CONDITIONAL CONFIDENCE LEVEL PROPERTIES®

By Davip L. WALLACE
University of Chicago

1. Introduction. Some confidence region procedures have the property that,
conditionally on the sample point lying in some subset of the sample space, the
conditional confidence level (i.e. the conditional probability that the region covers
the parameter) is less than the unconditional confidence level uniformly in the
parameters. If confidence regions are interpreted as summarizing the k,nowledge
of a parameter value obtained from an experiment, such behavior has been con-
sidered undesirable, particularly when the conditioning subset is in some sense
irrelevant to the parameter of interest. ([2], [3], [4, Chap. IV], [9].) In many of
these references, the issue is discussed in terms of an associated test of signifi-
cance.) Buehler [1] has formalized this behavior and studied numerous examples.
Tukey [9] has given a somewhat different formalization and obtained a number
of results as part of a more complex framework for statistical inference.

In this paper, a class of conditional properties is defined that includes the
Buehler and Tukey definitions. Sufficient conditions for a confidence procedure
to possess various properties are obtained. The main result is that if a level «
confidence procedure yields, for all samples, posterior probability e for some
prior probability distribution on the parameter space, then there are no. subsets
of the sample space, with respect to which the conditional confidence is uni-
formly less (or greater) than a. A much more widely applicable, but slightly
weaker, result is obtained if a sequence of prior distributions is used. The results
apply to most of the classical confidence problems including discrete distribu-
tion problems and nuisance parameter problems as the Behrens-Fisher problem.

Confidence procedures for which no conditional confidence can be uniformly
less (or greater) than and bounded away from the nominal level include the
usual ¢, x*, F, Pitman conditional location and scale, and Behrens-Fisher pro-
cedures. The “uniformly less’’ conclusion applies to the one-sided binomial and
Poisson procedures.

Definitions and terminology are given in Section two, results are stated in
Section three and proved in Sections five and six, and examples are given in
Section four.

2. Notation and definitions. Let Z be a sample space, @ a parameter space,
and Y = Z X @ their Cartesian product. For any set C in Y, let
C.. = {w: (2, w) € C} and C., = {z: (2, w) £ C} denote the cross section sets.
Let (Z, @, 1) and (2, B, \) be measure spaces with o-finite measures u, N\. Let
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p be a measurable function on Z X Q, such that for each w £ 2, p.(+) = p(+ | w)
is a probability density on Z relative to u. The function p is called by Tukey
[9], a specification. The specification p will be fixed throughout this paper, though
other related specifications will be used. Denote by P. and E. respectively the
probability measure and expectation determined by p. on Z.

A density function £ on @ relative to the measure N will be called a prior
density. More generally, if { is any nonnegative function on ©, not identically
zero, ¢ will be called a prior quasi-density. A prior quasi-density ¢ will be said
to be ‘admissible with respect to the specification p, if

hez) = fﬂ (0)p(z | @) (@) < o

for all z & Z except for a set of u measure zero. A prior quasi-density ¢ will be
said to be admissible except on the set A with respect to the specification p where
A is any subset of Z, if ht(2) < » for all ze Z — A except for a set of u meas-
ure zero. Every prior quasi-density for which a constant multiple is a prior
density, is admissible with respect to any specification.

For every prior quasi-density ¢ and every z & Z for which 0 < h(2) < =,
there is ‘defined a density g;(+ | 2) on Q relative to A:

_ p(z] w)¢(w).
gr(‘-'-’ | z) = __h—;?z_)—_

(That gr is undefined for some z will not matter.) If ¢ or some constant multiple
of ¢ is a prior density, gr(« | 2) is the posterior density given by Bayes theorem.
If not, g;(+ | 2) is still a probability density on ©, but will be called here a weak
posterior density. (Some useful simple properties of weak posterior densities are
set forthin Section five.) If £ is a prior density, thenh(«) is a (marginal) density
on Z relative to u.

A confidence procedure is a measurable set C in the product space Z X @ with
the interpretative rule that to each z, the confidence set C.. = {w: (2, w) £ C}
in @ is assigned. Tukey calls C' an event. No restrictions concerning confidence
level will be placed in the definition of a confidence procedure.

A confidence procedure C is said to be level @ Bayes against & with respect to
the specification p—written C is B(e, £, p)—if some constant multiple of £ is a
prior density on @ and if, for each z ¢ Z for which g:(+ | 2) is defined, the set
C.. has probability a under the posterior density g:(+ | 2).

A confidence procedure C is said to be level « weak Bayes against ¢ with respect
to the specification p—written C is B* (a, ¢, p)—if ¢ is an admissible prior quasi-
density on € and no multiple of ¢ is a prior density, and if, for each z £ Z for
which g;(+ | 2) is defined, the set C,. has probability « under the weak posterior
density g;( | 2).

A confidence procedure C is said to be lower level « weak Bayes against ¢ with
respect to. the specification p—written C is B**(a, {, p)—if { is a prior quasi-
density on @ admissible except for a set A (which may be empty), such that
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C.. = Qfor all z¢ 4 and C.. has a probability of at least « under the weak pos-
terior density g¢(« | z) for all z for which g is defined.

Following Tukey [9], define a selection as a function k mapping Z into the
unit interval such that E,(k) > 0 for all w ¢ 2.7 Let

& _ plz]| w)k(z)
p( )(3 | w) = ——m— .

p™ is a specification and will be called the selected (by k) specification. Denote
by PP, EP, g¢¥ the functions for the selected specifications corresponding to
P, ) E, » gt -

Selection has the interpretation that in any conceptual infinit» sequence of
observation and parameter pairs, {(2., w.); n = 1, 2, -- -}, a new sequence is
obtained as the subsequence in which the pair (2., w,) is retained according to
the outcome of a chance process with retention probability k(z,). The process
is assumed independent for each pair. If k(z) takes only the values 0 and 1
(pure selection), the selection is according as z, does or does not belong to the
set D = {z: k(2) = 1} and the selected specification consists of the family of
densities p.(+) truncated to the sample subspace D.

Define, now, a number of performance properties of a confidence procedure
C.

1. C has property c(a) called exact confidence « if for all » @, P(C.,) = a.

2. C has property ¢(a) called lower confidence o if

inf P.(C.,) = a.

we

3. C has property é(a) called upper confidence o if
sup P,(C.,) = a.
weR

4. C has advance probability o if it has exact confidence «, and if, for any
selection k for which P’ (C.,) = qforall we®, ¢ = a.

5. C has strong advance probability o if it has advance probability «, and if,
for any selections k; , k. for which

P%(C..) = P%(C..)

for all w ¢ Q, equality holds for all w ¢ Q.
6. C has property Sy(a) if, for every selection k,

o < sup PP (C.L).

weQ
7. C has property S;(a) if, for every selection F,

inf P (C..) £ o < sup PP (C.L).
wel

weQd

2 The restriction on positivity seems possibly too strong, except when the positive do-
main of p(e [ w) is the same for all w.
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8. C has property S:(«) if, for every selection k, there exist parameter values
wy , w2, such that

PP (C.uy) S @ £ P(C.0y).

9. C has property S;(a) if, for every selection k& for which P (C..) < a
for all w or else P (C.,) = a for all w, equality holds for all w.

10. C has property Si(a) if it has property S:;(a) and if, for every pair of
selections k; , k, for which

P8V (C..) £ P¥P(C.L)

for all w, equality holds for all w.

The properties have evident interrelations of which the most important are

strong advance probability e = advance probability & = ¢(a).

Ss(a) = Si(a) = Si(a) = Si(a) = Si(a).

If C has-property c(a), then

strong advance probability « & S;(a) = -+ = S;(«) = advance probabil-

ity a.

The ordinary term confidence coefficient « usually means exact confidence o,
or sometimes lower confidence . Tukey [9] introduced the sequence frequency
(equivalent to exact confidence), advance probability, and strong advance
probability to deseribe successively stronger properties of a confidence pro-
cedure in retaining “level o’’ under selections. The properties S;(a) and Sy(a)
for pure selections have been defined and studied by Buehler [1]. He names the
selections violating the defining condition rather than the property. The princi-
pal reason for introducing the sequence {S;(«)} is to permit differentiation of
behavior of common confidence procedures. The unsymmetric property So(e)
seems of interest in much the same “conservative” way that lower confidence
¢(a) is of interest.

Buehler’s examples, combined with the examples and results of this paper,
seem to indicate the need for properties intermediate to advance probability
and strong advance probability, and even suggest that strong advance proba-
bility may be so strong and rare as to be of little value.

3. Principal results.

TueoREM 1: Let C be a confidence procedure which is level a Bayes against &
with respect to the specification p for some . Then C is Sy(a). If in addition,
£ is positive on @, C 78 Sz(a).

COROLLARY 1: A confidence procedure C which has lower (or upper) confidence
a, but not exact confidence a, is never level oo Bayes against any & positive on Q.

TuroREM 2: Let C be a confidence procedure which is level a weak Bayes against
¢ with respect to the specification p for some ¢. Then C is Si(a).

CoROLLARY 2: If C has exact confidence o and s level o weak Bayes against ¢,
then C has advance probability .

CoroLLARY 3: If a fiducial distribution for w for the sample point z has density
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f(+ | 2) which is a weak posterior density g;(« | z) with respect to some admissible
prior quast-density for all z, then any confidence procedure giving fiducial proba-
bility « for every z has the property Si(a).

This specifically includes results of “integrating out’ nuisance parameters.
Such procedures will not, in general, have any of the confidence level properties:
¢(a), ¢(a) or é(a). The result is not at all dependent on the problems of con-
struction or meaning of fiducial distributions and fiducial probability.

The results in examples (a), (b) of Section four could have been obtained
using results of Fisher and of Jeffreys ([5], [6]) together with Corollary 3, but
it seems preferable to derive directly the facts necessary to apply Theorem 2.

Confidence procedures for functions of » with nuisance parameters are easily
handled directly by Theorems 1 and 2 and Corollary 2. For a more explicit treat-
ment in an important special case, suppose w = (6, ¢) With @ = @ X &. A
confidence procedure C will be called a confidence procedure for 6 if C is a cylinder
set with base C*in Z X ©. Assume that the measure N on  is a product measure
At X A; of measures on ® and ®. .

CoROLLARY 4: If a confidence procedure C for 0 with base C* in Z has the prop-
erty that

Cr = {0: (2, 0) € C¥}

has, for each z, probability « under the marginal distribution on © of a weak pos-
terior density, then C is Si(a).
TaEOREM 3: Let C be a confidence procedure which is lower level o weak Bayes
against ¢ with respect to the specification p for some ¢. Then C is So(e).
Proofs are given in section six.

4. Examples. In examples (a), (b) and (c), Z is a Euclidean spate with u
Lebesgue measure. In examples (d) and (e), Z is the nonnegative integers with
counting measure. In all examples, Q is a Euclidean space (or obvious subspace)
with A Lebesgue measure.

(a) Normal. Let Z be n-dimensional Euclidean space with coordinates inde-
pendently and identically distributed as N (8, ¢*). Let = (8, ¢), Z = > a/n,
S =2 (z: — 2

(i) ¢ known. With admissible prior quasi-density {(8) = 1, the weak posterior
density for 6 is

~ n(0—2)2
\//’_L__ e 2° |
o2

Hence any confidence procedure with confidence sets of the form

9:(0]2) =

{0: 0 — z ¢ Ay}

with 4; a set on the real line with probability « under the distribution N (0, a/n)
will have exact confidence «, be weak Bayes and S;(«) and have advance proba-
bility a.
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Not all such procedures are Sy(). For let the set A; be any half-infinite
interval, say (— , a). Let k be a pure selection retaining the point z if Z < b.
The conditional confidence level

Pz:60—2<a|lz2<b <a

for all @ ard b. The complementary selection gives conditional confiderice
greater than « for all 8. Si(«) guarantees that the conditional confidence is not
uniformly below (or above) and bounded away from a. I do not know if confi-
dence procedures with 4, a finite interval must have the property Sa(«).
(ii) ¢ unknown, n = 2. With admissible prior quasi-density ¢(8, ¢) = 1/,
the weak posterior density is
g;((),alz) —o-\/_z_;e 2 O_ZI, (n-;l) é_;é e .

This can be best described as follows: (6, o) given 2z is distributed such that
S/¢* is distributed as chi-square on n — 1 degreés of freedom and, conditional
on o, 0 is N(3, ¢’/n). The marginal distribution of 6 given z is such
that (8 — z)v/n(n — 1)/8 is distributed as Student’s ¢ on n — 1 degrees of
freedom.

Any confidence procedure for § with confidence sets of the form

{6: (6 — 2)vn(n — 1)/8 € Ag}

with A, a set on the real line with probability « under the ¢, distribution will
have exact confidence «, and, using Corollary 4, will be weak Bayes level « with
respect to ¢. The procedure is then S;(a) and has advance probability .
Buéhler [1] has noted that no such procedure is Sy(e), a pure selection accord-
ing as 8 = ¢ giving conditional confidence uniformly less than a.
Any confidence procedure for ¢ with confidence sets of the form

{o: 8/d" € Ag}

with A; a set on the positive real line with probability « under the X1 distribu-
tion, will have exact confidence a, be weak Bayes, and hence Si(e) and have
advance probability a.

These results are all special cases of example (¢) on location and scale param-
eters.

(b) The Behrens-Fisher problem. Let Z be my -+ mp dimensional Euclidean
space, with coordinates independently distributed, the first n, identically as
N(6:, o1), the last n, identically as N (6, 03). Let w = (61, o1, 02, 02) and let
%, %, S1, S: be the means and sums of squares of deviations of the two sets of
coordinates. Assume n; = 2, ny = 2.

With the admissible prior quasi-density {(w) = 1/o102, the weak posterior
distributions of (8, s1) and (6;, ;) are indepenident and as obtained in example
(a:;) with appropriate (n:, 2, S:).
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The usual confidence procedures for o5/0; with confidence sets of the form

. S (ns — 1)0§ 1
{ 0'2/0'1. (’ﬂl — 1)0% Sg & A1 j
with A, having probability « under the F,, 1,1 distribution will have exact
confidence «, be weak Bayes and S;(«) and have advance probability a.
The marginal weak posterior distribution for 8, — 6 is easily found to be
such that

(6, — 82) — (21 — 25)
\/ a + a;

is distributed as the linear combination of independent Student’s variates:
tni—1 SN 0 — t,,_; cos 6, where a; = S;/[n:(n; — 1)] and 8 = tan"[ar/as]!. This
distribution can usefully be called the Behrens-Fisher distribution with param-
etersn; — 1, ns — 1 and 8 — written BF(n; — 1, n — 1; 68). (The usefulness
of this terminology is illustrated in the paper [10] in which a more detailed re-
lated treatment of the Behrens-Fisher problem is given.)

Any confidence procedure for 6, — 6, with confidence sets of the form

0, —0;) — (35, — 2
R

with 4, a set having probability « under the distribution BF(n; — 1, n, — 1, 6)
will be weak Bayes level a; and have the property S;(a). Since the marginal
weak posterior density for 8, — 0, is exactly the fiducial density for 8, — 6,
under the Behrens-Fisher solution, and fiducial procedure with fiducial prob-
ability a has the property S;(a). Such procedures are known not to have exact
confidence a, but at least for n; and =, sufficiently large to have lower con-
fidence « and not be S:(a). The behavior for small #; and 7. is unclear. (C.f. [10}.)

The Welch asymptotic procedure with asymptotically exact confidence a does
not, possess property S;(a). Fisher’s criticism ([3]) of this procedure amounts
effectively to showing that, for n, = n, = 7, a pure selection with retention if
| (81/82) — 1| < & for & small gives conditional confidence uniformly below
and bounded away from «. For n; and n, sufficiently large, asymptotic theory
suffices to show that a selection with retention if

| [Sma(ne — 1)*/Semi(ny — DY]—-1]<3s
for & small has a similar effect. Calculations for small and moderate values of
ny and 7. indicate that the effect holds fairly generally.

(¢) Location and scale parameter families. Let Z be n-dimensional Euclidean
space, let w = (0, o) with 8 a (real) location parameter, ¢ a (positive) scale
parameter for the family p of distributions. Let ¢ = (1, ---, 1). Then

1 — 6
pa(2) = = ¢ (z——€>
ag

g

for a fixed density q.
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(i) .o = 1, known. The prior quasi-density {1() = 1 is admissible
(f g(z — 6¢) df < o except on sets of measure zero) for all ¢, and the weak
posterior density of 6 is:

q(z — be) .
q(z — ye) dy

gh(al z) = o

Let C be a confidence procedure which is level a weak Bayes with respect to {;
and which also possesses the translation property: (z, 6) ¢ C if and only if,
(z + ae, 8 + a) € C for all a, or equivalently, if and only if 2z — f8ee C.o. The
translation property guarantees that the confidence level is constant; for

j;a q(z — be) du(z) = fc q(2) du(z)

and since C is S;(a), then it must have exact confidence «, and have advance
probability «. Such a procedure is a conditional procedure with translation
property as constructed by Pitman [7], by choosing a set with conditional prob-
ability « under the conditional distribution of z — 6¢ on each configural line
determined by the differences {z; — 2,, ¢ = 2, ---, n} of the sample point.
Buehler [1] proved the S;(a) result whenn = 1.

(ii) 6 = 0, known. The prior quasi-density {:(¢) = !/ is admissible for all
¢, and the weak posterior density of ¢ is

o= tg(2/0)

r_("“)q(z/‘r) dr

ga(o|2) = j_:

Again, a confidence procedure which is level @ weak Bayes with respect to s
and has the natural property under scale change, has exact confidence «, is
Si(a) and has advance probability «. It is'a Pitman scale procedure, with con-
ditional confidence « on each configural ray from the origin.

(iii) For n = 2, the prior quasi-density {3(8, ¢) = 1/¢ is admissible for all ¢
and the weak posterior density of (6, o) is

o~ (Z - 06)
g
/;w dlﬁ ]; dr [T—("+l)q (2 : 'P):]

Let C be a confidence procedure which is level a weak Bayes with respect to {3
and which has the translation scale change property that (z, (6, ¢)) ¢ C if and
only if (2 — 8¢)/o € C.0,1y . Any such procedure will be S;(«), have exact con-
fidence « and advance probability «. Included are confidence procedures for 8
and ¢ jointly and for 6 or ¢ separately. For the latter, it suffices to determine
each C.. according to the marginal posterior densities. Again, the procedures
are just those of Pitman.

In all examples, the prior quasi-densities were those of the Haar measure on

gi‘s(oy o | z) =
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the appropriate group of translation and/or scale changes. If Q is any s-compact
group of transformations on Z, and if {(w) d\(w) is Haar measure on Q, then a
confidence procedure C can be obtained which is weak Bayes level & and which
satisfies the standard invariance condition under the group Q. The latter condi-
tion insures that the procedure has exact confidence not depending on w and,
from the former, the procedure is S;(a), hence has exact confidence « and ad-
vance probability «. To prove that the Haar measure is admissible and to show
that the weak posterior density is for each fixed » the conditional density on
each orbit in Z under the group 2, seems to require slightly more structure.

(d) Binomial. Let p, be the binomial (n, w) density. The usual one-sided
confidence interval (};(2), 1) for w witk lower confidence « is obtained for 2 > 0
as the root of the equation

z—1

2 pGEh) =0
7=0
or, equivalently, of the incomplete beta equation

1 f ! z—1 n—z -
Ben—2F1) llw (1 —w)""dw = a.
For z = 0, [,(0) = 0. The weak posterior density with respect to the prior quasi-
density {1(w) = ™ (i.e., a beta quasi-distribution with parameters (0, 1)) is

wz-——l(l — w)n-—z

N

Since {; is admissible except for z = 0, for which Cy. = Q, the confidence pro-
cedure is lower level a weak Bayes and is So(«). Selection by the set {z = 0}
shows that the procedure is not S;(a).

- Similarly, the usual confidence interval (0, l:(z)) with lower confidence a is
lower level a weak Bayes with respect to the prior quasi-density {»(w) =
(1 — )™, and is So(a) but not Si(a).

The usual two-sided confidence interval (l1(z), l2(z)) combining the two
one-sided lower confidence a procedures is a much more complex procedure
having lower confidence depending on n and e, but lying between 2« — 1 and
a. The nominal lower level 2o — 1 is achieved only for rare combinations of n
and «, so that, a fortiors, the two-sided. procedure is not usually S;(2a — 1)

(e) Poisson: Let p, be the Poisson density with mean w. As with the binomial,
the usual one-sided procedure for w with intervals of the form (l;(z), ») and
with lower confidence « is lower level @ weak Bayes against the prior quasi-
density {1(«) = « ™, and the procedure is So() Since 1;(0) = 0, it is not Si(a).
However, the other one-sided procedure does not suffer from the end effect and
the interval (0, l;(2)) determined for all z from the equation

26| h) =a
z2+1
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or from the equation

ly
I‘—_—_—(z-{-l)/(; we dw=a
gives a confidence procedure with lower confidence « which is level « weak Bayes
against the prior quasi-sensity {:(w) = 1 and hence has the property S;(a).

6. A property of prior quasi-densities and weak posterior densities.

THEOREM 3: If ¢ is a prior quasi-density with [ {(w) d\ = o, with correspond-
ing weak posterior density g:(« | 2), then there exists a sequence of prior densities
{£.} with corresponding posterior densities g.( +| z) such that for all w e @ and all
z for which g; is defined,

lim g.(w | 2) = gi(w[2).

Further, if {£a} 7s any sequence of prior densities with corresponding prior densities
{ga(+ | 2)} such that there exist constants K and {a. ; n = 1, 2, - -} such that for

all w,

(5.1) 'lgg aufa(w) = §(w)
and
(52) anfn(w) < K{(w)
then

lim ga(w | 2) = gi(w | 2).

In the second part of the theorem, condition (5.2) is necessary in that se-
quences {£,} can be found that satisfy condition (5.1) but for which { g,.(w [ 2)}
does not converge, or which converges but not to a probability density.

The second part will be proved first. For all 2 for which the right-hand de-

nominator is finite and positive,
a’ﬂp(z lw)gn(w) .
an [ 92| w)ta(u) dN)
Q

gn(w l z) =

Under conditions (5.1) and (5.2), both numerator and denominator converge
respectively to the numerator and denominator of gy(w|z) for a,ll « and for
every z for which g; is defined.

The first part of the theorem will be proved by exhibiting a Sequence {£n}
satisfying conditions (5.1) and (5. 2) Since N is o-finite, there exists an increas-
ing sequence of sets in :{B, ;n =1, - - -} such that lim B, = @ and A\(B,) < «.
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Define
min [n, {()]
tn(w) = fB min [n, ¢ (u)] d\(u)
1 0 we B,

¢ B,

£, clearly satisfies the two conditions with K = 1,
an= [ min fn, £(u)] dA(w).
Bn

6. Proofs of results of section three.
LemwMma 1: If a confidence procedure C is B(a, £, p) then for every selection k, C
is B(a, & , p™), with prior density

fw)-Buh)
[ £ B dx@)

f(w) =

LeMMA 2: If a confidence procedure C is B¥*(a, ¢, p) (or B¥*(a, ¢, p)), then
for every selection k, C is B¥(a, &1, ™) (or B¥*(a, &, p®)) with prior quasi-
density

fi(w) = §(w)-Eu(k).
By assumption in Lemma 1,

[ #@ntz1e) )
f £u)p(z | u) d\(w)

«.

But
8(w)p" (2| ©) = a(2)&(w)n(z | )
so that

fc £:()p® (2 | ) d\(w)

«.

[ 8p® 1w dnw)

The proof of Lemma 2 is the same with the exceptional set for admissibility
unchanged for the selected specfication.

Let x¢ denote the set characteristic function of the set C in Z X Q. By the
usual conditional expectation interchange of order of integration, for any prior
density £ and specification p,
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[PoC,0)t@) iNw) = [ xolz,0)ple | @)2(w) it X 1) (2, )]
Q zZXQ

(6.1) - fz he(2) [ fﬂ xo(2 @)ge(w | 2) dk(w):l du(2)

~ [ me) [ [ ool dwo)] du(2).

Note that the lack of definition of g; for those z for which At(2) = 0 is of no

consequence. v
If Cis B(a, £ p), then for any selection %, C is B(a, &, p®) by Lemma 1,
and applying equation (6.1) to & and specification p® yields

[g PE(C ) (w) du(z) = a.

It follows immediately that PS”(C..) < a(>a) for all w is impossible so €' is
Sz(a). If £ is positive on ©, so is & , and C is S;(«) and Theorem 1 is proved.
If C is B*(e, ¢, ), then for any selection &, €' is B*(a, ¢, p®) by Lemma 2.
Let {£,) be the sequence of prior densities guaranteed by Theorem 4 and let
{g.(+ | 2)} be the corresponding posterior densities under p®, converging to
g;“;) (s ] 2). Since these are probability densities on @, it follows from Scheffé’s

theorem [8] that

(62) Jim f g0 ] 2) (@) = f g | 2) dN(w)

n—>o0

uniformly in z with the right hand side identically equal to « by hypothesis.
Then with

() =[50 (0 | 2) dM),

tim [ hae) [f guls | 2) d)\(w):l du(z) = o,
n>w0 vZ C,.
and this, together with equation (6.1) applied to £, and p®, yields

lim fﬂ P (C.0)E(w) dN(w) = a.

Hence, for no k is it possible that
sup PP(C..) < a

or
inf PP (C..) > a

so that C is S,(a) and Theorem 2 is proved.
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If Cis B¥*(e, ¢, p) with { admissible except for the set A C Z then, using
the same notation as in the preceding proof, equation (6.2) holds uniformly in
z for z 2 A. The right hand side is now not less than «. Then

[ o) [ [ o1 dm)] du(z) — a

== [ @) + [ W [[ o) o) — el aute)

so that

n—>0

lim inf [ Aa(2) [ [ atal2) dx(w)] d(2) 2 a
z Ca.
and hence

lim inf A PP (C.0)E(w) dN(w) = a.

n->90

Then for no k is it possible that
sup P?(C.,) < a

and C is So(a) and Theorem 3 is proved.

Corollary 1 follows immediately from Theorem 1, and Corollaries 2 and 3
from Theorem 2. Corollary 4 follows from Theorem 2, by noting that C,. is a
cylinder set with base C;.in Z X ©.
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