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1. Summary and introduction. The sequential probability ratio test is con-
structed as a sequential test of one simple hypothesis against another. In many
instances a parametric form is assumed for the density or (discrete) probability
function, and the two simple hypotheses are specified by two values of the
parameter. The sequential probability ratio test has an optimum property for
these two hypotheses, namely, given such a test there is no other test with at
least as low probabilities of Type I and Type II errors and with smaller ex-
pected sample sizes under either or both of the two hypotheses. Usually, how-
ever, one is interested in the performance of the procedure for more values of
the parameter than these two. A disadvantage of the sequential probability
ratio test is that in general the expected sample size is relatively large for values
of the parameter between the two specified ones; that is, in cases in which one
does not care greatly which decision is taken, a large number of observations is
expected. The question is how to reduce the expected sample size for values of
the parameter when this tends to be large.

In this paper we consider a special case of the problem, when the distribution
is normal with known variance and the parameter of interest is the mean. The
sequential probability ratio test in this case consists in taking observations se-
quentially and after each observation is taken comparing the sum of the ob-
servations (referred to a suitable origin) with two constants. In this study the
two constants are replaced by two linear functions of the number of observa-
tions taken, and the taking of observations is truncated (Section 2). Approxi-
mations to the operating characteristic (or power function) and the average
sample size number are given (Section 4 and 5). Computations for two cases
of special interest show a considerable decrease in average sample size at param-
eter values between the two specified ones (Section 3).

The problem is studied by replacing the sum of observations by the Wiener
stochastic process (of a continuous time parameter); this can be thought of
intuitively as interpolating between observations in a manner consistent with
the addition of independent random variables. For this procedure we calculate
exactly the operating characteristic, the distribution of observation time, the
expected observation time, and related probabilities.
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166 T. W. ANDERSON

2. The problem and the procedures studied. Let f(z, 6) be a family of densities
or (discrete) probability functions of a scalar random variable X with 0 a scalar
parameter. Suppose that 6 is unknown, and that we are going to take observa-
tions on X to determine whether 6 is large or small. One way of formalizing this
problem is to say we are going to test the null hypothesis H, that § = 6, against
the alternative hypothesis H; that § = 6, > 6, where 8, and 6, are two suitably
chosen numbers. The sequential probability ratio test is a procedure for this
testing problem. Let

61)

2’1) 2lx) = 10 ‘f(i.l_,

( (z) 8 F. 60)

and choose two numbers a and b (<a). The procedure consists of taking ob-
servations z; , z2, - -+ sequentially. At the mth step, if

(2.2) b< Y z(z) <a,

1

take another observation; if the sum is not greater than b, accept H, (equiva-
lently reject H;); and if the sum is not less than a, accept H; (equivalently
reject Hy).

It is convenient to summarize the characteristics of this test (or any other
sequential test) by two functions, namely, the operating characteristic

(2.3) L(6) = Pr {accepting H, | 6}

(which is the complement of the power function) and the expected sample size,
&, which is the expected number of observations when sampling from f(z, 9).
In terms of these functions at 6 and 6; the sequential probability ratio test has
an optimum property. If L(0) and &mn are the operating characteristic and
expected sample size for a sequential probability ratio test and L*(0) and & n
are the same functions for another test, then if

L*(6) z L(60), L*(61) = L(6y),

it follows that &5,n = &s,n and 8p,n = &,n. That is, if the second test is as good
as the sequential probability ratio test with respect to the probabilities of de-
cisions when sampling from f(z, 6y) and f(x, 6;) it cannot be better (and usually
will be worse) with respect to the expected number of observations.

Usually, however, one is interested in the behavior of a procedure over a
range of values of the parameter, not just a pair of values. In many situations
one’s desire to take a certain action increases as the parameter increases; the
customary way of setting up a sequential probability ratio test requires an
evaluation of the desirability of taking actions relative to values of parameters
by specifying two values, 6, and 6; and the desired probabilities of actions at
these two parameter values. This is a somewhat arbitrary way of formalizing
the real life problem and is perhaps done mainly as a convenience for the theo-
retical statistician. However, it may be that these requirements on the operating
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characteristic for reasonable procedures control the operating characteristic
enough so that it is satisfactory. On the other hand, controlling the expected
sample size at these two values does not necessarily yield an expected sample
size function that can be considered satisfactory over a range of parameter values.
In particular, the sequential probability ratio test in many problems has an
expected sample size function that is much higher for values of 8 between 6, and
6, than for these two values. Between 6, and 6; presumably one is less interested
in which of the two actions is taken, but here is where one has to take a large
number of observations. For example, in one case considered below the expected
number of observations goes up to about 5/3 of the number at 6, and 6; ; in
another case it more than doubles. The question is whether there are other
sequential procedures which will reduce the expected number of observations for
parameter values in the middle of the range without increasing it much at 6o
and 6 .

Another difficulty with the sequential probability ratio test is that for most
cases the number of observations is a random variable which is unbounded and
has a positive probability of being greater than any given constant. Since it is
awkward to provide for taking an arbitrarily large number of observations, fre-
quently the sequential probability ratio test is truncated; that is, if a certain
number of observations are taken, then the process is stopped and a decision
is made. This modified procedure (with different numbers a and b) may con-
siderably increase the expected sample size at 6 and 6; . We can also consider
better methods of modifying the sequential probability ratio test so as to limit
the number of observations that can be taken.

The sequential probability ratio test is defined in terms of Z, = >T a(x).
The procedure can be described graphically in the plane of m and Z. There are
two lines Z = @ and Z = b. Sampling is stopped as soon as the sequence Z;,
Zs, --- leaves the strip between the two lines, and the decision depends on
which line is crossed. One might consider modifications of these boundaries to
obtain other procedures (called generalized sequential probability ratio tests by
Weiss). If the densities have the so called Koopman-Darmois form,

exp [a(8) + B(6)y(z) + 8(2)),

the probability ratio for any two values of § depends on the observation only
through v(z), and inference can be based on > y(x;) which is equivalent to Z.
To control the expected sample size it seems reasonable to put an upper bound
on the number of observations that can be taken. One also expects that a good
procedure should lead to decision after a small number of observations if Z is
either very large or very small. Another intuitive impression is that the bound-
aries should be smooth. (The truncated sequential probability ratio test seems
inefficient because if Z is large and the .number of observations is near the
truncation value a few additional observations will not permit much chance of
rejecting H; whatever these observations are.)

There are many ways of formalizing the problem that has been discussed.

)
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‘We can set L(6) and L(6;) and ask for the procedure that minimizes sups &mn
or that minimizes &n for some specified 6* between 6, and 6; . In some cases
the former specification reduces to the latter (for example, if there is sufficient
symmetry).

Kiefer and Weiss [8] have shown that the procedures which minimize &*»n for
various specified pairs L(8,) and L(6,) are essentially the class of solutions to
the Bayes problems, in which the three parameter values are given a prior:
probabilities, say £, & and £*, and

(2.4) &l — L(60)] + &L(6;) + £*6pn

is to be minimized. Furthermore, if f(z, 6) is of the Koopman-Darmois form®
a Bayes procedure is defined in terms of the probability ratio (2.1) and has
continuation regions

(2.5) bm < ilz(:v.') < G

form = 1, --- , M. At most M observations are taken, and the two sequences
of numbers usually satisfy bm < bm+41, @m41 < @m . In principle, the fact that
at most a given number of observations is to be taken permits computation
of the Bayes solution; the expected loss at the Mth stage is a function of a
posteriori probabilities; the best action for any such probabilities is clear. In
turn, the a posteriori probabilities at the Mth stage depend on the a posterior:
probabilities at the (M — 1)st stage and the Mth observation; this leads to
computation of the best action or whether to continue sampling at the (M — 1)st
stage. The computations can be carried back to the first observation. Unfor-
tunately, even for the normal and binomial distributions these computations
are laborious and the procedures do not seem to be easy to describe.

In this paper we consider a particular testing problem, namely, that of the
mean of a normal distribution with known variance. The procedures studied
consist of pairs of straight lines (not necessarily parallel) with possible trun-
cation.

Observations are drawn sequentially from a normal distribution with mean u
and variance o>. We want to decide whether u is large or small given knowledge
of o*, and we want to keep the sample size down, particularly at moderate values
of . We can put the problem formally that we want to test the null hypothesis
p = po against the alternative p = p; (w1 > mo) and wish a procedure to mini-
mize §n at p = 3(uo + ) or alternatively to minimize the supremum of &mn.
It is convenient to replace the observation z by the transformed observation

2 Assumption A of [8] essentially implies this for the three parameter values if
f(z, 61)/f(x, o) takes on all values from 0 tow.

It might be helpful to readers of [8] to point out that for given a priori probabilities the
a posteriori probabilities after m observations, say £(m), £&(m), £*(m), lie on a curve
£*(m) = Ckmts(m)E°(m), where C > 0, k > 1,0 < ¢ < 1; each such curve lies nearer the
point £* = 1 than the curves for observation numbers less than m.
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[x — (s + m))/o and call p* = 1(u — w)/o. Then the problem is to test
the null hypothesis p = —p*(u* > 0) against the alternative p = p* when
sampling from N (g, 1).

The probability ratio in this problem is z2(x) = 2u*z. The sequential proba-
bility ratio test has the continuation interval

(2.6) b < 2u*> z: < a.
1
Equivalently, it can be represented as
(2.7) b< >z <a,
1

where b = b/(2u*) and @ = a/(2u*). The test can be described graphically in
the plane of m and y = D z;. There are two parallel lines ¢, = b and y = a.
One plots successively the points (1, z1), (2, 21 + 2), - -+ . As soon as a point
is obtained which is not between the lines, sampling is stopped; if the point is
on or above y = d, H, is rejected, and if the point is on or below y = b, H,
is accepted. In principle ¢ and b are selected to attain the desired L(u*) and
L(—p*), but in practice these are approximated.

In this paper we shall consider replacing the parallel straight lines y = @ and
y = b by arbitrary straight linesy = ¢, + dym andy = ¢ + dym with possibly
truncation at N (that is, a line m = N). Such a procedure is as follows: Take
observations z;, 2, - -+ sequentially. At the mth stage (m < N), reject H, if

(2.8) >z = ¢ + dm,
1

accept Ha if

(2.9) >z £ ¢ + dym,

1

and take another observation if
(2.10) e+ dm < Dz < e+ dym.
1

If N observations are taken, stop sampling and reject H, if D 1#; = & and
accept Ho if D1 z; < k. We take ¢; > 0 > ¢;. To avoid redundancy in the
definition (that is, intersection of the lines before n = N), we require

From the intuitive considerations mentioned above we might surmise that the

desirable procedures of this type are those for which d; < 0 < dy; that is, those

for which the lines converge.
To calculate the probabilities and expected values that are of interest is ex-
tremely complicated and involved. However, we can calculate such quantities
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if we replace the sequence )i x; (m = 1, 2,---) by an analogous X(t)
(0 £ t < ). The random variable > % x; is normally distributed with mean
mpu and variance m; the increment from m to m’, SMmi— dorw = ST
is normally distributed independently of > 7 z;. These properties are retained
in the Wiener stochastic process. Let X(¢) be a Gaussian (i.e., normally dis-
tributed) stochastic process with 8X (¢) = ut, &[X () — ut]’ = ¢ and such that
X(s) — X(t) is distributed independently of X(¢) for s > ¢. Then > x; has
the properties of X(m). Throughout the paper we shall assume this process
defined so that the probability is 1 that the path functions are continuous. Now
for this family of processes we consider the problem of testing the hypothesis

that p = —p* against the alternative p = p*. The procedure is to observe X(¢)
continuously as long as
(2.11) c + dot < X(t) < ¢ + dit

andt < T.If X(¢) = ¢ + dit or X(t) = ¢2 + dat, observation is stopped and
in the first case H, is rejected and in the second case Ho is accepted. If X(¢)
remains between the two lines, observation is stopped at ¢ = T and H, is re-
jected if X(T) = k and accepted if X(T) < k. Since X () is continuous with
probability 1, the inequalities in (2.11) are violated directly by an equality.
Here we require

(212) C2 + dzT =< k <a + le.

In this paper the probability of rejecting Ho is computed as a function of g,
and the expected length of time of observation is found. It is proposed here
that one can select ¢; , ¢z, dy , dz, T and k so as to achieve a desirable procedure
for X(t); that is, obtain a specified significance level at —u* and a specified
power at u* with some minimization of the expected time. Then the operating
characteristic and expected time functions are approximations to the operating
characteristic and expected sample number functions when observations are
taken discretely.

Tt is difficult to ascertain how good these approximations are. One might hope
they are as good as for the sequential probability ratio test, which is the special
case of d = d; = 0 and T = 0. In principle this problem could be studied by
considering the case of observations taken discretely as observing X(¢) at
t = 1,2 ---. It is clear that applying the procedure when X(¢) is only ob-
served at discrete time points leads to decision later (or at least no earlier) than
when observing it continuously. Hence, the expected time function underesti-
mates the expected sample number function. In the case of the sequential
probability ratio test the usual approximation underestimates the power func-
tion when it is over  and overestimates it when it is under § (that is, indicates
poorer significance level and power at p* than is actually the case). Similarly
here, at least when the lines converge to a point (¢; + diT' = ¢ + &T), the
same is true for these procedures.

In the case of observations taken discretely, the properties of a procedure
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depend only on u/e, and the scale can be changed so that ¢ = 1. In the case
of the Wiener process we can change the scale on x and the scale on t. Let { = 8s
and define X*(s) = aX(Bs) (a« > 0, 8 > 0). This has mean auBs and variance
o’Bs. If o’ = 1 [t = s/o’ and X*(s) = aX(s/d’)], the variance of X*(s) is
s and the mean is (u/a)s. The region (2.11) goes into

(2.13) ac; + (do/a)s < X*(s) = aX(s/d’) < acy + (di/a)s,

the bound ¢ = T goes into s = S = o&’T, and the value k goes into ak. For
any value of u the probabilities for the procedure in terms of X*(s) are the
same as for the related procedure in terms of X (¢), and the expected observa-
tion time in terms of X*(s) is o’ times the expected observation time in terms
of X(t). Thus a problem stated in terms of arbitrary uo, u;, and ¢ is reduced
to a problem in terms of uo = —p*, uy = p* and ¢ = 1, where p* is arbitrary.
(The accuracy of these results for the continuous time parameter as an ap-
proximation for the case of observations taken discretely would depend on what
the original parameters were.)

The problem of modifying sequential analysis to reduce the sample size has
been considered by several statisticians. In the literature the case of a normal
mean has been investigated. Armitage [2] proposed straight line boundaries for
a two-sided test of u = wo, converted to the Wiener process, but then only
approximated the probabilities and expected time. Donnelly [3] has proposed
straight line boundaries that meet and converted to the Wiener process; he ob-
tained some results similar to those of this paper by a different method (that is,
solutions of a partial differential equation satisfying certain boundary
conditons).

3. Numerical investigation of two cases. As will be seen later, the operating
characteristic and expected observation time are complicated functions of the
parameter u and the constants defining the procedure. It, therefore, seems hope-
less to find analytically the optimum procedure within the class. Hence, two
cases have been investigated computationally. The results given in Tables 1
and 2 show the advantage of the best procedures in these two cases.

TABLE 1
Characteristics of Procedures with Probabilities of Types 1 and 11 Errors of 6% at
p=—.1and .1

Condition ¢ T Expected Time | Expected Time
Fixed size 270.55 270.6 270.6
SPRT 14.722 0 216.7 132.5
c+dl'= 0 19.905 600.25 192.2 139.2
¢+ dT = .1c 20.083 529.00 192.2 139.3
¢+ dT = .2 20.340 457.10 192.2 139.8
¢+ dTl' = .3c¢ 20.025 416.16 192.4 139.4
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TABLE 2
Characteristics of Procedures with Probabilities of Types I and 11 Errors of 1% at
u=—.1and .1
Condition ¢ T Expected Time. | [Expocted Time

Fixed size 541.19 541.2 541.2
SPRT 22.976 o 527.9 225.2
c+dl'= 0 35.52 870.26 402.2 249.4
¢c+dT = .1c 35.52 783.24 402.1 249.4

¢+ dT = .2¢ 35.52 699.63 402.8 249.8 -

The specified null hypothesis, p = —p*, and alternative hypothesis, u = p*,

are symmetrically located about u = 0. We consider cases when the probabilities
of Type I and Type II errors are equal; that is, 1 — L(—u*) = L(u*). For
this probability fixed we want to find the procedure in our class that minimizes
the expected observation time at p = 0. Since this problem is symmetric [that is,
X (t) can be replaced by —X(¢)], it seems reasonable to consider only sym-
metric procedures; that is, ¢; = —¢; = ¢ say, dy = —d: = d say, and k = 0.
(In fact, if an asymmetric procedure solved the problem, its mirror image would
and so would a symmetric randomization between these two procedures, but one
can argue that in this problem nonrandomized procedures form a complete
class.) For symmetric procedures the maximum expected observation time® is
at u = 0.

A symmetric procedure is defined by the constants ¢, d, and 7. There is one
condition imposed by specifying the (equal) probabilities of error, leaving two
degrees of freedom in the constants. Subject to this condition the constants were
varied to obtain the smallest expected observation time at u = 0. The most
relevant results of these computations are given in Tables 1 and 2 for probabil-
ities of equal Type I and II errors of .05 and .01, respectively.

The line x = ¢ + dt has intercept ¢ at { = 0 and ¢ + dT at ¢t = T; when
¢ + dT = 0 the two straightline boundaries converge to a point. For each of
several values of the ratio of these two intercepts [(¢ 4+ dT)/c = 0, .1, .2] the
tables give the combination of ¢ and T (and hence d) that approximately mini-
mizes the expected observation time at u = 0.

The most interesting features of the numerical results are the comparisons of
expected observation times between the sequential probability ratio test (SPRT)
and the procedures for ¢ + dT' = 0 (lines eonverging to a point). The convergent
line procedures show a considerable improvement over the sequential proba-

3 This is a consequence of the fact that for a symmetric procedure the probability that
the observation time exceeds a given value of ¢ is maximum for x = 0 (and is increasing
for u < 0 and decreasing for u > 0). The latter follows from Corollary 5 of [1] applied to
X(¢)/(c + dt). This demonstration was suggested by Hoeffding [7].

41 wish to acknowledge the computational assistance of Mrs. Judy Frankman and Mr.

George Bump.
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bility ratio tests at 4 = 0 with a moderate decrease in efficiency at u = —.1
and p = .1. At the 5% levels the expected time for convergent lines at p = 0
is 24.5 less than for the usual procedure and is 6.7 more at p = =+.1 (a ratio
of 3.7 to 1); at the 1% levels it is 125.7 less at u = 0 and 24.2 more at u = =£.1
(a ratio of 5.2 to 1). Roughly speaking, we can say that when one operates at
the 5% levels he is better off with the convergent lines procedure if intermediate
values of u occur at least 3 of the time and when one operates at the 1% level
if intermediate values occur at least 3 of the time.

Hoefiding [7] has given a general lower bound for the expected sample size
of a sequential procedure at one parameter value when the probabilities of error
are specified at two other parameter values (assuming the variance of the sample
size is finite). His lower bound for the expected time at u = 0 is 187.0 for the
case in Table 1 and 388.3 for the case in Table 2. Thus the best procedure re-
ported in Table 1 accomplishes at least 82 % of the possible improvement over
the sequential probability ratio test at the 5% level and at least 90 % at the
1% level. The lower bound given by Hoeffding cannot be achieved. While it is
unknown how much this lower bound underestimates the minimum expected
sample size, the comparison between the bound and the results in the tables
shows that the given bound does not underestimate the minimum by much
and that the tests presented in this paper come close to yielding the minimum
possible expected sample size.

A combination of ¢ and T in the tables yields the required probabilities of
Types I and II errors to 6 or 7 decimal places. The expected times are reported
to one decimal place; there may be an error of .1 (or occasionally even .2) in
these numbers. In particular in Table 2 the difference in the expected times at
w = 0 between ¢ + dT = 0 and ¢ + dT = .1c is not significant (402.17 com-
pared to 402.147). For the values of ¢ given in the table one cannot distinguish
between the cases ¢ + dT = 0 and ¢ + dT = .lc because in the latter case
the probability of reaching a decision at ¢ = T is almost 0.

As will be seen later, the probabilities and expected times can be given as
infinite series of terms involving Mill’s ratios. It was convenient to use tables
[5], [9] (which were extended for these computations) where these are given to
5 decimal places, and this determined the eventual accuracy of the calculations.
A good guess is that more accurate computation would not yield minimum
expected times that differ from the figures in the tables by more than .1 or .2.

For a given ratio of (¢ 4+ dT)/c the value of ¢ that minimizes the expected
time cannot be determined very accurately. For example, at the 1% levels at
¢ 4+ dT = .1c the expected times at p = 0 were 402.21, 402.15~ and 402.25~ for
¢ = 34.695, 35.52, and 36.345, respectively. Of course, since the functions are
flat it is of no importance to obtain an accurate determination of where the
minimum is. At the 1% levels the computations were done by setting ¢ and
adjusting T' (and hence d); at the 5% levels they were done by setting +/T and
adjusting’ ¢. The variations in ¢ given in Table 1 are of no consequence; a more

§ The former procedure is much preferable for comparing the different ratios of (¢ + dT')/c.
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accurate determination of the ¢’s minimizing the expected times at 4 = 0 should
find them much closer® than in Table 1 and not all equal as indicated in Table 2.

The computations have been done on the basis of the Wiener process and are
considered as approximations to the problem of sampling discretely (as described
in Section 2). It can be expected that the errors of approximation are greater
than the errors of computation. Thus to the extent that one accepts the ap-
proximation one can consider the procedures given in the tables for ¢ + dT = 0
and ¢ + dT = .lc as procedures nearly minimizing the expected sample size
at u = 0. :

4. Probabilities of error for the Wiener Process.

4.1. Outline of derivations. The process X (¢) with mean 8X(¢) = ut and vari-
ance ¢t depends on a single parameter u. The probability of accepting H, is the
probability of the process X (¢) touching the lower boundary x = ¢; + dst before
touching the upper boundary x = ¢; 4+ dit and before { = T plus the probability
of the process staying between the boundaries to { = T and X(T) =< k. This
probability is the operating characteristic, which we shall denote by L(u). Its
complement 1 — L(u) is the power function.

Let Py(T) be the probability that the process touch the upper boundary be-
fore touching the lower boundary before ¢ = T and P:(T) be the probability
that the process touch the lower boundary before touching the upper bound-
ary before ¢ = T. Then Py(T) = 1 — Py(T) — Py(T) is the probability
that the process stay between the boundaries to ¢ = T. In this section we
shall find expressions for these various probabilities.

We can let
(4.1) X(@) = Y(@) + u,
where Y (f) is a Wiener process with 8Y({) = 0 and 8Y*(t) = ¢. Then X(t) =
¢: + dit is equivalent to Y({) = ¢; + (d: — u)t and X(T) = k is equivalent
to Y(T) £k — uT. It will be convenient to obtain some of the results for
Y (t) and then convert them back to X (¢).

The (unconditional) distribution of ¥ (T) is normal with mean 0 and vari-
ance T. Given Y(T) = y, the process Y (¢) is Gaussian (normal) with a certain
expected value function and covariance function. We obtain P;(g, T) by finding
the conditional probability of touching the upper boundary before the lower
boundary and before { = T given Y(T) = y and then taking the expected value
of this conditional probability relative to the marginal distribution of Y (T').
The process Y (t) conditional on Y(T) can be transformed into the Wiener
process by a transformation which carries the original straightline boundaries
into other straightline boundaries. The problem then becomes finding the

¢ The lack of monotonicity in the last column of Table 1 with respect to (¢ + dT')/c
appears to be due to ¢ = 20.340 being larger than the other approximately minimizing values
of ¢, which in turn seems due to variations in computing procedures. Since it is hoped to do
a more extensive numerical investigation on a high-speed computing machine, it has not
seemed worthwhile to carry out the present calculations more accurately.
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probability that the Wiener process touches an upper straightline boundary
before a lower one; this problem is handled first.

4.2. Probability of going over one line first. The first problem is to find the
probability of touching one boundary before the other when the process can go
on without limit (T = o). In this case the lines do not converge for then the
process could not go on beyond the point of intersection of the two lines.

THEOREM 4.1. If Y (t) s the Wiener process with §Y (t) = 0 and gy (t) = ¢,
then for v1 > 0, v < 0 and & = & (not 6 = & = 0) the probability that
Y(t) = v1 + &t for a smaller ¢ than any ¢ for which Y (t) < vy2 + &t is

o0
E {e-z[rznsl+(r—1)27232—-r(r—1)(7182 +v281)1

P1 =
r=1
_ e—2lr2(7131+7252)—1(r—1)7132—r(r+1)72811}’ 5 = 0,
< 2 2418y +r2
(4.2) =1 Z {e— [(r—1) 2181 +r2 y2d2—r(r—1D) (y132+7281)]
r=1
_ e——2[r’(7131+7282)—r(r+1)7152—r(r—1)72511}, & <0,
—2
e v2é1 __ 1

= Farwe _y’ 8 = 8, # 0.

Proor. Let 4; (¢ = 1, 2,---) be the event of a path y(¢) touching (or going
over) the upper line and then touching (or going below) the lower line and
alternating touching the upper and lower lines until each has been touched
i — 1 times followed by touching the upper line’; let B; be the event of touching
the lower line and then touching the upper line and alternately touching the
two lines until each has been touched ¢ times. Then the event whose probability
we are finding, namely, touching the upper line before the lower line, is

(4.3) Ay — B+ Ay — B+ -,
For 8, > 0, 8 < 0 Doob [4] has shown that the probability of 4, is

@ = e—i[(2r)27151+(2r—2)27282—{(2r—1)2—1)(7182+1251)I
. =

(44) — 6—2[7‘27151+(1‘—1)21252—7(r—1)(7152+7231)]
)
and the probability of B; is

B _ e—}((Zr)27181+(2r)27282—(27)(2r—2)‘7182—2r(2r+2)7281]
. =

(4.5) — o 2B yidity2dy)—r—D) ida—r(r+D yaby)

We shall derive these results and show that they also hold when 0 = 6, < 6, .
Then the theorem follows directly for 0 < ;.

7 In “touching” one line before ‘‘touching’’ the other line the path may contact and
cross the first line several times before contacting the other line. For example, a path is in
A, if it has contacted the upper line at some ¢; , the lower line at some ¢2 (£2 > #), and the
upper line at some ts (¢s > ) regardless of other contacts with the lines.
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The probabilities (4.4) and (4.5) result from a more general result given in
Lemma 4.1. We consider a sequence of lines such that the odd-numbered lines
are above the origin and each even-numbered line is below the origin and entirely
below the odd-numbered line preceding it and the one following it in the sequence.
We consider the event of a path touching the first line, then the second, -- -,
until 2r — 1 are touched and also the event of touching the second, - - - , until
2r — 2 are touched.

Lemma 4.1. If L; s the line

(4.6) y = (=)™t 4+ (=1)";,
v; > 0, Uiy = 0, —ups < Ugiy, —Ups < Ugiqa, the probability of the process Y (1)

touching Ly, La, - -+ , Lyr_y tn sequence is

2r—1 2r—1 ¢—1

(A7) o, v v 5 Upees, Vzr) = eXp{—2(E]l woi +2 % Zl uw;)},
== 1= =

and the probability of touching Ly, - -+ , Lsy tn sequence s

2r—1 2r—1 7—1
exp {—2(2; uv; + 2 D Z u,»v,-)} .

t=3 j=2

(4-8) ﬂr—-l(uz, Voj =+ ° 5 Uz, vzr—l)

Proor. For v; > 0, u; = 0, the probability of reaching the one line L, is

—2u 9]

(49) oq(ul ) 1)1) =€

We shall reduce the other cases to this formula. Consider a path that touches
Ly, -+, Ly_s in sequence and let f,_» be the first value of ¢ for which the path
touches Lg,_, after touching Ly, - -+ , Ly,—3 . The conditional probability of then
touching Le,_; is

(4-10) e—2ﬂ2r-1 [(ugr_1tugs_2)tar _2+v2r_1+v2,_2]

for the line Ls.; has slope wue—; and has intercept (ugrofer—2 + v2r_g) +
(Ugr_itor—2 + v2r—1) When referred to (for—2, — Uor—slor2 — ve,—2) as origin. This
conditional probability is the same as the conditional probability of touching
the line with slope w1 + s and which is at ¢ = f,_2 a distance of

o= Ugr—a[(Uar—1 + Usr—2)bor—a + Vory + Vo]
u2r-—1°+ U2r—2

(4.11)

above Ly, . This is also the same as the conditional probability of touching the
line with slope — (ug-—1 + Usr—2) and which is at ¢ = f,_2 a distance of h below
Ly,_» (since Y () is symmetrically distributed and has independent increments).
This last line is

Ugr_Wor—1 + Usr—Wor—s + 2Usr_1Vsr_s

4.12 = — (Ugr_ 1)t —
( ) y (u2 s+ v 1) Uzr1 + Ugr—2

’

which does not depend on #_» . Thus the probability of touching in sequence
Ly, ---, Ly_, is the same as the probability of touching in sequence L,, ---,
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Ly, , and the last line (4.12). This last line, however, lies entirely below La,_,
and can be touched only if the path has touched Ls,.—» (which lies entirely below
Ls.—3). Hence, this is the probability of touching in sequence L,, --- , Lg_3,
and (4.12).

Now let us reduce this one step further. Let the line (4.12) be

L*:y = —u*t — v*

Note that «* > 0 and v* > 0. Let f2—s be the first value of ¢ for which the path
touches L3 after touching the preceding lines in sequence. Then the condi-
tional probability of touching L* is
(4.13) e-2u‘l(u'+u2r_s)‘Zr_s+v’+vzr_a].

By the same reasoning as before the probability sought for is

[0 2] (ul y U1} * 00 ;5 Uze—a, Vor—g ; Ugr—3 + u*,
(4.14)

Ugr—gVor—3 + U*V* + 2u*vy,. 5
Ugr—z + u* )

From this it follows

ar(Uy, 01500 Usr, Vor1)

(4'15) = Qr-1 (ul s ULy ** 3 Usr—a, Vzp—a 3 Ugr—3 + Uzr—2 + Uz,

Ugr—aV2r—3 ~+ Ugr—Wor—2 ~+ Ugr—1V2r—1 + 2(’Um—21)2r—3 -+ Ugr—1Vor—3 + u2r—lv2r—2)>
Ugr—3 + Uor—2 + Uzr ‘

By carrying this procedure on, we arrive at

+ 22 < ui”j)

Us

(4.16) o (ur, v1; -+ * 5 Ugo1, V2r1) = (Z Ui,y 2 s

which is (4.7).

The other part of the lemma follows similarly. It will be noted that the con-
ditions for the lemma can be reduced further. Pairs of successive lines should
not intersect; the slopes should satisfy g1 = 0, usr— + usro > 0, ugry +
Uprg + Ugrg > 0, -, DT uy > 0.

The probabilities used in Theorem 4.1 are

(4.17) ar = ar(81,v1; =8, —v2;0,m15 " 50, M),
(418) ﬁr = ﬁr(_62, —72;61771 y o ;61771)’

forys > 0,7 < 0,86, = 0,06, < 6.

Now consider the case & < 0. Then the probability is 1 that the upper line
is touched at least once. Hence, the probability that the upper line is touched
first is simply 1 minus the probability that the lower line is touched before the
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upper. This latter probability corresponds to the first part of Theorem 4.1 with
(71, 81) and (—v2, —&2) interchanged.

Finally, the case 8, = &, cannot be obtained directly from Lemma 4.1 but can
be derived in a similar fashion. Suppose §; = 8§ > 0. Let L; be the line

y =8+ (—1)";, ;> 0,8 > 0.

Given that a path touches Li_», the conditional probability of then touching
Loy is exp { —28(vo,—2 + v2—1)} since the last line has slope 8 and is va,_ + v2,—;
above the next-to-last line. Given that a path touches Le,_3 it must touch Ls,_s.
Thus given that a path touches Ls._;, the conditional probability of touching
Ly, and then Loy is exp { —28(ve,—s + v2r—1)} which is the conditional proba-
bility of touching the line y = 6 + (ve,—3-+ ver_2 +,v2,_;). Thus

(4.19) (8, v1; —8, v2;8, V35 ;8 Vary)

= a,_l(a, U1y —0, Vs 58, Vo3 + Voo + L’zr-l).

From this it follows that

(4.20) a,(&, V1 —6,02; 30, vz,_l) = Otl(a, (2% e U2r—1) = 6_282v‘.

If vo;1 = 71, ¥3s = —7v2, and & = &;, we have
(4.21) q, = ¢ M=yl
Similarly
(4.22) Be(—8, 0258, 053 -+ 308, vog) = R EHaT
and
(4.23) oy = B1DTTD,

From these results, the third part of Theorem 4.1 follows.

4.3. Conditional probability of going over one line first. We now find the proba-
bility of touching one line first conditional on the path going through a certain
point.

TuEOREM 4.2. If Y (t) is the Wiener process with 8Y (t) = 0 §Y*(t) = t, and
if T, y1, 72, 61, 8 are numbers such that y1 > 0, v2» < 0, v1 + 6T = vz + 8T,
T > 0, the conditional probability that Y (t) = v1 + 6t for a smaller t (¢ = T)
than any t for which Y(t) < v2 + 8t given Y(T) = y (not v1 + 6T = v +
8T = y) 1s
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PI(T7 y) =

0
Z { e—(Z/T) [r2y31(y1481 T—) +(r—D 273 (ya+82 T—1) —r(r—1) {v1 (v2 +32 T—y) +r2 (Y1+81 T—1) }]
r=1

e-(2/1') [r2{v1 (71481 T—1) +v2(vo+2 T—y) }—r(r—1) 71 (vo+82 T~y)—r (r4+1) v2 (y1+81 T—)] }
b

v1+ 6T = v,

(4.24) =1-

-]
Z { e-—(2/T) (=D 271 (7148, T—p) +r2va (v 48 T—)—r(r—=1) {11 (v2+82 T—y)+r2 (Y1481 T—) |1
r=1
e—(le) [r2{v1(y1+81 T—1) + 72 (v2+82 T—p) }—7 (r+1) 71 (v2+82 T—y)—r (r—1) 72 (v1+81 T—¥)] }
b

11+ &T = g,

— (/T T
¢ @/ T)ve (y1+81T—y) 1

@IT) (ri=v2) (vt 7-) _ 1

=e ",’1+51T='72+52T?£y~

Proor. Let Y (¢| T, y) be the process Y (¢) given Y (¢) = y. Then

(4.25) §Y(t| T,y) = %y t<T,
s t
(4.26) VarY(tlT,y)=t——T=t(1——7—,>, t= T,
Cov [¥(s| T, 9), Y(IT, ) = s —
(4.27)
=s(1—%>, s=<t=T

Define a new process by

(428)  Z(w) = T+u[Y(—£L{T,y> —T_f‘my] 0u< w,

T T4+ u
Then
(4.29) &Z(u) = 0,
(4.30) 82 (u) = u,
(4.31) &Z(v)Z(u) = v, v < u

Thus Z(u) is the Wiener process. The event Y (¢ | T, y) = v1 + & is equivalent
to

Z(u) 2 7+ (7‘; L al) .
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We note that

"‘;y+alg"i£,7—1’+az,

and

’Y—I—T_V—y +8&6>0
if v, 4+ 6T > y, that is, if y is below the intersection of the upper line and
t = T. Now Theorem 4.2 follows from Theorem 4.1.

4.4. The probability of going over one line first in a fized time. Here we find
Py(T), which is obtained from the following theorem.

TeEOREM 4.3. If Y (&) is a Wiener process with 8Y (1) = 0 and 8Y*(t) = ¢
and if T, v1, vz, 61, 62 are numbers such that y1 > 0,v2 < 0, v1 + 6T = v» +
5T, T > 0, the probability that Y (t) = v1 + &t for a t £ T which is smaller
than any t for which Y (1) < vy, + 8t is

Py(T) =1—q=<%',:T_7¥)

+ i {e—zlr‘n—(r—l)'ml [réy—(r—1) 62]@ <§.:7 +2('I‘ - 1)72 - (27‘ - 1)'Yl>

r=1 ,\/_7-7
. _ 0T+ 2ry. — 2r — Dyy
_ 2l (v1d1tv28) —r (r—1) vy Sp—r (r+1) 72 51] 1 .
(432) —oe 3 ( v,
— g e=Dm—rral (=D by—rsz] [1 — & ('51 T — 2ry; + (2r — 1)71)]
VT
+ 6—2['2(‘715l+‘7252)'—'7‘(r—1)1251""(T+l)‘7x52]
.[1 s (al T + 2r + Dm — 2y
VT :
where

z 1
(4.33) &(z) = f —\/—2—”6—(“2/2) du.

Proor. The density of Y(¢) at ¢ = T is n(y |0, T), the normal density with
mean 0 and variance T. Then the probability of a path touching the upper line
before the lower line for ¢ < T is

(4.34) f_ : Py(T, y)n(y |0, T) dy.
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The integration to v; + &7 is

Y1+61T .
(4'35) f Z {e-—nf(u) . e—-azr(y)}n(ylo’ T) dy,

—00 r=1

where

gu(y) = ;—, [y{—-r2~h - (T - 1)272 + 7’(7' - 1)71 + 7’(7' - 1)'72}
(4.36) + k)
= 2 lyl=rm + (r = D} + &l

ky = Pyl + 6T) + (r — D’re(ye + 8T) — r(r — Dya(ye + &7)

(4.37)
— r(r — Dva(n1 + 6,7),
2
gx () = 7 {—r"v1 — rye + r(r — Dy + r(r + Dya} + kol
(4.38) 0 )
=7 [(=ryr + ry2)y + Fal,

(4.39) ke = Py + 8T) + rya(ye + &T) — r(r — Dmi(re + &T)

' — r(r + Uyl + &T).
Since
(4.40) e—vn(u) < e~—(2/T)(r—l)[r‘n—(r—l)‘m][‘/1+511'—(72+52T)l’
(4.41) 6—az,(u) < e—(2lr)r([(r—-l)u-—rvzll71+51T—(72+52T)1

for y < v1 + &7 the series in P1(T, y) is bounded in absolute value by a se-
ries that converges when v; 4+ 8T > v + 8T and hence the order of summa-
tion and integration in (4.35) can be reversed. Then

71+, T
f e—ﬂn(u)n(y ‘ 0’ T) dy

v1+61T 1

- f e W AP G D T bk g
o V2T

Y140 T 1

@ITYL{r—D ya—rv1}2—ky ] f e g WD DT g
—00 V 27I'T

g =DMl rh——Daal g (51T 4+ 2(r — Dy, — (2r — 1)‘)’1)
T

(4.42)
=e
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Similarly

y1+8:1T
f e—azr(wn(y I 0, T) dy

mnt 1 (1] @D (y2-Hyr (ya—r1) +4k3,)
_f e y yr (Y2—71 2r dy
—0

V2rT

(4.43) 1

\2xT
— 6—2172(7161+7282)—r(r—1)1162—-7(r+l)‘7251] & (61T + 27"72 - (27‘ - 1)71)

VT

Y1+ T
- p(2/T)[Tz(‘Y2_"Il)2“kzr] / 6—11/(27‘)] (y+2r (yg—71) 2
—c0

The integration from v1 + &7 to « is

” 1 — (2 @D
f‘yl+811' \2xT ¢ dy
(4.44) .
_ Z {e—azr<y) _ e—au(u)}n(y I 0, T) dy,
Y1461 T r=1
where
(W) = 2 lyl=re = ¢ = D 1 = D+ 1 = Dl + ko]
(4.45) 9
=7 [y{(r = 1)y — ry2} + K,
ko = rya(y2 + &T) + (r — Dyl + &T)
(4.46)
—r(r = Dmy(y2 + &T) — r(r — Dyam + &71),
g (y) = % y{—r*y — Py + 7(r — Dve + r(r + Dy} + ksl
(4.47) 9
= 7 y{ryi — ry2d + ksl
ks = 7’2')'1(’)'1 + &T) + 7‘2')’2(’)'2 + 52T)
(4.48)

— r(r — Dya(y + &T) — r(r + D)yalve + &T).

In this case

. @/ rir—1) v1—rv2] [v1+81 T—(v2+32 )]
)

IIA

(4.49) ¢’

& @I Tyr [ r+D)v1—rv2] [v1+81 T— (v2+32T)]

IIA

(450) e——wr(y)
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Then
f e Yn(y|0, T) dy
Y1+01T
— fw 1 e—[ll(zT)](1]2+41/{(7‘—1)71"’72,+4/63r) dy
(4.51) yitsir V2rT
. » )
@IDI{(e=Dy1—rva}2—ks,] f — 11/ @T)] (r+2( r—D vy —rya))?
= e — ¢ d
y1+01T \/27VT Y
= ¢ 2l C—Dmllroe=(—Di1] |:1 — & <51T = 2ry —|—~(2r = Um ]
VT '
Also
/,; or e_“'“’)n(y[O, T) dy
1 1
0 1
—[1/ @D)] (W2+4y(ry1—rv2)+ker)
= — ¢ 17y
(4 52) ‘/‘n-HSlT '\/21|'T Y

6—2[7'-’ (v181+7v282) —r (r—=D) y281—r (r+1) v182]

. [1 s <61T + @2r + 1)y — 27’72)].

VT

Then Pi(T) follows for v; + 8T > v + 8:7. In case v1 + 6T = v2 + &T
we argue that Pi(T) = lim Py(¢),t — T and t < T since P1(¢) < P(T),t < T,
and Py(T) — Pi(t) is less than the probability that v. + 6 < Y (¢) < v + 6t
which converges to 0. It will be seen in the discussion following Corollary 4.1
that when 8,7 + v1 = 8T + v2 the series (4.54) converges as 1/(ar’ + br + ¢).
Hence, for ¢ < T, the series (4.54) for Pi(¢) can be majorized (uniformly in ¢)
by a series k/7*, which converges. This proves the theorem.

The probability of touching the lower line first and before T = ¢, say Py(T),
is obtained from Theorem 4.3 by replacing (v1, 8:) by (—v2, —8&).

The probability (4.32) can be written in different ways. One which is con-
venient for computing is to use Mill’s Ratio

1 — ®(2)

(4.53) R(z) = @

where ¢(z) = n(x |0, 1).
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COROLLARY 4.1.

e = 1-0 (5) o () &

r=1

{e-lﬁ(r- /7] ry1— =1 73] (81 T+71~ (B2 TH+72)] R[2("’Yl —(r=1)y:) — (T + 'Yl)]

AT
_ e—-(2r/7’)[(r—l)11—r72] (81 T+y1—(52 T+y2)] R -27(71 - 72) - (51 T + 'Yl)]
| VT
— DDyl T Ga T [ 2((r — )y1—ry2) + (0. T+ 'Yl):l
L T
@54)  + ¢ /DI birin=Gar4i] p [2r(y1 — 7)) + (6 T + ’Yl):l}
L VT
o1 T + ’Yl) = { —(2r | T) [(r+1)v1—r7v2] [61T+v1—(82 T+72)]
=¢|—7" e
¢ < VT ;o
[ (2((7‘ +Dyi—ry)— (8T + ’Yl)) +R (27’(‘)’1 —v)+ . T+ 'Yl))]
T VT

— DT = (rt D7) [817+y1= (32 T+72)]

[ R(2(r + D =) —GT+ 71))

VT
+R <2(7'71 —(r+ Dy + & T+ 71))]}
VT
Mill’s Ratio R(z) for z > 0 satisfies the inequalities R(z) < 1/,
1 1 3 53 (4 —3) -+ 1
P R e I
(4:55) 1 1,3 (4k — 1) -
<;3_;*+;1:—5— O :II""'H , k=12,

Thus for large z R(x) behaves like 1/z (with an error of less than 1/4%). If
8T + v1 = 8T + 72, then for r large, the rth term of (4.54) is approximately
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VT, VT
(21‘ + 1)‘)’1 - 27’72 - 61 T (21' + 1)‘)’1 - 21")’2 + 51
_ [ /T VT ]
@r+Dyvi—2(r+1)yys—6:T (27' + Dyi—=2(r+Dve+6.T

=2\/T{ @+ Dyn—2m @4 Dn—20+Drn
[@r + Ty = 2r 2= 8212 [(2r + Dy1 — 2(r + D)ya2— 61 T2 f

which is of the order 1/7%.
To express the probability of X(¢) = Y (t) + uf touching z = ¢, + dit before
x = ¢ + dqt we replace v; by ¢1, v2 by ¢z, 6 by di — u, and 8; by d; — u in the

(4.56)

preceding formulas. If the sequential procedure is symmetric, ¢; = —¢; = ¢,
say, and d; = —d, = d, say, and the formulas are simplified.
COROLLARY 4.2. If vy = —ys = ¢, 6 = d — p, and 8 = —d — p, then the

probability of touching the upper line first before t = T s

P(T)=1-— <(d “)T+c) + = {e—z(2r~1)c[(2r~1>d_,.|

7
((d - F»)T\/q("ir - 3)0> o 2rc[2rd—,.1q>((d n)T\;q(:lr - 1)c>
_.e~2(2r—-1)‘c[(27—1)d+#][1 ((d w)T \-}- (4r — 1)c>]
T

(4.57)

+e—2-2rc(2rd+u] [1 — (d —w)T —I—/(_f_lr + 1)c>:|}

VT

+ i (—1)"“{ ~asc(sd—) gy <(d u)T\;’I(Fs - 1)c>

B — g el [1 <(d ®) T\-}-T(FS + 1)6>J}.

The probability of touching the lower line first before t = T s

P(T) =1— (tii_i_}g;_e)

> _qysHl ) —2sc(sd+p) (d-l—p,)T—(Z.s— l)c)
(4.58) + §( 1) {e <1>( .

s =)
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The probability of touching one or both lines before t = T 1is

Pi(T) + Py(T) =1 - [é(%) - (% )]

o -1 81 { —28¢(sd—p) l:¢ (ILT + 2sc + aT + C>
+ ; (=1)" qe VT

— & (pT + 286\;7(0”' + c))]

459 — 900 (sd-H) [q) (—MT + 2s¢ + dT + c)
(459) e T

_ % (—uT + Zsz/% (dT + c))]}

-1 ) —1 s+1 _—2s2cd+2scp ':q) (([l. + d)T + (28 + ]_)c)
+ SZ_; (=1)""e o

— & ((u — d)T\—/I—_T(2s — l)c)].

These results can also be expressed in terms of Mill’s Ratio.
COROLLARY 43. If yy = —ya=¢, 61 =d — p and 86 = —d — p, then the
probability of touching the upper line first before t = T s

PuT) =¢<MT —\(;l%+c)>+¢<uT —%+0))

> s+1 —2(c c)8(s—1) - T + C)
. 1) /D ATt p <280 +uT — (d )
{Z =0 VT

© s+1_—2(c e)s(s 2sc — uT + (dT + o)\
(4.60) - 1) MR/ @T s (
; . VT

T — (dT 4+ ¢)\ =« s —2(c/T) (dT+ec)s(s+1)
= ¢("-—————-——> > (—=1)%
T

) [R (280 - (dJTM)T + c) LR (286 + (d\;T”)T + c)]

The probability of touching the lower line first before t = T s

8=1

8=0
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_ o (=#T = (AT + o) uT + (dT + ¢)
P“’(T)‘q’( VT )“’( VT )
IS 1y —eerm arvose-n p (25¢ — pT — (dT + ¢)
{2 (- f ( VT >

(4:.61) _ i (— 1)8+1 -—2(c/T)(dT+c)s(s+l)R (230 + uT + (dT + C))}
s=1 '\/T

T + dT + ¢\ <« s —2(c/T) (dT-+e)s (s+1)
(RIS oy
VT
2s¢ — (d+ﬂ)T+c> (2sc+ (d+#)T+c>—J
- R R
[ ( T + VT

The expressions in Corollary 4.3 were used for computation. If ¢ + dT > 0
(v1 + &T > v2 + 8:.T), the exponential term in the sum

exp[—2(c/T) (¢ + dT)s(s + 1)]

decreases rapidly and the series converges rapidly. It is an alternating series,
and the last term used bounds the error. For large x R(x) behaves like 1/x. If
dT 4+ ¢ = 0, the convergence of the series for P;(T) and P(T) is like

2 (=1)"/[(2s + 1)e = (d % p)T).
When v; 4+ 8T = v: 4 8T, we can use the third part of (4.24). In particu-

8=0

larifyi = —ve=¢, 8 =d —p, & = —d — 4,
—2c(uT+y) /T
e -1 1

(4.62) PiT,y) = g — = sweror 11

CoROLLARY 44. Ify; = —ys =¢, 0, =d — u, 00 = —d — pand ¢ + dT = 0,

then
oW GT]

\/Qﬂ_—— f 1 + e-Celmu—ue

1 0 e"‘ (22/2)

- '\/i;r [—w 1 + g—(2c/\/7)z—2uc dz

P(T) = dy

4.63
(4.63) e=1(z=sV/T)2/2]

m f e
~Gauv Ty __ e Ve dz
A /_ 1 + ee/vVD:

The expressions in Corollary 4.4 are not very useful since the integration
cannot be evaluated in closed form. We can give an approximation which may
be useful for some purposes.
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COROLLARY 4.5. If y1 = —ya=¢, 0y =d — p, 8o = —d — pandc + dT = 0,
then Pi(T) is approximately

VT
(4.64) /‘/ﬁT_l-‘l

where B = 1.702.
Proor. Haley [6] has shown that

< .01

(4.65) o) - 121

From Corollary 4.4 we have that P,(7T) is approximately

_[ [ (y+ u )]7;_7 -wran g,

[2¢/ (BT)) (y+uT) 1
e
(4.66) f f o \/T du dy
=Pr{U$ Y+2°“} {U—__Yg__‘_‘}
=BT B BT ~ B

But U and Y are independently normally distributed and U — [2¢/(8T)]Y = Z
is normally distributed with mean zero and variance 1 -+ [4¢’/(8°T)]. The above
is

2cu/B VT
I v B G o
62T, 4c?

where Z* is normally distributed with mean 0 and variance 1.

As an example of the accuracy of the approximation, let u = .16449, T = 169,
and ¢ = 13.2. Then Py(T) = .9453. The argument in & here is 1.639 and the
probability is .9495. The error is .004.

4.5. The probability of accepting a hypothesis. The sequential procedure is to
accept the hypothesis that the mean is large if either the path touches the
upper line before t = T or it stays between the two linestot{ = Tand att = T
is above some value k. We now proceed to find expressions for this probability.

THEOREM 4.4. If Y (1) is the Wiener process with 8Y (t) = 0 and &Y*(t) = ¢
and if y1,v2, 01,02, T, and 0 are numbers such that v > 0, v. < 0, T > 0,
v1 4+ 86T = 0 = 72 + 6,T, the probability of etther Y (¢) = v1 + &t for a t(=T)
smaller than any t for which Y (1) < y2 + 8t or v2 + &t < Y(¢) < v1 + &,
0=t=T,and Y(T) > 61s
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AT, 8) = 1 — @(—\/O—T)

I (N —tr— 0+ 2[(r — 1)ys — rvi]
2[ry1—(r—1)y2] [ré1—(r—1)82]
& {e ® ( VT

— 2 [r2(v181+7202)—r (r—1) v182—r (r+1)7281] ® (0_4-_2_7‘.@__:_1!2)

VT

_ gDl -l g (2[7‘72 - (7‘\;_ Dy — 0)
T

+ oMbt yadn) —r (=D yadi—r (rHmidsl g (M)}

VT

re=l

(4.68)

Proor. We have

o 1
A(T, ) = f_wPI(T,y) ovor &
-] 1 2
+j; [1 — Py(T, y)] me—w fam dy;

—(y2/2T) dy

(4.69)

that is, if Y(T) =< 6, the event could happen only by touching the upper line
first and if Y (T") = 6 the event could only fail to happen by touching the lower
line first. These two probabilities are evaluated as for Theorem 4.3. We find

9 1
[ _P(TY)
0+ 2[(r — 1)y, — T’Yl])

_ S = 2[ry1—(r—1)v2] [r§1— (r—1)32]
(470) = Z‘,{e <1>( 7T

r=1
- e—2lr2 Mdrtyada)~r (-1 71dg—r (rH1) 72811 (LM)}
?

—[y?
g Wiaen dy

VT
0 1 .
—[¥2/(21)]
j; P2(T’ y) \/277, e dy
5~ [ g2t - b= =0 + 2[rys — (r = D]
— 2[ryg— (r—1)71] [ré2—(r—1)8;]
471) = Zd:{e @( T )

—0 + 2\7’/_(;2 - 'Yl))}.

The result of Theorem 4.4 can also be expressed using Mill’s Ratio.
CoROLLARY 4.6. The probability of the process touching the upper line before

_ e—2lr2(7151+7252)—r(r—l)*/zh—r(r+l)nﬁz]¢(
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the lower for t < T or staying between the lines to t = T with Y(T) > 8 1s

=10 () o) B

.{e_(Z/T)[r‘n—(r—l)‘Yz][r(51T+‘n)—(r—1)(52'1‘-!-72)—01 R (2[”1 = (r = Dy] — 0)

VT

_ e—(2/T)r(('V1—‘yz)[(61T+71)—(62T+72)]+n(62T+7z-0)—72(517'+71~9)}

2 - — 0
(4.72) ‘R (r_<v_7%>___>
— ¢ @M=D=yl (=D G Ty —r (2 TH72) H] (2[(7' - 1)11/: ry + 0)
T

+ e—(Z/T)r(r (r1—72) [ @1 7+y1)— Qe T+v2) 1 —v1 G2 T+y2—0)+ve (01 T+v1—-0)}

R <2T('71 :/‘%) + 0)}

The sequential procedure involves X(¢) = Y (¢) + ut, the lines x = ¢; + dit
and z = ¢, + dt andavaluek at t = T (o + d;T <k < ¢, + di.T). The
probability of accepting the hypothesis that x is small (p = —u*) is given by
the complement of the above probability when vi = ¢, v2 = ¢, 6 = di — u,

= dy — pu, and § = k — uT; then the operating characteristic is L(u) =
1 — A(T, k — uT).

A case of particular interest is when the sequential procedure is symmetric.
Thenk = 0 (aswellas ¢; = —¢; = ¢, 8ay, and d; = —d; = d, say).

COROLLARY 4.7. If vy = —vo = ¢, 01 =d — p, 8 = —d — u, 8 = —uT, then

A(T, —uT) =1 — &(—p/T)
> —2@rD)el Gr-1d—4] g (—y.T —2(2r — l)c)
+ {e T

r=1

el —ul g (—uT —_2-2rc>
VT
Dol r—D il g (uT —2(2r — 1)c>
VT

—2-2re(2rd-tul g, (uT -2 27'0) }

+e Vi

=& a+l{ —2ac[sd—p]q> ("/I.T '—_2SC>
(uVT) + Z (-1) T

g scladul g (#T - 280)1 .
NT /)

(4.73)

In terms of Mill’s Ratio, we obtain the following:
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COROLLARY 4.8. If y1 = —vs = ¢,01=d — p, 8 = —d—p, and 0 = —uT,

A(T, —uT) = (u/T) + ¢(ur/T) ; (—1)™

—262(c/T) (cHT) 2sc + .uT) (280 - #T)]
‘e R ('——__—_ —R = .
[ VT VT

As in the formula for P,(T) the convergence is rapid when ¢ + dT > 0.
If ¢ + dT = 0 the convergence is of the order

VT VT 2uT/T

2s¢c + uT ~ 2s¢c — uT 48 — @2T2°

(4.74)

(4.75)

The terms are paired differently here from Corollary 4.3.

6. Expected time to decision. The time to decision, say r, is a random vari-
able. If a path touches either line at a time less than T, observation stops and
is this time; if neither line is touched at a time less than T, observation is stopped
at T. Thus the probability distribution of the time of observation is

(5.1) Prir <t} = Pi(t) + P2(2), 0=t<T,
=1, T <t
The expressions for Pi(t) and P.(t) given in Section 4 are valid for v, + &

<72+ &t If 1 + 6T < 72 + 6:T, there is a positive probability that r = T,
namely,

(5.2) Pr{r = T} = 1 — [Py(T) + Px(T)] = Po(T).

For t < T, there is a density, namely d[P;(t) + P(t)]/dt.
THEOREM 5.1. If v1 4 it > 72 + 8t (t < T), the density of the time of observa-
tion is the sum of

dpP,(t) 1 at+n\ <
dt _tT/zd)( Vi )Z

(53) (eI = G [ (9 L 1)y — 2]

r=0

_ 6—12(r+1)/t] [r11-<r+l)‘yz][61t+71—(52‘+72)][(2r + 1)71 _ 2(1. + 1)72]}

and
sz(t) 1 82t + Y2 2
@ ~e?\Tp %
(5~4) . {e—(zr/t)[r'yl—(r+l)‘nl[51t+71—(521+72)][27,71 _ (2,'. + 1)72]

_ 6—12(r+l)/t1[(r+1)‘n—rnl[6lt+n—(82t+n>l[2(r + 1),),1 _ (21. + 1)72]}.
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Proor. It is convenient to write P;(T) as (r replacing » + 1 in these terms)

0

—2[(r —r T —ri 6T + 27")’2 ot (27‘ + 1)‘)’1
P (T) —_ { e 2[(r+1) v1—rv2] [(r+1)8; 52]¢( 1

+ e*2lf'2‘n51+r27262-—r(r+l)7162—r(7—1)12611@ (—61 T + 27’72 - (27‘ + 1)71)

VT

( 5 5) _'e—2l(r+1)27181+(r+1)27252-r(r+1)1182—(r+1) (r+2)v2811

(0T +2(r+ 1)y, — 2r+ Dm
4,( VT )

— g =Dyl = (DBl <—51 T4+2(r+ 1)y, — (2r + 1)')'1)}
VT

Then

dP(T) — io{ ¢ 2D T—rYs (Dl (51 T + 2ry, — (2r + 1)71)

W T+ (2r 4+ 1)y — 2ry. —2[r2y181+r2yada—r (r+1) y18g3—r (r—1)v251]
' 3T e

_¢(—51 T + 2rys — (2r + 1)7,> -5 T+ (2r+ 1)y — 2rye
\ VT 213

(5.6) — ¢ 2LOHDIMBHEEDIYabamr (ri ) 71y () (-2 381 ]

5 <al T+ 2(r+ 1)y, — (2r + 1)vl> 8T+ (2r+ )y — 2(r + 1)y,

VT 2772
~20ry 1= (r+1) 73] [181= (rF1)ds ] (—31 T+2(r+1)y. — (2r + 1)')’1)
—_e ¢ —
AT
=T+ (@2r+ Dy =20+ Dy |
2T I

which leads to (5.3). By interchanging (v, &) with (—y2, —8,), we obtain
(5.4).

A characteristic of the procedure is the expected length of time of observation

= [, dPi() T dPy(t)
(57) sf_fot Y dt+f0 (P80 gy o).

This section will be devoted to evaluating these expressions.
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THEOREM 5.2.

T
* dPl(t)
&1 —-j; t T dt

_1¥ { [6—2[(r+l)11—rnl!(r+1)81—fﬁzlq, (51 T+2m.— (2r+ 1)'71)
VT
— g Hrtmbitrivaba—r () vade—r r—Dyabil g (—61 T+ 2ry, - @r+ 1)71)]
VT

[(2r + 1)y — 2rvs] — [6—2[(r+l)27151+(r+l)27252—r(r+l)7152—(r+l) (r+2)v281]

51 r=0

(5.8)

B (31 T+2(r+ 1)y, — (2r + 1)’)'1) R G N LS CRRLY
VT

@ (ST A2t U= (r ok W) ligar 4 1)y — 20+ Dl |
When (v1, 81) and (—vy2, —8) are interchanged, (5.8) s & = [q {{dPx(t)/dt] dt.

Proor. The derivative of the right hand side of (5.8) with respect to T is
identical to the derivative of the left hand side of (5.8) as obtained from Theorem
5.1. The theorem follows from the observation that the right hand side of (5.8)
is 0 for T = 0. (Each term is 0 because each argument of ®( ) goes to — .)

In Corollary 5.1 below the series is written in another way. It will be seen
then that when &7 + v1 > 8T + v2, the exponential terms insure rapid con-
vergence of the series (and justify integration and differentiation term by term).
When 8, + v1 = 8T + 7., the convergence in (5.10) (and hence (5.8)) is
like 1/7* and in (5.11) is like 1/7*. Thus the series can be majorized by a con-
vergent series uniformly in T'; s¥(t) — Sf(T), t = T, and the convergence is
term by term.

It might be noted that the proof of Theorem 5.2 is essentially a verification
and depends on the way the terms are paired. The theorem could be proved
directly from the following lemma, which in turn can be verified in a similar
manner or can be developed by transformation of the integral:

Lemma 5.1.

th§2<At+B>dt_2AB—- 1[1 _®<AT+B>:|
o 9t \ /T T24r T
1 —sus, (AT — B _ VT L _armrien
+ 2—A2 4 $ \ \/T ) 1 \/2—7; e : B >0,

_ _24B — lq)(AT-i—B) __1__8—2,43[1 _q)(AT—B)]
- 2A4? VT 24?2 VT
VT 1 _(arsyrien
ey , B<O.
A \2r

We can rewrite Theorem 5.2 in terms of Mill’s Ratio.

(5.9)
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COROLLARY 5.1.

* T dPl(t) _1 (51T+71 =
81—/;t dt dt_6—1¢ —\/7’- )gj

— (2 1)y1—r72] [8 -
. {e @ /T [+ 71—r72] 1T+ (52T+121[(27. + 1)y — 2ryd

. : R ((2” + Om \;sz - 617') R ((Zr + Dm \;sz + & T)]

_ e—[2(r+l)/Tl["‘Yr*(r+l)12][61T+11—(52T+12)1[(27, + 1)')’1 _ 2(7, + 1)72]

. i @Cr+ Dy —20r4+ )va— T
_R( VT )

_R ((27‘ + Dy — %—F Ly: + & "'):I}

When (v1, 8,) and (—vz, —82) are interchanged, (5.10) is & = [q t{dP(t)/dt] dt.
COROLLARY 5.2.

(5.10)

81 VT
. > —2r/T) [(r+1)v1—rv2] [81 T+71— (B2 T+v2)]
5{¢
) [(2r 4+ Dy — 2ry, — 61TR ((27' + Dy — 2ry, — & T)
VT VT
(511) @r4+ 1Dy = 2rvs + 6T R ((27' + Dy — 2rys + & T)]
VT VT

— [20+1) /TY [ry1— (+1) 721 [81 T+71— (32 T+v2) ]

. [(27‘ + 1)’71 bl 2(7‘ + 1)')’2 bl 51 TR ((27‘+ 1)'71 bl 2(T+ 1)‘)’2 - 51 T)
VT VT

@r+Dmi—20r+ Dya+ 6T @r+Dyvi—=2(r+ Dy + b

When (v1, &) and (—vz, —8) are interchanged, (5.11) is &; .

When we return to the formulation of the sequential procedure of the ob-
served process, X(t) = Y (t) + ut referred"to the lines z = ¢, + dif and z =
¢ + dit, we use the above expressions with vy = ¢;,v2 = ¢2, 8 = di — u, and
8, = d; — u. Again if the procedure is symmetric (¢; = —¢; = ¢, dy = —dy = d)
the formulas are simplified.
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CorROLLARY 5.3. If 1= —y2=¢, i =d — pand & = —d — u (c + dT = 0),

& = > (-1)(2s+ 1)
— M s=0

. {6*2(s+1)c((s+l)d—u]q> ((d —wT — (2s+1) c)
VT

_ e—-2sc(sd+p)(p <—(d - H)T‘;/TT (23 + 1)6)}

c dT + ¢ — uT) < s —2(c/T) (@T+e)s (s+1)
—1)°(2 1)e
2o e PICNCEY

[p(Er Dz @mnl)y_ g (@t Dot @ nr)]

— TPl(T) + d'\f-_q—’# é <dT + c — IJ-T> i (_1)36—2(0/T)(d7‘+c)s(s+1)

(5.12)

'\/T 8=0
. [(2s + e — (d — M)TR<(2S + e — (d — p)
VT AT
@s+ Vet @ = w7 , ((2s + e+ (d — u)T>]
B T VT :

If u is replaced by —u, (5.12) s & .
The second and third parts of (5.12) were used in computing. As long as
dT 4+ ¢ > 0, the convergence is very rapid. When dT + ¢ = 0, we have

8 = 72 oV/T) & (—1)'(2s + 1)

(5.3) ' [R (%Jr\l/—)%ﬂ) e Gﬁ% J

= TP(T) + % $(uV'T) 20 (=1)°

) [2(3 +\1}0T+ uT R (2(8 +\1}cT+ uT) _ 2sc\-/—T_uTR (280\;—_; ]

The first series converges as

s \/T \/T
2 (=125 + 1) [2(8 + Do+ ul  25c — #T]

(5.14)
_ s —2@2s + 1)(c + pT) |
= VT 2 (=1 2s + 1% — (uT + ¢’
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the second series converges as

. VT : VT Y
2 (=1 I:"(m) + (286 - MT):I
B _qye _42s + De(uT + o)T
=2 (=1 [@s + 1)%c* — (uT + o"

In case ¢ + dT = 0, we can manipulate the series (at least formally) to ob-
tain

(5.15)

4
1 —4o?)7 e26[(vlT)+u] — ¢ el (v/T)+u] o

* ¢ ” —
(5.16) & = == _[w NG € [+ eebo/mHal]z

However, this formula is of doubtful usefulness.

6. Some remarks. The methods used in this paper can be extended to treat
more general procedures. For example, instead of an upper or lower boundary
consisting of one line, we could consider the boundary consisting of two lines.
Let each boundary consistof x = ¢; +dit (1 = 1,2) for0 £t < Tand z =
¢i + ditfor T <t < T*. Theprocess X(¢) [or Y(¢)] at¢t = T andt = T* has
a bivariate normal distribution. Conditional on X (7T') and X(T*), the process
X(t) can be treated in the interval 0 < ¢ < T and T < t < T* as in Section
4.3. Then the result can be integrated relative to the bivariate normal distribu-
tion of X(7T') and X(T*). Use of these boundaries would come closer to the
optimum procedure.

The procedure that Armitage [2] suggested could also be studied by this
method. To test » = 0 against two-sided alternatives a procedure is to reject the
hypothesis if X (t) touches z = ¢; + dit or z = ¢; + dot for 0 < t < T*, where
a > 0, c; < 0 and to accept the hypothesis if X(¢) touches z = ¢f + dit or
z=cs + ditfor T <t < T* where diy > 0, ds < 0 and these last two lines
intersect at ¢ = T. (The graph of the boundaries may look roughly like a re-
versed »..) Again we can consider the problem conditional on X (T), X(T*)
and then integrate the result.

For the procedures considered in this paper we can show the following:

THEOREM 6.1. If v1 + 6T > v2 + &T and 6, = d — u, 8 = —d — 4,

(6.1) PBUT) o Pu(T) + st

Proor. This is verified by expressing the various functions in terms of Mill’s
Ratios and using the fact that R’'(z) = zR(z) — 1.
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