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(Abstract of a paper presented at the Cambridge, Massachusetts Meeting of the Institute,
August 26-28, 1958.)

31. Markov Renewal Processes. RoNaLp PykEe, Columbia University. (In-
vited Paper presented under the title, “On Multi-event Renewal Proc-

esses.”’)
I{et Q=1@:l,1=%j=<m m< © beamatrix of transition distributions, i.e. each
Qi; is a mass function satisfying Q:;(t) = 0 for ¢ < 0 and X7.1Q:;(+») = 1. For discrete
probabilities a1, +++ , am , let {(J», Xa); » = 0} be a stochastic process satisfying

P[Jo=k]=ak, Xo=0,
and P[J, = k, Xo £ x| Jo, J1, X1, ++, Jna1, Xnal = Qru_1.x(z) as. For t = 0,

1 = j = m, define N;(t) as the number of times J, = j and S, = t for n > 0, where
Sn=X14+ -+ X..

The vector process {Ni(f), ---, Nm(t); ¢ = 0} is called a Markov Renewal Proc-
ess (ML.R.P.). Alternatively, it is possible to define an M.R.P. as an equivalent 1-dimen-
sional process. Set N(¢) = Ni(t) + -+ + Nn(t), and define Z; = Jy(y . The process

{Z:t = 0}

is called a Semi-Markov Process (S.-M.P.). An M.R.P. is an S.-M.P. (with a finite state
space) if and only if Q;; = 0 for all 7. Let P;;(t) = P[Z: = j| Zo = ] and

Gi;(t) = PIN;(t) > 0| 2, = 1],

the latter being the first passage-time distribution from state 7 to state j. Relationships
between the Q;; , Pi; and G;; are derived. These can be solved to obtain expressions for the
P;; and G;; in terms of the Q;; . For example, one may show | P;; || = (I — Q)V (I — &)
where the elements of 3C are given by H:; = 8:;;2%-1 Qix . M.R.P.’s are generalizations
both of discrete and continuous parameter Markov Chains. They have many applications,
the one which motivated the author’s definition and study of these processes being to the
theory of multiple channel electronic counters.

(Abstracts of papers presented at the Washington, D. C., Annual Meeting of the Institute,
December 27-30, 1959.)

24. Main-Effect Designs for Asymfnetrical Factorial Experiments. SIDNEY
AppELMAN, Iowa State University.

A method of constructing orthogonal designs which allow the estimation of main effects
for a general class of asymmetrical factorial experiments is presented. By the use of the
suggested method of construction, it is possible to obtain a design in which all main effects
are preserved, for the sf X sf# X -+ X si* experiment in s observations, where s; is a
prime or a power of a prime, §; > sz > +++ > s, and Skati= (s —1)/(s1 — 1). As an
interesting consequence of the above method of construction, one is able to obtain main-
effect designs for symmetrical factorial experiments in which the number of levels of each
factor is not a prime or a power of a prime.
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25. A Probability Model for Theory of Organization of Groups with Multi-
Valued Relations Between Persons. Joun L. Baeg, Florida State Uni-
versity.

We are concerned with relations between ordered pairs of distinet individuals in a finite
group of n individuals. Let there be (k + 1) distinct types of relations where the (k¥ 4 1)st
relation usually denotes the null relation. The relations between ordered pairs (¢, 7),7,j = 1,
2,---,n,1 # j of individuals are represented by an n X n X k matrix C with elements
ciju=00rl,u=12---,k Welet r,y, = Xj.1 ciju represent the total number of choices
made by individual ¢ and s;, = i c:ju represent total number of choices received by in-
dividual j with respect to the uth relation where c;;, = 1 if individual ¢ chooses individual
Jj, 1 % j, otherwise ciju = 0. ¢iiu = O for all 7 and u. We insist that one and only one of the
(k 4+ 1) relations exist between each ordered pair (z,7), i.e., S e £ 1. We let rv =
(1w, *+* ,7nu) and 8* = (Su, *+* , Snu) be the marginal row and column total vectors for
the n X n submatrix of ¢ for the uth relation. We let (g, s) = (’, s’, ---, ¥, s*¥). The
main theorem gives a procedure for counting the exact number of matrices C' for any
given fixed 2nk dimensional vector (R, s) subject to the previous restrictions on the ele-
ments cij . This is an extension of a result obtained by Katz and Powell (Proc. Amer.
Math. Soc., Vol. 5, 1954).

26. Multiple-Decision Ranking Problems Arising from Factorial Experiments
on Variances of Normal Populations (Preliminary report). RoBerT E.
BecuHOFER, Cornell University.

A multiplicative model is considered as a basis for analyzing multifactor experiments
which are conducted to study the effect of changes in the levels of the factors on the vari-
ance of a normally distributed chance variable. A single-sample multiple-decision pro-
cedure for ranking the treatment “effects’’ on the variance when the experiment is con-
ducted in blocks (and the block “effects’ are thus removed) is proposed. The procedure
is a generalization of the one described in these Annals, Vol. 25, pp. 273-289. Similar pro-
cedures can be used in multifactor experiments for ranking simultaneously the ‘‘effects’
of two or more factors. Tables of the type given in the above reference are being prepared.
Some of these tables can also be used for testing hypotheses concerning the ‘‘effects’ or
for forming interval estimates of the ‘‘effects.”

27. A “Renewal” Limit Theorem for General Stochastic Processes. V. E.
BenEgS, Bell Telephone Laboratories and Dartmouth College.

Let z. be a stochastic process on a space X, and let {z.e A} be a measurable set, A C X.
Let tn ,n = 0, &1, 42, - - - be a real discrete-parameter process on the same measure space,
with tni1 > tn a.s. and H(x) — H(y) = expected number of ¢, € (y, ) < «. Pr{z. e A}
can always be written as f‘_wK 4(t, u) dH (u). The event {z; €4} is called weakly stationary
w.r. to {,} if its representative kernel K, is a difference kernel, K4 (¢, u) = Ka(t — u).
Theorem: Let y, be the time from ¢ to the next ¢, , i.e., y: = min{t, — |, > ¢}. If {y, < 0}
and {z. & A} are both weakly stationary w.r. to {¢,} with respective L, kernels ¥ and K4 ,
if the {t.} are “aperiodic’’ in the sense that the Fourier transform of ¥ does not vanish,
and if H(- + 1) — H(-) is bounded, then lim Pr{z;e A} = || Ka|l /|| Y || (L1 norm) as

t— oo,
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28. Use of Prior Knowledge in Finding the Maximum Response. R. J. BUEHLER,
Towa State University.

In seeking the value of a vector of control variables z which maximize an expected yield,
Ey = f(x), the choices of z for the initial observations must of necessity depend on a sub-
jective judgement based on prior knowledge. The following problems are considered: (1)
Under what prior assumptions does the ‘“path of steepest ascent’” have optimal properties?
(2) What are the properties of some other paths, for example those determined by choosing
the nth vector z, to maximize the conditional expectation of the nth yield y. given the
first n — 1 observations.

29. A Subfield Containing a Sufficient Subfield is Not Necessarily Sufficient.
D. L. BurkHOLDER, University of Illinois.

Let X be Euclidean two-space, S be the sigma-field of Borel sets of X, and P be the
class of all probability measures p on 8 of the form p = ¢ X ¢ where ¢ is a probability
measure on the sigma-field of Borel sets of the real line. Let

to(z) = (minf{z:, 22}, max{z: , z2})

if £ = (x1, %) is in X. Let ¢ (z) = zif zisin B, = {y(z) if  is in X — B, where B is a
subset of X not in S such that z; > z. for each z in B. Let S; be the subfield of S induced
by the statistic ¢; for ¢ = 0, 1. Then ¢, is a sufficient statistic and S, is a sufficient subfield
for the measures P on S. However, ; and S; are not sufficient. This is in spite of the fact
that ¢y = F (#;) for some function F and S, < S; . This example provides a negative answer
to a question posed by Bahadur on page 441 of his paper “Sufficiency and statistical de-
cision functions,” Ann. Math. Stat., Vol. 25 (1954), pp. 423-462.

30. Optimum Properties and Admissibility of Sequential Tests. D. L. Burk-
HOLDER AND R. A. WissmaN, University of Illinois.

Suppose X1, X:, -+ are independent and identically distributed, with common density
Po or p1 , and it is desired to test one possibility against the other. In the following, 7 = 0, 1.
If 8 is a sequential test, let «:(S) denote the error probabilities, »;(S) = Eic;(N), where
N is the sample size, 0 = ¢;(0) = ¢;(1) £ -+ < ¢i(w0) = o, and ¢;(n) > © asn — .
S will be called inadmissible if there is an S* such that «;(S*) = «:(8), »:(S*) = »:(S),
with strict inequality in at least one of the four. S8* is said to have optimum property
I(OP;) if »i(S*) < o, and »;(8) = »;(S*) for each S satisfying »;(S) < « and

a;(8) £ a:;(8*).

S* has OPyrif »i(S) = v:(8*) for each S satisfying «;(S) < «:(S*). Theorem 1. If S* has
OPj then it has OPrr. For ¢i(n) = n, Wald and Wolfowitz have shown that the Wald
SPRT with barriers 0 < B < 1 < A < « satisfies OPy. Hence, by Theorem 1, it must
satisfy OPrr . In the next theorem it is assumed that c;(n) = n. Theorem 2. If S is a SPRT
with either B < 4 < 1lorl < B < 4, then 8§ is inadmissible. S can be improved upon by
a mixture of at most 3 tests, one of which does not take any observations, such that the
mixture is not only admissible but possesses OP; and therefore also OP;; .

31. Conditional Expectations of Banach-Valued Random Variables. S. D.
CuATTERJI, Michigan State University. (Introduced by K. J. Arnold.)

The notion of conditional expectation of Banach-valued random variables has been
introduced and a study of martingales of such random variables has been made. Three
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different cases arise, depending upon the topology used: the strong, weak and weak star if
the Banach space of values is the dual space of another Banach space. The corresponding
notions of integration used are Bochner, Pettis and Gelfand respectively. Owing to, the
non-existence of theorems of Radon-Nikodym type for Banach-valued measures, separate
proofs for the existence of conditional expectations had to be given. The theory simplifies
in the strong topology and the usual properties of conditional expectations are valid in this
case. Convergence of martingales of the type X, = E(Z | Fa)n 2 1and X_, = E(Z | F_,),
both almost everywhere and in L, are proved independently of the classical theory. Con-
vergence in L, has also been proved for above martingales when X is reflexive by extending
a method due to Jerison (Proc. Amer. Math. Soc. Vol. 10, 1959) using mean ergodic theorems.
For doing this, weak completeness and compactness properties of spaces L, (2, ®, P, ) =
{X (0): X (w) strongly measurable, f]l X (0) | dP < «} have been studied. The results
are used to prove the strong law of large numbers for Banach-valued random variables and
the theory of derivatives in Banach spaces.

32. Certain Extensions of a Theorem of Marcinkiewicz (Preliminary Report).
INngE CHRISTENSEN, Catholic University.

This paper considers the function f(f) = Kafi(t)ea[Pm(t)], where K, is a constant and
where P, (f) is a polynomial of degree in and with complex coefficients a, + 728, , and where
the iterated exponentials e, (z) are defined as follows: e1(z) = exp(z), e:(2) = explei(2)],

-, ex(2) = explex-1(2)]. Using the analytic approach of E. Lukacs (Pacific J. Math.,
Vol. 8 (1958), pp. 487-501), it has been shown that if m > 2, then f(¢) cannot be a charac-
teristic function in the following cases: (i) f1(¢) = exp[yi (e — 1) + v2 (e~ — 1)]; (i) f1 () =
explg(® — 1] where g(¢) is an entire characteristic function belonging to a lattice dis-
tribution with the origin as a lattice point; (iii) fi(t) is the characteristic function of a
bionomial distribution. In the case where n = 1 and f1(f) is the characteristic function
of a gamma distribution, it has been shown that f(¢) cannot be characteristic function if
m > 3 or if m = 3 and B; is zero or negative.

33. Minimax Sequential Tests of Some Composite Hypotheses. Morris H.
DEGroort, Carnegie Institute of Technology.

Let {X (t); ¢ = 0} be a Wiener process with unknown mean u per unit time and known
variance per unit time. The problem is to test the hypotheses Hy : u < uoand Hy : o > uo ,
where uo is a given constant. Let the cost of accepting an incorrect hypothesis when u is
the true mean be of the form ¢ | u — wo |7, where ¢ > 0 and 0 < r < 2. Let the cost of ob-
serving the process for a time 7' be bT, where b > 0. Under these conditions it is shown
that the minimax test is a specific sequential probability ratio test;i.e., a test under which
the process is observed as long as h; 4 st < X (¢) < he + st for appropriate constants
h1, by, and s. The analogous problem of testing composite hypotheses about the mean of
a normal distribution is considered and it is shown that if the cost per observation is large,
the minimax test is to take exactly one observation and then accept one of the hypotheses.

34. Small Sample Behavior of Estimators of Parameters in a Linear Func-
tional Relationship. MARTIN DoRrFrF AND JoHN GURLAND, Iowa State

University.

Housner and Brennan (1948) and Durbin (1954) have proposed a very simple consistent
estimator of the slope in a linear functional relationship between two variables subject to
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error: b = (Cw;y:)/ (Zwix:) (Zw; = 0), where the weights w; are very simply related to the
serial order of the observations; that is, w; = 7 — 7. If one knew that the true values X;
corresponding to the observed values z; were uniformly spaced, this would clearly be a
desirable estimator; in fact, it is precisely the usual least-squares estimator. The question
arises, how does this estimator behave when the X; are not uniformly spaced. It is possible
to obtain the bias and mean square error of this estimator for various error distributions
without undue difficulty if it is assumed that ordering the points according to the z; is the
same as ordering the points according to the X; . It is shown that the bias and mean square
error are surprisingly insensitive to even wide-spread departures from uniform spacing,
and in particular, that the bias is much less than that obtained when using the ordinary
least-squares estimator.

35. On the Distribution of a Noncircular Serial Correlation Coefficient with
Lag 1 When the Mean of the Observations is Unknown. FriEDHELM
EickEer, University of North Carolina.

In the theory of time series several serial correlation coefficients have been used for
testing the independence between the observations z; . In this paper the x; are considered
to be distributed like N (m, 1) where m is unknown. As a suitable noncircular serial correla-
tion coefficient with lag 1 for the test of independence is considered r = ¢/p with
g=21 (@i — &) (@ip— %), p = i (@ — 3)?, where £ = 1/n 31 2; and n is the sample
size. So far not much seems to be known about the distribution of r. In this paper its first
cumulants are derived. This is done by starting from a divisor of the characteristic poly-
nomial of the matrix of the quadratic form in the numerator. Thereby use is made of a
symmetry in its characteristic vectors and of the relations between power sums and com-
plete symmetric functions. Some results of Siddiquis work on noncircular coefficients for
known mean m are utilized here. As is to be expected our results do not differ very much
from his. Besides these exact results, bounds are found for all cumulants. The method used
here is related to perturbation theory and another theory developed mainly by Schaefke
for characteristic value problems with two parameters.

36. Partnership Games with Secret Conventions Prohibited. MArRTIN Fox AND
HerMman RusiN, Michigan State University.

The ethics of bridge prohibit the use of secret signals by any partnership. This is ex-
plicitly stated in Law 5 of “The Laws of Duplicate Contract Bridge”’ (Ely Culbertson,
Bidding and Play in Duplicate Contract Bridge, John C. Winston, Philadelphia, 1946, pp.
223-224.) Two game-theoretical formulizations of this rule are: 1. Whenever an agent of
either player is required to make a bid or to play a card as defender he must announce his
behavioral strategy as well as the bid or play which results from the randomization required
by the behavioral strategy. 2. Instead of announcing the behavioral strategy to all other
agents, the agent who is moving announces it to a referee. The referee announces to each
of the other agents their a posteriori probabilities of each distribution of the cards unseen
by them given the previous sequence of bids. It is shown that with rule 1. bridge has a
value. Furthermore, each player has a good strategy in which the behavioral strategies at
each move depend only on the a posteriori probabilities.

37. A Simplified Method for Finding Confidence Limits on the Relative Risk in
2 X 2 Tables. Joun J. Garr, Johns Hopkins University. (By title)

Consider a 2 X 2 table with a total of m positives of which « are from the first sample
of size n; and m — z are from the second sample of size n, ; the designation of the samples
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and the positives being defined by the relations;m < ny + n — mandz/nm £ (m — 2)/ne .
Cornfield (Proc. of Third Berk. Symp., IV, pp. 135-148) and Cox (J. R. S. S. (B), Vol. 20
(1958), pp. 215-238) have proposed methods for finding approximate confidence limits on
the relative risk, namely: ¢ = pigs/p2q1 , where p; and p. are the population proportions.
The method proposed here involves an approximation to the sum of the hypergeometric
probabilities similar to the first term approximation of Wise (Biometrika, Vol. 41 (1954),
pp. 317-329). It yields the lower limit,

Yi1= (2n; — (m — 2))/@ni — x + Dz/(m — x + 1)1/ (P1ap2(m — z + 1), 22]),

and the upper limit,
Yo = 2 — (m — z) + 1)/@2n1-— ) (x + 1)/ (m — z)F1_anl2(x + 1), 2(m — 2)],

where the approximate confidence coefficient is 1 — . Several examples have shown that
this method yields confidence coefficients which are comparable to those found using the

previously proposed methods.

38. A Single Sample Decision Procedure for Selecting a Subset Containing the
Best of Several Normal Populations and Some Extensions. S. S. Gurra,
Bell Telephone Laboratories.

Let %, , denote the sample mean and sample variance based on n; observations from a
normal population II; with mean x; and a common variance o? (s; and ¢2 unknown). A single
sample decision procedure for selecting a non-empty, small subset of the & populations
such that the probability that the population with the largest mean is included in the
selected subset is at least equal to a pre-assigned value P* (regardless of the true unknown
values of the parameters) is given. The procedure is ‘‘Select the population II; if and only
if & 2 max (%1, &2, +++, &1, £iq1, *++, &) — cs/(n;)” where s? is the usual pooled
estimate of o2 and ¢ is determined to satisfy the required probability condition. Expres-
sions for the probability of a correct selection are derived and in the case of common num-
ber of observations, the constants ¢’s are shown to be the percentage points of a certain
statistic. The case of unequal but known variances o7 is also treated. Formulae are ob-
tained for the expected number of populations retained in the selected subset and, for se-
lected cases, tables are given for the expected proportion of populations retained. The
latter tables can be used to determine the common number of observations required to
control the expected size (or proportion) of the retained subset when the best population
has a certain ‘‘distance’’ from the others. Some extensions of the procedure to other para-

metric cases are given.

39. On the Distribution of the Ratio of the Smallest of Several Chi-Squares
to an Independent Chi-Square. S. S. Gupra AND M. SoBEL, Bell Tele-

phone Laboratories. (By title)

This paper deals with the problem of finding lower percentage points of the distribution
of Y = Xmin/Xs Where xmia is the smallest of p independent chi-squares and x3 is a chi-square
independent of the p others. The case of a common even number of degrees of freedom for
all p + 1 chi-squares is the principal case considered and the only case for which computa-
tion was carried out. Tables give the 25%, 10%, 5%, and 1%, points for common » = 2(2)50
and p = 1(1)10; the case p = 1 which reduces to an F-distribution was used as a check.
Relationships to the distribution of x}ax/xs are considered. The tables computed have im-
mediate application to the problem of selecting a subset of k(= p + 1) normal populations,
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based on a common number of observations from each, which contains the population with
the smallest variance with any pre-assigned probability.

40. On a Single Sample Procedure for Selecting from Several Normal Popu-
lations a Subset Containing the Population with the Smallest Variance.
S. S. Gupra AND M. SOBEL.

A procedure is studied for selecting a subset of several given normal populations which
includes the population with the smallest variance. For given numbers of observations
from each of k¥ normal populations, the procedure R selects a subset which is small (the
exact size depends on the observed results), never empty and yet large enough to guarantee
with preassigned probability that, regardless of the true unknown values of the variances,
it will include the population with the smallest variance. If s} based on »; degrees of free-
dom denotes the sample variance from the population II; then the procedure is ‘““Select II;
if and only if ¢s} < min (s}, s}, -+, s%y, 851, -++, st)”” where the constant ¢ (0 < ¢ < 1)
is determined so as to satisfy the required probability condition. Expressions are derived
for the probability of a correct selection, and for the expected number of populations in-
cluded in the selected subset. The relationship to the problem of selecting the population
with the largest variance is discussed.

41. Almost Linearly-Optimum Combination of Correlated Unbiased Estimates
by Regression Methods. Max HavrperiN, Knolls Atomic Power Labora-
tory.

Suppose one has available a multi-normal sample (yi: , y2i , *** , Y#:), ¢ = 1,2, --+ , n,
with mean vector uj (u a scalar, j a unit row vector) and arbitrary covariance matrix 2.
The coefficients of the minimum variance linear unbiased estimate (MVLUE) of u will, of
course, involve the (unknown) elements of the covariance matrix. We can estimate these
coefficients and still have an unbiased estimate of u with, however, an unknown distribution
almost certainly involving nuisance parameters. Transform the sample into (yii, de:,

cer ,dyi),i=1,2,-+- ,n,whered;; = yi; — y,: and consider the distribution of 11, --- , y1a
given (dsi, +++ , dw), ¢ = 1,2, .-+, n. Defining oopt a8 the variance of the MVLUE based
on a single observation, (y:, ---, yx), one finds that, conditionally, i is normal with

variance oop; and expected value, u + 3% B,d;; . It follows immediately that the regression
estimate of u is given by & = 7, — % 8;d, , where the carets denote maximum likelihood
estimates, and that Var g = (ohpe/n){1 + T2/(n — 1)} where T is Hotelling’s T? statistic
with (¢ — 1) and (n — & + 1) degrees of freedom for the vectors (de; , -+ , dri), 2 = 1, 2,

-, n. This variance is identical to the variance of the MVLUE except for the factor
T2/(n — 1), which is trivial for n at all large. An estimate of ooy With (n — k) d.f. is avail-
able from the sum of squares of deviation from regression, so that exact confidence inter-
vals for u are available. Note that these results apply also to k independent samples of
equal size, with no intrinsic pairing from sample to sample, by the introduction of ran-
domization.

42. Certain Uncorrelated Statistics. RoBerT V. HoGa, University of Iowa.

Let X1, X2, -+, X be a random sample from a distribution symmetric about 6. Let
T = T(X:1, X, -+, Xa) be a statistic such that E(T) = 6, T(X:1 + h, -+, Xo + h)=
T(Xy, -+, Xs) + h, and T(=X1, -+, —Xa) = —=TXy, -+, Xu). Let § =
S(Xy, -+, X,) be a statistic such that S(X; +h, -+ , Xa + &) = S&X1, -+, X,) and
S(=Xy, -+ ,—X,) = 8&X., ---, X,). If the correlation coefficient of T and S exists, it

is equal to zero.
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43. Further Results on Hypothesis of No Interaction in Multidimensional Table
(Preliminary report). P. R. Krisunaiag, University of Minnesota AND
V. K. Murrtnay, University of North Carolina.

In a contingency table, any dimension is defined as a factor or response according as its
marginal totals are fixed or random. Roy and Kastenbaum (these Annals, 1956) discussed
the hypothesis of no interaction in a three way table when all dimensions are responses.
In this paper, the extension of the above results to multiway table are discussed when some
dimensions are factors and the rest are responses.

44. Remarks on “Standard Coefficients” in Normal Regression Analysis.
P. R. KriseNa1aH AND M. M. Rao, University of Minnesota. (By title)

In some applications of the normal regression analysis, for computational reasons, the
so-called “standard partial regression (or beta) coefficients” are in use. For estimation of
the usual multiple regression coefficients the use of either this procedure or the direct cal-
culation is immaterial. But the fact that the “beta’’ coefficients are not normally distributed
and generally the usual test procedures (the “Student’s’ ¢ for testing the regression co-
efficients to have specified values not necessarily zero, and the confidence bounds obtained
therefrom) are not valid for these standard coefficients, is overlooked. The only valid one
in the “new procedure’ is the over-all test for the hypothesis of no regression. The correct
procedure and the distribution of the beta’s (in series form) are indicated in this note.

45. On Characterization Problems Connected with Quadratic Regression.
R. G. Lasa anxp E. Luxkacs, Catholic University.

Let X and Y be two random variables. Then Y is said to have polynomial regression of
order p on X, if the conditional expectation of ¥ given X is a polynomial of degree p in X.
In particular, if p = 2, Y is said to have quadratic regression on X. Let X1, Xa, -+, X»
be n independently and identically distributed random variables with a common distribu-
tion function having a finite variance. Let A = X3 + X3 + -+ + X, be the sum and
Q=0Q(X,,X,, -+, X.) be a quadratic polynomial statistic. In the present paper all the
distribution functions which have the property that @ has quadratic regression on A are
investigated in detail. It is also proved that in each case the distribution function is
uniquely determined by this property. These results contain as special cases the earlier
investigation of M. C. K. Tweedie [cf. London Math. Soc., Vol. 21, (1946) pp. 22-28] on the
regression of the sample variance on the sample mean.

46. Distribution of Sample Size in Sequential Sampling. L. L. Lasman, Florida
State University anp E. J. WiLLiams, North Carolina State College.

Suppose it is desired to sample sequentially from a mixture of s populations and to cease
sampling when some criteria have been attained. Suppose further that these criteria can
be specified in terms of a function of the numbers of observations obtained in the sampling
process and that an observation can be identified by population only after it has been drawn.
Then it might be desired to estimate the average size sample that would be needed to satisfy
the criteria. Under certain assumptions on the functions involved, the asymptotic distribu-
tion of the sample size for such a procedure is obtained through the use of Wald’s funda-
mental identity. The mean and variance turn out as relatively simple functions of the
criteria specified and of the mixture probabilities. Sampling until the standard error of
the difference between two means reaches a given value, is given as an example for the case
s = 2.
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47. Generalizations of Thompson’s Distribution, II. ANpDRE G. LAURENT,
Wayne State University.

Let X be a n X p random matrix with probability density f(X) = h(X'X), Ebea k X p
submatrix of X, X'X = TT’, T lower triangular, Y = XT'~!, n = ¥7'~1, (Schmidt’s orthog-
onalization process), the marginal and conditional (given X’X) distribution of X, &, Y,
n, &%, Y'Y, n'n are derived. For example, f(¥| X'X) = K|I — (X'X)"1¢'g |(»—k—p-DI2
| X'’X |=#2, f(n) = C|I — n'n|(r*=p=DI2 5 < 5 — k, in the proper domain. Applications
are described (U.M.V. unbiased estimates, roots of determinantal equations, bombing
problems, etc.). In case n = p, Cayley parametric representation U of ¥, U = U* (Y ex-
ceptional), U = U** (Y non exceptional) is 4 | I + U |~®—D dU distributed (Haar in-
variant measure). The problem of constructing a ‘“‘random’’ basis in the euclidean space
is considered. Other lines of generalization of Thompson’s distribution are studied. The
results generalize (and sometimes Specialize) results previously given (Ann. Math. Stat.,
1956, p. 1184; Journ. Soc. Stat. Paris, 1955, pp. 262-296; Journ. Oper. Res. Soc., 1957, pp.
75-89).

48. Optimum Decision Procedures for a Poisson-Process Parameter. JAMES
A. LEcHNER, University of Maryland.

Rules are discussed for deciding whether A, the parameter of a continuous-time Poisson
process, is less than or greater than a given constant k. If the cost of observation is propor-
tional to the length of time the process is observed, and the cost of a wrong decision is pro-
portional to the magnitude of the error, that is, to | A — k|, then an optimum non-ran-
domized sequential decision procedure is proved to exist and is found, where by an optimum
procedure is meant a procedure which minimizes the total expected cost with respect to
any given prior distribution for A of the incomplete Gamma form with mean y/t and vari-
ance y/t2, t > 0, y a positive integer. Some of the results hold time for other cost functions,
prior distributions, and/or random processes; indications are made of some of these.

49. Reduction of Multiple Regression System by Use of Direct Products of
Matrices. Jurius LigsLEiN, U. 8. Navy Department.

Let R represent a high order multi-variable polynomial regression, such as might occur
in a large factorial experiment. Let the independent variables of R be arbitrarily separated
into two groups, S and S’, and suppose R is arranged according to ascending powers of the
variables in S. For every fixed set of values of the variables in 8’, this gives a new regres-
sion R(S | 8’), with coefficients C(8’), depending on S’. These coefficients C (S’) may then
themselves each be taken as a polynomial regression R(S’) over the variables in S’. Let
the matrices of the normal equations for the three systems of regressions given by R,
R(8 | 8’), R(8’) be, respectively, M, Mg, Mg. . Then it was essentially shown by E. A.
Cornish (Biometrics, March 1957, pp. 19-27) that (*) M = Mg ® Mg (Kronecker or direct
product), in a certain class of cases. The present paper generalizes this relationship to any
number of sets 8, 8’, 8/, --- , and to other regressions than polynomials and finds the con-
ditions for it to hold or not. Considerable savings in computation, and a mathematical
check on regression calculations, were shown by Cornish (¢bi¢d.) to be possible when (*)
holds. In general, however, B will have missing terms corresponding to non-significant
interactions and (*) will not hold. The present paper shows also how to obtain computa-
tional savings and a mathematical check even in such cases, especially in conjunction with
high-speed digital computers.



ABSTRACTS 239

50. On the Characterization of a Family of Populations which includes the
Poisson Population. EugENE Lukacs, Catholic University.

A random variable Y which has finite expectation is said to have constant regression on
a random variable X if the relation E(Y | X) = E(Y) holds almost everywhere. The k-
statistic of order j is the symmetric, homogeneous polynomial statistic whose expectation
is the j-th cumulant; it is denoted by k; . The following theorem is proved: Let X; , X5, -+ ,
X, be a sample of size n taken from a population with distribution function F (x). Let p = 1
and r = 1 be two positive integers and assume that the moment of order p + r of F(z)
exists. The distribution F (z) is the convolution of a Poisson Distribution, the conjugate
to a Poisson Distribution and a normal distribution if, and only if, kp.r» — kp has constant
regression on k; . (One or two of the components of F(z) may be absent).

51. On Queues in Tandem. GreEGorY E. MASTERsSON, Burroughs Research
Center AND SEYMOUR SHERMAN, University of Pennsylvania.

A queueing system is considered which consists of an infinite number of identical servers
in tandem. The service times for all customers and all servers are independent random
variables with identical probability distributions. The distribution is arbitrary, except
that it has a finite mean. The interarrival times of customers at the input to the system i.e.,
at the first server, are also independent random variables with identical probability dis-
tributions. Again, the distribution is arbitrary, except that it has a finite mean. When a
customer has been served, he immediately proceeds to the next server, where he may have
to join a queue if that server has not yet finished serving the previous customers. Customers
may, of course, have to queue at the input to the system. The service discipline is “first
come, first served.” It is shown that the chance that the interdeparture time between the
jth and the j + 1th customer, from the nth server, is less than z, tends to zero as n tends
to infinity for each positive z, except in the unique case of constant service times.

52. Power Characteristics of the Control Chart for Number of Defects, No
Standard Given. Epmunp M. McCug, Ohio University.

A standard procedure for testing an industrial process for control with respect to de-
fects-per-unit is to compare the numbers of defects observed in each of k samples with
upper and lower control limits based on the total number of defects in the k¥ samples. Meth-
ods are given for obtaining the probability of a Type I error and the power to detect single
slippages. It is found that there is considerable variation in the probability of a Type I
error and power for various values of k. Utilizing this information, procedures are developed
to increase the effectiveness of the control chart for number of defects. Some asymptotic
properties of the power are obtained, and it is shown how approximations based on these
properties can be used in practice.

53. On the Distribution of the Sum of Circular Serial Correlation Coefficients
and the Effect of Non-Normality on its Distribution. V. K. MurTHY, Uni-

versity of North Carolina.

Let 21,22, --+ , Tzm41 be a random sample of size (2m + 1) from a normal distribution
with zero mean and unit variance. Let 7, denote the circular serial correlation coefficient
of lag L defined by rp = 37" z2;,.0/2 1" /a}, where ; = Zym 145 for all 5. Define 7 =
S r;/ (2m + 1). It is then shown that the distribution of 7 is a beta-distribution. The



240 ABSTRACTS

effect of non-normality on the distribution of ™ r; is studied by the method of David
and Johnson (Ann. Math. Stat., 1951).

54. Generalized Power Series Distribution and Certain Characterization
Theorems. G. P. Patin, University of Michigan.

Let T be an arbitrary countable non-null subset of non-negative numbers and define the
generating function f(0) = Xzer a.6° with a, = 0; 6 = 0 so that f(8) > 0, is finite and dif-
ferentiable. Then we can define a random variable X taking values in T with probabilities
Prob {X = z} = (a.0®)/(f(9)), z &€ T and call this distribution a Generalized Power Series
Distribution (gpsd). The Binomial, Poisson, Negative Binomial and the Logarithmic
Series distributions and their truncated forms can be obtained as special cases of the gpsd
by proper choice of T, a. and hence of f(8). Recurrence relations are obtained for central,
raw and factorial moments, cumulants etc. which are generalizations of corresponding
results obtained by Romanovsky, Frisch, Haldane, etc. An explicit functional relationship
between the variance and the mean of a gpsd is obtained and based on this relationship,
some characterization theorems are presented. To mention one, the gpsd with equal vari-
ance and mean for all admissible parameter values is characterized to be Poisson distribu-
tion. Some problems of estimation and others have been studied for the gpsd and will be
presented elsewhere.

55. Stationary Probabilities for a Semi-Markov Process with Finitely Many
States. RonaLp PyxE, Columbia University.

A process {Z;:t = 0} is called a Semi-Markov process (S.-M.P) if, roughly speaking, it
moves from one to another of m (= « ) states in accordance with a transition matrix as does
a Markov Chain, but where the time between two successive transitions may depend on
the states between which the transition is being made. These processes are then generaliza-
tions of both discrete and continuous parameter Markov Chains. Let J, denote the state
entered at the n-th transition and let X, denote the time taken between the (n — 1)-th
and n-th transitions. An S.-M.P. (or alternatively, a Markov Renewal process) is said to
be regular if for all choices of initial probabilities, N(¢) = sup {n = 0; X, + X> + -+ +
Xn =t} < » a.s. for every £ = 0. Almost all sample functions of a regular process are
step functions. A characterization of, as well as several sufficient conditions for regularity
are derived. A classification of states analogous to that for Markov Chains is presented
and studied. Limit theorems are proven under weak restrictions for random variables
Wi@t) = Sa 7 (Jazr, Ja, Xa), for arbitrary real functions f defined on R; . Further-
more, the a.s. convergence of ratios (Doeblin Ratios) of the form Wy (t)/W,(t) is studied.

56. On the Decomposition of Certain Characteristic Functions (Preliminary re-
port). B. RamMacuaNDRAN, Catholic University. (Introduced by Eugene
Lukacs.)

A family of characteristic functions is said to be factor-closed if the factors of every
element of the family belong to the family. It is known that the Normal, the Poisson and
the Binomial families are factor-closed. Recently Yu. V. Linnik (Teor. Veroyat. 2, 1957)
proved that the characteristic functions of the compositions of a Normal and a Poisson
distribution form a factor-closed family. In the present paper it is shown that the charac-
teristic functions of compositions of a (standard) Poisson and a (standard) Binomial distri-
bution constitute a factor-closed family. An example is given to demonstrate that the char-
acteristic functions of the compositions of a Normal and a Binomial distribution do not
form a factor-closed family.
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57. Generalization of a Theorem of Polya, and Applications. R. Ranca Rao,
Indian Statistical Institute. (Introduced by R. R. Bahadur.) (By title)

Let un(n = 1,2, -+-) and u be measures on the Borel sets of a separable and complete
metric space X. Let F be a given family of continuous mappings from X into the k-dimen-
sional Euclidean space Ei . Let ® be the class of all sets of the form f~1(R), with fe F
and R a k-dimensional rectangle. Theorem 1. Suppose that F is compact under the topology
corresponding to uniform convergence on compacta, and that uf~! has continuous marginal
distributions for each f ¢ F. Then u, — u (weak convergence) implies that sup {| un(4) —
p(d) |, A e ®} — 0. (When X is the real line and F consists of the single function f(x) =
x, this theorem reduces to a well known theorem of Polya). Theorem 2. If X = E;, and
u << Lebesgue measure, then u, — u if and only if sup {| #.(C) — u(C) |, C measurable
and convex} — 0. As an application, we have the following generalization of previous results
of Wolfowitz, and of Fortet and Mourier. Let £, € Ex (n = 1,2, ---) be independent ran-
dom vectors with common distribution u. Let u, be the sample distribution function based
on the first n observations & , - -+ , £, . For each fixed positive integer m, let 3C, be the class
of all sets which are intersections of m half-spaces. Then sup {| un(4) — u(4) |, A & 3Cn}
— 0 with probability one. If u << Lebesgue measure, then sup {| un(C) — 1 (C) |, C meas-
urable and convex} — 0, with probability one.

58. The Method of Moments Applied to a Mixture of Two Exponential Dis-
tributions. Paur R. RipER, Aeronautical Research Laboratory.

The method of moments is used to estimate the parameters of a mixed exponential dis-
tribution. Variances of the estimators are derived.

59. When to Stop. HerErT.  RoBBINS, Columbia University. (By title)

Let {z,} be independent random variables with a common distribution function F. We
observe the z, sequentially and can stop at any time; if we stop with z, we receive the
payoff fo(x1, --+ , Ta). Problem: what stopping rule maximizes the expected payoff? It is
shown that for fa(z1, +++ , z,) = max (1, -+-, &) — ¢n, ¢ > 0, the optimum stopping
rule when the first moment of the z, exists is: stop with the first , > « where « is the
root, of the equation f(:l: — a)t dF (z) = c; the expected payoff is then a.

60. On Estimating the Mean of a Finite Population. J. Roy, Indian Statistical
Institute, AND I. M. CHAKRAVARTI, University of North Carolina. (Intro-
duced by R. C. Bose.)

Consider a population consisting of a finite number N of distinguishable elementary
units u; with associated real numbers (variate-values) y; ¢ = 1, 2, ---, N. Let
the mean and the variance of the population be respectively u = 1/N 2l y:
and o2 = 1/N XI; (yi — w)? Let {U} denote a countable collection of derived
units U(x) 2= 1, 2, -+ --- formed by combining the elementary units. Only one
of the derived units is to be selected, the probability of selecting U (x) being p () and the
variate-values for all the elementary units in the selected derived unit are to be determined.
The estimate of uis the random variable T = t(X) = X1 yia:(x) where Prob (X = z) =
p(z) .= 1, 2, --- and the set of coefficients a;(z) associated with a derived unit U (z)
are chosen so that T is an unbiased estimate of u and has finite variance. In this paper an
admissible estimate and a complete class of estimates of x have been obtained. If the sam-
pling scheme is “balanced’’, a best estimate of x in the class of linear unbiased estimates 7'
which have variances proportional to ¢? is shown to exist.
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61. A Solution of the Classification Problem. S. N. Roy, University of North
Carolina. (By title)

For one-way classification the problem is the following. Given k observed random samples
of experimental units (on each of which p kinds of observations have been made) drawn
from %k populations with known distribution forms but unknown parameters, and given
another experimental unit carrying p kinds of observations, how to assign the experimental
unit to one of the & populations? A heuristic solution of this problem is offered when the
k-populations are p-variate normal ones (with unknown parameters), and this is then ex-
tended to the case of two-way or multi-way classification under the models of multivariate
analysis of variance. The method offered is then formally extended to one— or multi-way
classification problems under distribution forms, not necessarily normal, with p = 1 one
would have the univariate case. A comparison with the solution (not yet available) in
terms of the general decision function approach is desirable, for it is felt by the author
that the latter solution, while much more difficult, would be better and more rational than
the easier but heuristic one offered here.

62. On the Determinants and Characteristic Equations of a Class of Patterned
Matrices. S. N. Roy, B. G. GREENBERG, AND A. E. SArHAN, University
of North Carolina.

In three previous papers by the authors, inverses were given of a class of patterned
matrices that occur in a wide variety of problems, including those in univariate and multi-
variate analysis of variance, the exploration and study of response surfaces and the handling
of censored data. For some aspects of these problems one may need to obtain, in addition
to the inverses, (i) the determinants, (ii) the characteristic equations and (iii) the char-
acteristic roots of these patterned matrices. This paper obtains (i) and (ii), and in forms
that turn out to be nearly as simple and patterned as the inverses obtained earlier. For
special values of some of the parameters involved, (iii) comes out in a simple form, but for
the more general cases one has to resort to the numerical solution of the characteristic
equations (using any of the various methods in vogue), in order to obtain the characteristic
roots. These roots, both for the general and the special cases, again happen to be patterned
in the same sense as the inverses and the characteristic equations.

63. On the Efficiency of Experimental Designs. S. N. Roy, S. S. SHRIKHANDE,
AND P. R. KrisHNAIAH, University of North Carolina.

With the randomized block design furnishing the yardstick, the efficiency of two dimen-
sional designs has been studied from the standpoint of point estimation in the case of a
single response type and under certain further well-known restrictions. It is the purpose
of this paper to start a study of efficiency, for a single response type, from the viewpoint
of (i) the power function, (ii) the confidence bounds, both total and partial, on parametric
functions measuring departures from the total and partial hypotheses, and also (iii) point
estimation under assumptions broader than usual, and furthermore to generalize this study
to the case of experiments with multiple response types. Most of the requisite basic concepts
are discussed here, and detailed formulae are given for some classes of BIB and PBIB de-
signs. Further work along the same lines is underway.

64. The Estimation of the Location of a Discontinuity in Density. HERMAN
Rusin, Michigan State University.

Let 2, , -+- , 2, be independent multivariate random variables with common density of
the form ¢; (x| 8) for = € R;(8). Then under suitable regularity conditions, hyperefficient
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estimates, including maximum likelihood estimates, exist for the parameters of the R; .
The results are similar to those obtained by Chernoff and Rubin in “The estimation of the
location of a discontinuity in density,” Proc. Third Berkeley Symposium on Math. Stat.
and Prob., Vol. 1. The limiting distribution of the estimates involves a study of stochastic
processes with multidimensional ‘“time’” which have some Markov properties.

65. A Modified Procedure for Group Testing. MiLToN SoBEL, New York Uni-
versity and Bell Telephone Laboratories.

In group-testing a binomial sample of size N is given and any number z(1 £ z < N) of
units can be tested simultaneously. Each test determines either that all z units are good
or that at least one defective is present (it is not known how many or which ones are bad)..
It has been shown in [1] that for known a priori probability ¢ of a unit being good a pro-
cedure R; based on recursion formulae is optimal under a certain restriction, namely that
in selecting a group to be tested one should not miz ‘“binomial”’ units with units from a
set known to contain at least one defective. A modified procedure R, is now developed
which allows a certain ‘‘small’’ amount of mixing and it furnishes an improvement over R, .
The extent of the improvement is numerically investigated for selected values of N and q.
It is not yet known whether (or to what extent) the procedure R, is optimal in the unre-
stricted case.

66. A Problem in Restrictive Group-Testing. MiLToN SoBEL AND PHyLLIS A.
GroLL, Bell Telephone Laboratories.

In group-testing a binomial sample of size N is given and any number (1 £ z £ N) of
units can be tested simultaneously. Each test determines either that all z units are good
or that at least one defective is present (it is not known how many or which ones are bad).
In some applications of group testing it is desirable to apply the restriction that any one
unit not be included in more than k group tests. Based on recursion formulae, a group test-
ing procedure is developed, for known a priori probability ¢ of a unit being good, which
satisfies the above restriction. In the special case k = 2, it is clear that for any set contain-
ing at least one defective, each unit in this set must be tested separately; this type of solu-
tion was proposed by Dorfman for the unrestricted problem. In the special case k = 3,
tables and explicit rules are prepared for all values of ¢ up to n = 8. One particular applica-
tion is the field of pooled blood testing, where the restriction insures that it will not be
necessary to take more than one blood sample from each patient.

67. On the Probability of Detection of Noise-Like Signals. W. M. StoNE,
Boeing Airplane Co. and Oregon State College, aAND K. J. HAMMERLE,
Boeing Airplane Co. (Introduced by J. Bryce Tysver.)

The classical paper of Kac and Siegert (J. Appl. Phys., 18: 383-397) dealt with the de-
tection of nonrandom signals by a receiver system. In the present paper the signal is as-
sumed to be a random process with a prescribed spectrum. A properly chosen adjustment
on the transfer function of the bandpass filter has the effect of modifying the distribution
of the output of the system in terms of the signal bandwidth. Third order cumulants are
obtained, also suitable approximations to the probability of detection.

68. Identifiability of Mixtures. HENRY TEICHER, Purdue University.

If § = (F(x; a), « € R™} is a family of distribution functions (c.d.f.’s) and § = {G(a)},
a class of non-degenerate m-dimensional c.d.f.’s then a class 3¢ = {H} of G-mixtures of &
(ie. (*x) H(z) = fF (z; @) dG(a)) is called identifiable if () effects a 1-1 correspondence
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between JC U & and G U 9 where 9 is the class of degenerate distributions assigning mass
one to a single point of B™, (‘‘On the Mixture of Distributions,”” Ann. Math. Stat., March,
1960). It is shown that if m = 1 and & is an additively closed family with « varying over
the non-negative integers, rationals or reals then the induced class JC of mixtures is identi-
fiable. Some scale parameter mixtures not therein encompassed may be handled by a method
indicated. Applications are made to the classical families of Gamma, Uniform and Binomial
distributions.

69. On the Problem of Negative Estimates of Variance Components. WILLIAM
A. TroMPSON, JR., University of Delaware.

The usefulness of variance component techniques is frequently limited by the occur-
rence of negative estimates of essentially positive parameters. This paper demonstrates
that the principle of maximum likelihood, properly applied, will remove this objectionable
characteristic in certain cases. From a conceptual viewpoint, the solution of the problem
of negative estimates of variance components, at least in so far as maximum likelihood is
concerned, is that the likelihood function should be maximized subject to the constraints
that all variances should be non-negative. The results of Kuhn and Tucker on nonlinear
programming greatly facilitates carrying out the mechanics of this objective. The technique
has been successfully applied for the following random models: one and two factor experi-
ments with multiple observations in each cell, two factor experiment with a single observa-
tion per cell, and the n-fold hierarchal classification. The problem of determining the
precision of instruments in the two instrument case [Grubb, J.4.8.4., 1948] is dealt with,
and a surprising though not unreasonable answer is obtained.

70. An Infinite Packing Theorem for Spheres: A New Application of the Borel-
Cantelli Lemma. OscarR WESLER, University of Michigan.

A classic example (Wolff, 1921) in the theory of functions of a complex variable involves
removing a sequence of disjoint circles from a given circle in such a way that only a set of
measure zero remains behind. Borel observed indirectly that the areas of such circles neces-
sarily form a convergent series whose rate of convergence is less rapid than that of the
series with general term e""z, and wondered what the order of magnitude of these circles
might be, and whether one could determine it directly. It turned out that Borel’s bound
was incredibly weak : the convergence is actually so much slower that the radii of the circles
form a divergent series! Various proofs have been given using the relatively heavy machin-
ery of complex function theory. In this paper a direct and simple proof is given using the
easier half of the Borel-Cantelli lemma. In fact, our method is such that it yields at once
a result of much greater generality: we show that the infinite packing theorem just men-
tioned holds not only for circles in the plane, but that analogous results hold for spheres in
n-space, as well as for more general figures.

71. On Time Series Analysis and Reproducing Kernel Spaces. N. DonaLD
Yuvisaker, Columbia University.

Let X () be a real valued, weakly stationary of second order, continuous parameter
process with §[X (s)X (t)] = K(s, t) = k(s — t). The reproducing kernel space H (K) of
functions, which is associated with the kernel K, is a representation of the process X (-).
The realization of the group of unitary operators in H (K) is given. The properties of func-
tions in H (K) are related to the properties of the kernel K and, in particular, a sufficient
condition is given that H (K) consist of quasi analytic functions. The notion, due to Kolmo-
gorov, of processes subordinate to X () is treated, and the reproducing kernel space cor-
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responding to a subordinate process is characterized relative to H (K). The linear extrapo-
lation problem is viewed in H (K). Specifically, necessary and sufficient conditions are given
that H (K) correspond to a deterministic, non-deterministic, or regular non-deterministic
process. Sufficient conditions are given in this context, that a process subordinate to a
deterministic (regular non-deterministic) process be itself deterministic (regular non-
deterministic). A subordinating operation is given for which the subordinate process is
deterministic and mutually subordinate with the original process X (-).

72. Some Randomization Consequences in Balanced Incomplete Blocks.
GEORGE ZyskinD, University of North Carolina and Iowa State Uni-

versity.

The analysis of balanced incomplete blocks is developed directly from the randomiza-
tion consequences of the experimental procedure and under the general case of no addi-
tivity assumptions. It is shown that expected values of squares of partial observational
means, as well as the expected values of products of individual observations, admit simple
and easily specifiable expressions in terms of Z’s—Ilinear functions of the population vari-
ances, uniquely determined by the structure of the experiment. The expected values of
mean squares in the analysis of variance tables and the expression for the average variance
of estimated treatment differences are then derived as a simple consequence. Extension
to the case where the intended amounts of treatment amounts are subject to error are indi-
cated. The correlational structure of the observations under the simplifying additivity
and/or homogeneity assumptions is examined. The relationship of this structure with the
ones generally given in connection with assumed models is exhibited. Some estimation
problems are discussed.

73. Optimum Experimental Designs. J. Kigrgr, Cornell University, (Invited
paper).

Let fi1, --- , fx be functions on a space X. We consider the regression problem where an
experiment at z yields an observation with expectation Z6;f;(x). A design is (approxi-
mately) a probability measure £ on & which deseribes the proportion of observations to
be taken at each value z. Let M (¢) be the matrix of elements _ffif,- dg, and write M; for the
lower right-hand (k — s) X (k — s) submatrix of M. Write f® for the vector of the last
k — s functions of the vector f of fi’s. The results of Kiefer and Wolfowitz (Canadian J.,
1960) are generalized to the case where we are interested in s < k parameters: Theorem.
The following are equivalent if M (£*) is nonsingular (with an analogous result in the
singular case): (1) £* minimizes the generalized variance of the best linear estimators of
61, -, 0:; (2) £ minimizes max. d(z, £), where

d(z, §) = f@)' M1 (E)f () — [® (@) M5 ($)f® (2);

3) max, d(x, £*) = s. A characterization of the set of all such £* is also given. The results
complement those of Kiefer and Wolfowitz (Ann. Math. Stat., 1959), and yield improved
computational techniques in many cases. Numerous applications are given, e.g., to prob-
lems of polynomial regression on a g-dimensional cube or simplex; in particular, it is shown
which of the designs considered by Scheffe (J.R.S.S. (Ser. B), 1958) arc optimum.

74. Semi-Markov Processes: Countable State Space. RoNaLp Pykg, Columbia
University, (Invited paper).
Let A = (a1, az, -+, an) be a vector of m < « probabilities and let Q and @ be two

matrices of transition distributions. Let {(J. ; X.):n = 0} be a process satisfying X, =
0,P[Jo=Fkl=a,Plli=jXiSz|Jo=1= 8, () andforn > 1, P[J, =j, X
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| Jo, Iy o Jact, X1, oo Xaoal = Qyi(x). Define N (¢) = sup {k = 0:Xo + X3 + -+
+ X =t} and Z:= Jdnw - The process {Z,:t = 0} thus defined is called a general Semi-
Markov process (G.S.-M.P.) determined by (m, 4, Q Q). Essentially, therefore a G.S.-
M.P. is an S.-M.P. with random starting conditions. For the S.-M.P. determined by
(m, A, Q) define R; ;,(a: t) =PlZ, =7, Invwory = k, Sy S t+ 2 | Zy = ¢]. The com-
plete limiting behavior of this function as ¢ — » is obtained. In particular, if state j is
recurrenj; and Gj;, thp recurrence time distribution of state j, is non-lattice, then
llmg,,‘, Ri(x; t) = ciju7i j'o [Q;x(+ ) — Q;x(y)] dy where c;; is the probability of reach-
ing state j from state ¢, and where u;; is the mean recurrence time of state j. From this
result, it is possible to obtam specific quantities 4 and § such that the G.S. -M P deter-
mined by (m, 4, § Q) has the property that the three dimensional ‘“age’ process
{(Inw , Inw+ , Swepsr — t):t = 0} is a wide sense stationary process.

75. Generalized Bayes Solutions in Estimation Problems. JEROME SACKS,
Columbia University, (Invited paper).

For simplicity consider the estimation on the basis of a sample of size one of the mean
® of a normal distribution with variance one with the loss function being squared error. If
£ is an a priori distribution then the Bayes estimate with respect to £ is Efw (the a poste-
riori expected value of ). Let F be a distribution function whose total variation over the
space @ = {w} is infinite but having the property that E fw is finite for all z. Call Efw a
Generalized Bayes Solution (G.B.S.). These G.B.S. arise as limits of ordinary Bayes solu-
tions. In case @ is a half-infinite interval it can be proved that the class of G.B.S. together
with the class of B.S. form a complete class. A sidelight of these considerations is this: Take
2 = [0, ») and F to be Lebesgue measure on £, then an admissible minimax estimate of w is
E%w. These notions are extended to other loss functions. For some classes of distributions
other than the normal class a complete class theorem of the type mentioned above is
proved.



