unknown, ¢ known. Let the known value of o be oo . The sufficient
statistic is (za) , ), where zqy = min;; z; , each X; has distribution (2.1) with
o = go, and Y has the distribution (2.2) with ¢ = oo . Under the group of trans-

{xh) =zun +a

formations
. ac Rl}
y=y+a

2 Inspection of g(w; @) will show that it is related to Snedecor’s F distribution with
(2, 2n) degrees of freedom, where W = oF.

(2.9) G =
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TABLE I

Tolerance Factors ag for single exponential distributions (2.1), p known, ¢
unknown; sample size n.

AN
N 5 920 95 99
1 .333333 111111 .052631 .010101
2 .309401 .108185 .051957 .010076
3 .301927 .107232 .051734 .010067
4 . 298280 .106760 .051624 .010063
5 .296119 .106478 .051557 .010061
6 .294690 .106291 .051513 .010059
7 .293675 .106158 .051482 .010058
8 .292917 .106057 .051458 .010057
9 . 292329 .105980 .051440 .010056
10 .291860 .105918 .051425 .010055
11 .291476 .105867 .051413 .010055
12 .291158 .105824 .051403 .010055
13 .290889 .105789 .051395 .010054
14 .290658 .105758 .051387 .010054
15 .290458 .105731 .051381 .010054
16 .290284 .105708 .051376 .010054
17 .290131 .105688 .051371 .010053
18 .289993 .105670 .051366 .010053
19 .289871 .105653 .051363 .010053
20 .289761 .105638 .051359 .010053
30 . 289066 .105546 .051337 .010052
40 .288719 .105499 .051326 .010052
60 .288373 .105453 .051315 .010051

the statistic W = (zqy — ¥)/o0 is clearly a maximal invariant for the problem
(2.3), and its distribution is given by

nTn—!-_l e™dw if w>0

"

na + 1
(This is proved in appendix 2)®. An analysis similar to that above shows that,
for ability to pick up the right hand tail of (2.1), a minimax and most stringent
tolerance region of 8-expectation is
(2.11) S, -+, xa) = [xw — bgoo, ©),

3 Inspection of h(w; «) will show that it is a weighted combination of two densities that
are simply related to x? with 2 degrees of freedom, where x5 = anW for W > 0, and ax} =
—2W for W < 0.

(2.10) h(w; o) dw =
dw if w <O.
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TABLE II

Tolerance Factors bg for single exponential distribution u unknown, ¢ known,
sample size n

\xﬂ 75 .90 .95 .99
AN
1 .693147 1.60944 2.30258 3.91202
2 .143841 .601986 .948560 1.75328
3 .000000 .305430 .536479 1.07296
4 —.064538 173287 .346574 .748932
5 —.105360 .102165 .240794 .562681
6 —.133531 .059446 174970 .443209
7 —.154151 .031878 .130899 .360818
8 —.169899 .013170 .099813 .300993
9 —.182321 .000000 .077016 . 255842
10 —.192372 —.010050 .059784 .220727
11 —.200671 —.018349 .046439 » 192751
12 —.207639 —.025318 .035899 .170018
13 —.213574 —.031253 .027437 .151239
14 —.218689 —.036368 .020549 .135508
15 —.223143 —.040822 .014876 122172
16 —.227057 —.044736 .010157 110747
17 —.230524 —.048202 .006198 .100870
18 —.233615 —.051293 .002850 .092263
19 —.236389 —.054067 .000000 .084707
20 —.238892 —.056570 —.002503 .078032
30 —.254892 —.072571 —.018503 .039039
40 —.262989 —.080668 —.026601 .022290
60 —.271152 —.088831 —.034764 .008238

where the by are chosen to give the region size 8, that is the bg are such that
bg
(2.12) [ wws 1) dw = 5.

Values of bg for n = 1(1)20, 40 and 60 are given in Table II for g = .99, .95,
.90 and .75. The power of the procedure as summarized by (2.11) is discussed
in Section 4.

Case III. p and o unknown. The sufficient statistic is given by (zq), s, y),
where gy = minj; z;, y is the random variable with density (2.2), and s is

given by
(2.13) s=(n— 172 (2 — zw).

Under the group of transformations
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y =c +a

a e R
(2.14) . G ={s" =c¢s
. ce(0, o)
Ty = cxay + a

a maximal invariant is found to be
2.15 =0V
( ) W s(nt+ 1)
The density element of W is

n+1 dw

w>0

na+ 1[1 + (n + D(n — 1)’
(216)  kw;a) aw = | T I H (0 D=7l

n+1 dw w < 0.

lna + 1[0 = (o + 1)i(n — Do tw]"’

(This is proved in Appendix 3)*. An analysis similar to that above shows that the
minimax most stringent tolerance region of B-expectations, having ability to pick
up the right hand tail of (2.1), is

(2.17) S, -+, @) = [xay — cps, ©),
where ¢g = (n™' + 1)cz, and the c§ are such that
ol
fak(w; 1) dw = 8.
The values of ¢g are given in Table III for n = 1(1)20, 40 and 60 for 8 = .75,

.90, .95 and .99, while the power function for (2.17) is discussed in Section 4.

3. The double exponential distribution. The density of this function is given
by
i e—; |z—n|
20
We discuss the case of 4 known, say o . It is easily shown that if a sample of

n independent observations be drawn from (3.1), that the sampling distribution
of the statistic

(3.1) dz, —0 << ®

(3.2) T=ZZ:!XZ-—uoI

has the density

1
o"T'(n)
4 Inspection of k(w; a) will show that it is a weighted combination of two densities

that are simply related to an F distribution with 2, 2(n — 1) degrees of freedom, where
m+ )W =FifW>0,andnaf = —(n + DWif W < 0.

(3.3) eV dt
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TABLE III

Tolerance Factors cg for single exponential distribution u and o unknown,
sample size n

AN
”\ \B 75 .90 .95 .99
N

2 .166667 1.16667 2.83333 16.1666

3 .000000 .387426 .824045 2.66666

4 —.065238 .194941 . 440551 1.28581

5 —.106760 . .108976 . 280960 .816410

6 —.135330 .061617 .194695 .585067

7 —.156148 .032478 .141423 . 448641

8 —.171978 .013270 105729 .359246

9 —.184415 .000000 .080451 .296463
10 —.194424 —.010056 .061814 .250149
11 —.202698 —.018366 .047645 .214709
12 —.209611 —.025349 .036611 . 186807
13 —.215486 —.031293 .027848 .164334
14 —.220539 —.036418 .020778 .145895
15 —.224931 — .040881 .014995 .130528
16 — . 228784 —.044802 .010213 117554
17 —.232192 —.048275 .006218 .106474
18 —.235227 —.051371 002854 096920
19 —.237948 —.054148 .000000 .088609
20 —.240400 — .056654 —.002503 .081326
30 —.256016 —.072661 —.018509 .039838
40 —.263878 —.080751 —.026609 022547
60 —.271776 —.088898 —.034774 .008273

Further, T is sufficient for o. If the tolerance region is constructed so that it
has ability to pick up the center part of (3.1), a reasonable choice for the ‘meas-
ure of desirability’ is the measure @, defined by

1
- ]. e—'&j;hl—l‘ol
200

(34) dQ dy,

where — o« < y < « and « is such that 0 < @ < 1. The analogous hypothesis
testing problem can now be put in the form
(3.5) Hypothesis: @ = 1 Alternative: a = ay, 0 < < 1.

We use the principle of invariance. The maximal invariant under the group of
transformations

(0 = ct
(36) G =

(0, =)
(y — m) = c(y — m) ° }
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is the statistic W = |y — wo|/t, and its density element is given by
(3.7) p(w; a) dw =

a

(This is proved in Appendix 4)°. In terms of W the problem (3.5) is a simple
hypothesis versus a simple hypothesis and clearly (Z, y) is sufficient. Applying
the Neyman-Pearson Fundamental Lemma, the most powerful invariant test is

if W £ dg
(38) o(W) = { .

0 otherwise
The test does not depend on a; (so long as 0 < a; < 1), and, because the test
is based on the maximal invariant, it is minimax, most stringent, and similar of
size 8. The dg are chosen to give the test size 3. Again following [1], we have the
minimax most stringent tolerance regions of B-expectation with ability to put
up the center 100 3% of (3.1) is

(39) S(xl y ,xn) = [MO - dﬁtr ke + dﬁt]a

where the dg are such that
dg

(3.10) [ o) dw = .
0

Values of ds for n = 1(1)20, 40 and 60 for 8 = .75, .90, .95 and .99 are given
in Table IV. The power of (3.9) is discussed in the next section.

4. Formulation of the power functions. Suppose sampling from (2.1), where

A. Case 1. p known, ¢ unknown. For this case, the solution of the correspond-
ing hypothesis testing problem is given by (2.6). The power of ¢, Py, (see p. 170
of [1] and p. 774 of [2]) and hence of S is determined by the distribution of W
under the alternative of (2.3). That is, we have

(a1) Py = PuelW 2 a) = [ g(w; ) dv,
ap
where g(w; a) is defined by (2.5), ag is given in Table I, and &; > 1. The power

measures the ‘degree of confidence’ we have that S(Xi, -, X,) covers the
right hand 100 8% of (2.1) when the desirability of covering this set is given by

1 L (o)
Q.(S) = —e ac dz, 1< a.
g8

For example, if it is 99.5% desirable to cover the right hand 90% of (2.1), then
a1 = 21.01938 and the power is found by (4.1) using this value of a; . Values of
the power for the regions S (as given by (2.8)) are given in Table V when the
desirability of the right hand 100 8% sets is .995.

s Inspection of p(w; ) will show that it is simply related to the F distribution with
(2, 2n) degrees of freedom, where nW = oF.



TABLE 1V

Tolerance Factors dp for the double exponential distributions mean and variance
unknown; sample size n

AN
N KE .90 95 .99
N

1 3.00000 9.00000 19.0000 98.9995

2 1.00000 2.16228 3.47214 8.99998

3 .587401 1.15443 1.71442 3.64158

4 .414213 778279 1.11474 2.16227

5 .319508 .584893 . 820564 1.51188

6 .259921 467799 .647549 1.15443

7 .219014 .389495 .534127 .930696

8 .189207 .333521 .454215 778278

9 .166529 .291550 .394951 .668070
10 .148698 . 258925 .349283 .584892
11 .134312 232847 .313032 .519910
12 .122462 .211528 .283569 467799
13 .112531 .193777 .259155 .425102
14 .104090 .178769 .238599 .389495
15 .096825 .165914 .221055 .359356
16 .090507 .154782 .205908 .333521
17 .084964 .145048 .192700 .311134
18 .080060 .136464 .181080 .291549
19 .075691 . 128838 .170780 .274275
20 .071773 .122018 .161586 .258925
30 .047294 .079775 .105014 .165914
40 .035265 .059254 077770 .122018
60 .023374 .039122 .051196 079775

TABLE V

Power of B-expectation tolerance regions, [asZ, «), when sampling from the

single exponential distribution, sample size n

L

Measure of Desirability = .995
at 57.39245356 21.01937897 10.23299086 2.005037823
\\‘9 75 90 95 99
N
1 .9942255 .9947417 .9948830 .9949873
3 .9947577 .9949156 .9949614 .9949958
5 .9948565 .9949496 .9949769 .9949975
7 .9948982 .9949642 .9949837 .9949982
10 .9949289 .9949751 .9949885 .9949989
15 .9949527 .9949839 .9949928 .9949994
30 .9949772 .9949924 .9949968 9950000
60 .9949897 .9949968 .9950000 9950000

933
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TABLE VI

Power of B-expectation tolerance regions, [y — bgo , ©), when sampling from

the single exponential distribution, sample size n

Measure of Desirability = .995
a1 57.39245356 21.01937897 10.23299086 2.005037823
\& RE] .90 95 99
1 .9914372 .9909171 .9910976 .9933444
3 .9942255 .9937556 9936906 .9942980
5 .9946996 .9943447 .9942490 .9945578
7 .9948414 9945995 .9944926 .9946791
10 .9949202 .9947892 .9946772 .9947744
15 .9949637 .9949042 .9948218 .9948512
30 .9949907 .9949755 .9949524 .9949305
60 .9949977 .9949938 .9949880 .9949712
TABLE VII

Power of B-expectation tolerance regions, [xn)y — cgs, «) when sampling from the

single exponential distribution, sample size n

Measure of Desirability = .995
aL 57.39245356 21.01937897 10.23299086 2.005037823
x\p 5 90 95 .99
AN
2 .9935224 9930295 .9930122 .9940120
4 .9945321 .9941230 .9940379 .9944568
6 .9947566 .9944932 .9943908 .9946278
8 .9948420 .9946794 .9945693 .9947184
10 .9948851 .9947891 .9946772 .9947744
15 .9949337 .9949021 .9948218 .9948512
30 .9949724 .9949719 .9949525 .9949305
60 .9949912 .9949912 .9949881 .9949712

Case 2. p unknown, ¢ known. An analysis similar to the above shows that the
power of (2.11) is given by

bg
(42) Py = Paw. (W < bg) = [ h(w; ) dw,

where h(w; «) is given by (2.10) and bg is given in Table II. Values of (4.2) for
the regions (2.11) are given in Table VI.
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TABLE VIII

Power of B-expectation tolerance regions, [uy — dgt, uo + dst] when sampling
from the double exponential distribution, sample size n

Measure of Desirability = .995

a1 .261648041 434587989 565411999 .869175979

X
qmw.—-/

.9197804 .9539367 .9711014 .9912967
.9707346 .9795429 9847458 .9928455
9815020 . 9859235 .9887008 .9935183
9858373 9886565 .9904921 .9938755
10 9888911 .9906625 .9929161 .9944304
15 .9911096 9921757 .9929161 .9944304
30 .9931575 .9936285 .9939683 .9947047
60 .9941067 .9943259 .9944876 .9948496

Case 3. u and ¢ unknown. Proceeding as above, one finds that
: ' s
(43) Py=Py(W <)) = [ k(w;an) do,

where k(w; «) is given by (2.16) and the values of cé can be found from Table
III using the relationship ¢s = (™" + 1)cj. Values of (4.3) for 99.5% desira-
bility of the right hand 100 3% sets are given in Table VII.

B. The Double Exponential Distribution. As before, the power of the regions
(3.9) is given by the power of the test (3.8) under the alternative hypothesis of
(3.5), that is by

g
(44) Py = Pue.(W £ dg) = ‘/0 p(w; 1) dw

where p(w; «) is given by (3.7) and dg is tabulated in Table IV. Values of (4.4)
are given in Table VIII.
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couragement, and to Mr. A. Cseuz of the University of Alberta for doing the
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APPENDIX
A. 1. Derivation of (2.5). To restate, the distribution of Y is given by (2.2)

with » = 0. Define X =n""D ", X, , where the X, are independent observations
from (2.1), with u = 0. It is well known that the density element of X is

N
o I'(n) )
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Hence the joint density element of £ and y is
n” l’:' g =1
L ag d
2 () e z Z dy.

We make the transformation w = y/Z, 2 = y. (The absolute value of the Jacobian
is z/w”.) The joint density element of W and Z is

n nz z n

n T
g(w,2) dw dz = 3T () e e dw dz.

On integrating out z we have g(w; a) dw = a"n" P na + w)"" dw. It is
easily verified that g(w; &) is a probability density.

A. 2. Derivation of (2.10). Here the distribution of Y is given by (2.2) with
¢ = oy . Define Xy = min/—; X, where X, are n independent observations from
(2.1) with ¢ = oo . It is well known that the density element of X, is given by

n e—;a(xm—u) da

-
(4]

Let s = n/oo(zqy — u) and z = (y — p)/aco . Then the density elements of s

and z are respectively ¢ °ds and ¢ " dz, and their joint density element is
¢ *7* ds dz. Make the transformation :

]

s
'w=7—L—az and ¢ = - + «az.

S

Note that w = (zg) — ¥)/o0 . The absolute value of the Jacobian is n/2«. Hence

hCuw, 1) dw db = 3 ~Ge) t(Gea).

Integrating out ¢,

n

na—l—le dwifw >0

h(w; @) dw = Y
n = .
p—— e* dw if w <0,

and it is easily verified that A(w; a) is a density.

A. 3. Derivation of (2.16). Using A. 2., it is easily seen that the density ele-
ment of z = (zqy — y)/(1 +n") is

n41 M
m e dz if 2 > 0

n+1 :—2 .
me dZIfz<O,

where o is now unknown. The density element of

s=(n—1)" 2 (@— z)
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is given by

n — 1 n—1 1 s _(n—;l)s
( . > I‘(n—l)s e ds

(I3), p. 54). Hence the joint density element of z and s is

n41 (n—1\y7 &7 b (mH, .
a'(’na-l-l)( . ) F(n——l)e dsdz if 2> 0

and

n4+1 (n—1\"" s lochs o ’
0<na+1)( o > I‘(n—l)e e dsdeif 2 < 0.

Making the transformation w = z/s and r = z (the absolute value of the Jacobian
is /w"), the joint distribution of w and r becomes

EITHET S T
(ea

o(na + 1) wTn—1)°
ifw>0
k(’w> 7') dw dr = ] n + 1 <n _ 1>n—1 7‘"—1 e__(na—wl)r e(f::;l‘r)?‘ dw dr
o(na + 1) 7 w'T'(n — 1)
| if w<O0.
Integrating out »
n 41 dw .
na F 1T F ¥ D= Doap ” >0
E(w; ) dw =
n+1 dw ifw <0

nae+ 1[1 — (n+ Dni(n — 1) o~ w]"

and it is readily seen that k(w; «) is a density.

A. 4. Derivation of (3.7). Let Y have the distribution (3.4) and define
T = ZLI |X: — wol, V = |Y — mol|, where each X, is distributed by (3.1), and
so T has the density (3.3). It is easily shown that V has the density element

1 ->
—e gy, v=0.
(o713

The joint density element of V and T is then

1

a1 T'(n)

If we let w = v/t and z = ¢ (the absolute value of the Jacobian is z), the joint
density element is

—t/g —
¢ dt d.

1 2

2w
—2/0 T
—_— € e * dw dz.
a1 T'(n)

p(w, z) dw dz =
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Integrating over z

na”

de, w > 0,

p(w; o) dw =

and it is easily verified that p(w; «) integrates to 1.
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