A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF CONSISTENT ESTIMATES

By Lucien LECAM! AND LORRAINE SCHWARTZ
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1. Introduction. Let & be an arbitrary set and let @ be a o-field of subsets of
. Let @ be the family of all probability measures on @. Let © be a topological
space which is homeomorphic to a subset of the cube K = J"°, the product of
a countable family of copies of the interval J = [0, 1].

Let D be a subset of ® and let ¢:P — o(P) be a function defined on D and
taking its values in ©.

Let Xy, Xz, -+, Xa, -+ be a sequence of independent identically dis-
tributed variables taking their values in 9 and distributed according to some
P & D. Our purpose is to give a necessary and sufficient condition for the existence
of consistent estimates of the function ¢(P).

More precisely, the problem can be described as follows. For each integer n
let X" be the product of n copies of X, let @" be the o-field product of n copies
of @ and let P" be the measure defined on @" by the product of n copies of P.

Let § be an arbitrary family of subsets of D. If 6 and ¢’ are elements of the
cube K let 8; and 6} be their sth coordinates in K and let 0(0, 6') be the distance

=
By assumption the distance p defines on ® C K its original topology.

Let ® denote the o-field of Borel subsets of ® (or K). We shall say that ¢ is
F-consistently estimable if there is a sequence {T',} with the following properties:

(1) The function T, is a measurable map from {X", @"} to {©, ®}.

(2) For every ¢ > 0 and P ¢ D let V(P ¢) be the sphere set of elements of
© whose distance to ¢(P) is not larger than e. Then for every ¢ > 0 and every
F ¢ § the quantity

’

1) p(6,0') == 0; — 6: .

sup P"[T, g V(P, €)]
PeF
tends to zero as n tends to infinity.
The explicit purpose of the present paper is to give a characterization of the
functions ¢ which are F-consistently estimable.
The terminology and results of a topological nature used in this paper can be
found in either [1] or [2]. The concept of a precompact uniform structure, neces-
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EXISTENCE OF CONSISTENT ESTIMATES 141

sary to the main result of the paper, corresponds to the notion of proximity
introduced by Efremovicz [3] and may be replaced by it (see also I. S. G4l [4]).
For a comparison of this to the more usual topologies and distances used the
reader is referred to section 3.

2. A characterization of F-consistently estimable functions. On the space
@ of probability measures on @ define a uniform structure U, by the vicinities
of the diagonal of ® X ® which are of the form

W =W{f1,fo, - fe}
={<P,Q>;§fffdP—ff,~dQ)<1; i= 12k}

where the f;’s are @"-measurable bounded numerical functions defined on X".
Let U be the uniform structure obtained by taking all vicinities of the preced-
ing type, for all values of n.

(2)

TaEOREM 1: The function ¢ is F-consistently estimable if and only if there is a
sequence {@x} of functions from D to K such that
(a) Each ¢ is uniformly continuous for the structure U on D and the structure
defined by p on K. ’
(b) The sequence {¢i} converges to ¢ uniformly on the elements of F.

Proor: Suppose that {T',} is a consistent sequence of estimates of ¢ converg-
ing uniformly on the subsets of . For each n let ¢,(P) = E[T, | P] be the point
of K whose coordinates are the expectations for P" of the corresponding coor-
dinates of T, . Clearly ¢, is {U, , p} uniformly continuous on ®. In addition, the
coordinates of T, converge in probability to those of ¢(P) so that ¢.(P) con-
verges to o(P). It is also clear that the convergence is uniform on the elements
of &. Conversely, let {8} be a sequence of {U, p} uniformly continuous functions
from D to K such that 8:(P) converges to ¢(P) for each P ¢ D.

For each integer m, one can find integers N(m) and k(m) and functions
fmi;d=1,2, -+, k(m), which are @¥ ™ _measurable and bounded and such
that P ¢ D and Q ¢ D and

(3) sup ffm,j dPY™ _ ffm,deN(m <1

implies

(4) plB:(P), B:(Q)] < 1/m

for every r £ m. For a pair (m, j) let

(5) 1 fm.s | = sup { fm.i(2) [; & € "y,

Let {Z,;s = 1,2, ---, S(m)} be a sequence of independent variables taking

their values in {%¥ ™, @"™}. Chebyshev’s inequality implies that
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k(m) 8ym)
% Prov{ | b B las2) — Bl 5 %}
(6) ” k(m)
< o S sl

Therefore, there exists an integer S(m) such that the left-hand side of the fore-
going inequality is inferior to m™" whatever may be the distribution of Z, .
Without loss of generality one can assume N(m + 1) = N(m) and

S(m + 1) =2 1+ S(m).

Let then v(m) = N(m)S(m) and let m(n) be the integer m for which »(m) =
n < v(m + 1). Let Z, be the N (m)-tuple defined by

(7) Z, = { X1, Xe-nrm4z, - 5 Xenem)-

Note that for U the space @ is precompact (= totally bounded). Hence it is
possible to find a finite subset Dy, = {Pm,i;l = 1,2, -+, L(m)} of D such that
if P & ® there is a P,,; € D, for which
(8) oS00, Elfs | Pl = Elfns | P < 1

Consider the quantity

1 8S(m)

(9) 7(Pm,l) = su p Z Im, J(Z ) [fm,i , Pm,l]

=12y | S(m) 4
and let P, be the first element P, ; of Dy, which is such that
V(Pa) = miny(Pn.1).

In this fashion to each point n of o™ one has associated an element P,(z)
of ®,. . The function so defined takes only a finite number of values and the sets
of constancy of P, are @™ -measurable.

In addition, if P is the distribution from which the sequence {X; ;7 = 1,2, -
v(m)} is obtained, then
S(m)

me(z) Elfni(Z) | Pl| < %

et

1
10 su
(10) D | S -
except for cases of probability inferior to m ™.
There is a P,y € Dn such that

(11) Sl]’;plE(fm,:ilp) - E(fm,:ile,lo) l < %
Consequently:
8(m)

(12) sup | s 32 (2 = Blfus| B2 | <3

1
S(m)
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and finally
(13) sup | Elfm.i | Pl = Elfm;| Pl| <}
except for cases having a probability inferior to m™.

By definition of the functions f,,; this inequality implies

(14) P"{ Ui (P), B (P)) > L } <L

for every P e D.
Take Tr = Bumwm(Pa) and let T, be any point of ® such that

(15) T, T3  inf (p(Th ,0);0¢© } + .

Since T', takes only a finite number of values, the function T, will also be @"-
measurable provided that to any given value of T, one always associates the
same value of T, .

By construction we have:

L
m

(19 P { AT P > b (P, (P | <
for every P ¢ ®. Therefore,
(17) p(Tn,Ta) < ( ) + p[Bmny (P),(P)]

except for the case of probability inferior to m™ where the inequality holds within
the brackets of the preceding expression. Finally

(18) {p[Tn,¢<P>1> + ()+2p[ﬁm<n><P>,¢<P)1}< L

for every P ¢ D.

Since p[Bmm (P), ¢(P)] converges to zero uniformly on the sets F ¢ § this
completes the proof of the theorem.

REMARK 1. Suppose that © is the union of an increasing sequence {A,} of
subsets such that

(1) Each element of F is contained in a set A, .

(2) There is a sequence of functions ¢, such that ¢ is defined and uniformly
continuous on A,y , and ¢, converges to ¢ uniformly on the elements of &.

(3) v(k) > o ask — .

Then the function ¢ is F-consistently estimable. To prove it, note that U is
precompact. Hence D can be completed to a compact space D. If ¢ is defined
and uniformly continuous on A, then ¢, can be extended by continuity to the
closure A,q of A,u in ®. However, since D is compact, hence normal, one can
then extend ¢ to a function ¢, which is defined and continuous on D hence a
fortiori on the whole of D.
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It is clear that {$i} converges to ¢ uniformly on the elements of F.

ReMARK 2. The structure U enters in Theorem 1 only by the space of uni-
formly continuous bounded numerical functions it determines on . Any other
structure giving rise to the same space of uniformly continuous functions could
be substituted for 4.

3. Relation between various types of continuity. The preceding theorem in-
volves the uniform continuity of functions ¢, with respect to a uniform structure
U which is not very easily accessible. For this reason some remarks on the struc-
ture U and its relation to other structures are in order.

One can define on @ a norm, called the L;-norm by the expression || P — @ || =
sup | [fdP — [ fdQ | the supremum being taken over the set of @-measurable
functions f which are bounded by (—1) and (+1). If A = P + @ this can also
be written

||P—Q||=f|§§—-j—§|dx.

It is easily seen that the structure U(91) defined by this norm is finer than at.
This gives the following corollary.

CoROLLARY 1. For the function ¢ to be F-consistently estimable it is necessary that
there be a sequence {¢i} of functions from D to K with the following properties:

(1) {ox} converges to ¢ uniformly on the elements of .

(2) Each ¢ ts uniformly continuous for the structure A(N) on D and the struc-
ture defined by p on K.

For the F-consistent estimability of ¢ it is sufficient that the ¢4’s be uniformly
continuous with respect to one of the structures U, .

The above corollary may be used to show that, for certain hypotheses, con-
sistent tests do not exist. For instance, let © be the family of distributions having
densities with respect to the Lebesgue measure on the real line. There do not
exist consistent tests of the hypothesis that the expectation of the distribution
is finite. The function to be estimated is the indicator of the set representing
the hypothesis tested in D. It can easily be seen that this function is not a point-
wise limit of a sequence of functions which are continuous for the norm 9.

When the space X is the real line (or a Euclidean space) it is customary to
define distances, and consequently uniform structures on ® by taking either

(19) 8(P,Q) = sup | PIX = o] — QIX = ]|

or
(20) A (P, Q)
—inf{—a+P(X<2—-a)<QX<2)SPX=2+a)+ad.

The distance & is referred to as the Kolmogorov-Smirnov distance and \ as the
Paul Lévy distance.
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Denote by U(8) and U(A) the corresponding uniform structures. Further, let
3 be the topology associated with U and let 3(91), 3., T(8), 3(A) be the topologies
associated with the other structures just defined. Finally, let A(resp. A(:),
A, , A(8), A(N)) be the spaces of bounded uniformly continuous numerical func-
tions for the structure U (resp. W(I), ete.).

It is well known that the following inclusions hold and are usually strict.

3(N) DI D3, D 3(8) DI
(21) W) DU D Un
w) D us) D uUW)

The structures U, and U(d) are not comparable. Similarly the structures U,
and U()\) are not comparable. However, it will be shown further on that

(22) A(S) D A D A(S).

It does not seem to be generally true that A, D A(8) or that A, D A(XN). Let us
show this for A; and A(8), for the sake of completeness.

Consider the family D of all distributions P on the real line R which are such
that there is some point x for which P{x} = 2/3. Let ¢(P) be defined by ¢(P) =
sup; P{z}. Then ¢ is uniformly continuous on D for the structure U(8). Let
{fi, 7 =1,2,---, m} be a finite family of bounded @-measurable numerical
functions. For every z ¢ R let F(x) be the point F(z) = {fi(z),fe(z), «++ , fu(z)}
in the m-dimensional Euclidean space &,, . For every ¢ > 0 there exist two points
z and y of R such that

(23) |F(z) — F(y) | = max [fi(=) = fi(y) | < e

Indeed F(R) is either finite or an infinite set having at least one accumulation
point. Let P be a measure giving mass 5/6 to « and let @ be the measure obtained
from P by removing a mass 1/6 at « and placing it at y. Then

Site

00 le®) = e@ |24 and |[sap - [1d0

To show that the conditions of uniform continuity with respect to U cannot
usually be replaced by mere continuity with respect to the topology generated
by U, consider the following example.

Let % be the interval [0, 1] and let @ be the o-field of Borel sets of &. Let
be the class of probability measures D = {8, ; * ¢ X} where §, is the measure
giving mass unity to the point z. The uniform structures U and U; coincide on D.
Further, identifying % and D one can easily verify that the U or U; uniformly
continuous bounded numerical functions on D are precisely the @-measurable
bounded numerical functions on . In particular, the pointwise limit of a se-
quence of uniformly continuous functions is uniformly continuous if it is bounded.
However, the topology associated to U is discrete, so that every numerical func-
tion on X is continuous.
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In other words, one should expect that there will exist continuous functions
which are not pointwise limits of sequences of uniformly continuous functions.
It seems also plausible that, in general, there will be functions which are U-uni-
formly continuous but not limits of sequences of U;-uniformly continuous func-
tions.

However, it is easily seen that if all the elements of D are absolutely continu-
ous with respect to a given probability measure u, then every U-uniformly con-
tinuous function on D is the pointwise limit of a sequence of U,-uniformly con-
tinuous functions.

Since U, is much more manageable than U the following theorem is of interest.

ProposiTION 1. Let A be a subset of D which is relatively compact in ® for the
topology induced by U, . Then on A the structures U and U, coincide.

ProoF. The proof depends on a well-known theorem of Dunford and Pettis
(see [5] and also [6]) which states that A is relatively compact in @ if and only
if one of the following two equivalent conditions is satisfied:

(1) There is a finite measure u such that for every ¢ > 0 there is a é > 0 for
which u(4) < § implies P(A) < efor every P ¢ A.

(2) Every sequence {Py ; k = 1, 2, ---} of elements of A contains a subse-
quence which converges to an element of @®.

Let A be the closure of A in @ for the structure U; . If {P;} is a sequence of
elements of ® which converges to Py for U; then P converges to Py for the
structure U, because of the equicontinuity described in Condition (1) above.
Hence A is also compact for U, and therefore for U itself. But U being compact
and finer than U; and U, being separated, U and U; must coincide on the set A
hence on A.

From this result we can deduce the following.

ProprosITION 2. Let {Ar ;& = 1,2, - - -} be a sequence of subsets of D such that

D= UAk.
k

Assume that each element of F 1is contained in a finite union of sets Ay .

If each one of the sets Ay is relatively compact for Uy in @ then uniform con-
tinuaty with respect to AU can be replaced by uniform continuity with respect to Uy in
the statement of Theorem 1.

If each one of the sets Ay ts compact for U, then uniform continusty with respect
to U can be replaced by continuity with respect to U, in the statement of Theorem 1.

Proor. First one can assume that A, C Agy; . To prove the second statement
let H be the space of functions from ® to K which are U-uniformly continuous
on D. If B, is a continuous function from D to K there is an element oy of H such
that plax(P), Bx(P)] < k™" for every P & A . This is easily seen by application
of the Stone-Weierstrass theorem ([1], chap. 10, p. 55 or [7], p. 9) to the coor-
dinates of 8 in K.

Consequently, if {8} converges to ¢ uniformly on the element F of § and if
F C A, then o4 converges to ¢ uniformly on the elements of &.

The first statement is a consequence of Proposition 1 and of the remark made
after the proof of Theorem 1.
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To show that the families © which satisfy the conditions of Proposition 2 are
not exceedingly rare let us mention the following. If A is a set of probability
measures which are all absolutely continuous with respect to a given finite meas-
ure p then A is relatively compact if all the densities dP/du are bounded by the
same number M or more generally if they are bounded by a given u integrable
function. Hence, if D consists of probabilities whose densities with respect to a
finite measure u are bounded (not uniformly) then ® is a union ® = U A, of
U, relatively compact sets.

Another example is the following. Suppose that £ is a parameter taking its
values in a subset S of a Euclidean space &. Assume that S is the intersection of
an open set of & with a closed set of & To each ¢ £ S make correspond a proba-
bility measure P; on the real line. Assume that:

(1) If & — & then the distribution functions of the P;, converge to the distri-
bution function of P, at all points of continuity of the latter.

(2) For each £ ¢ S there is a neighborhood V(£) of £in S a finite measure u;
and a ug-integrable function f; such that dPy/du: < f: for every & € V(§).

Let C be a compact subset of S and let A(C) = {P; : £ ¢ C} then A(C) is com-
pact in @ for U, . Since S is a union of a sequence of compact sets Cy the set
D = {P¢; £ ¢ S} is a union of a sequence of compact sets.

As an example of a different phenomenon, suppose that all the P; defined
above, instead of satisfying (1) and (2) satisfy

(8) If & — & and if u is a o-finite measure with respect to which all the
{P:, ;n=0,1,2, ---} are absolutely continuous, then dP;,/du tends to dP;,/du
in 4 measure. Under such a stringent restriction, it follows from Scheffé’s theorem
(8] that if C is compact then A(C) = {P; ; £ ¢ C} is compact in the sense of the
Li-norm.

From these considerations one can deduce the following result:

ProrosiTioN 3. Let © be a subset of a Euclidean space &. Assume that to each
0 € O there corresponds a probability measure Py on the real line, in such a way that
Py, = Py, implies 6, = 6 . Furthermore, assume that the following conditions hold:

(1) If 0, converges to 6, then the distribution functions of the Pg, converge to the
dustribution of Pg, at all points of continuity of the latter.

(2) For each 8 € O there is a netghborhood V (8) of 6 and a finite measure pq such
that for every € > 0, there is a § > 0 for which the inequality ueg(A) < & implies
P(A) < efor £ e V(0).

(8) O is the intersection of an open set of & with a closed subset of &.

(4) Each element of F is contained in a compact subset of ©.

Let 6 — ¢(0) be a numerical function defined on ©.

In order that there exist an F-consistent sequence of estimates of ¢ it is necessary
and sufficient that ¢ be the limit F-uniformly of a sequence of continuous functions
of 0.

In particular, if ¥ is the family of all points of ®, there exists a consistent
estimate of ¢ if and only if ¢ is of the first Baire class on ©.

Proor. Since the correspondence § <> Py is one to one the function ¢(6) can
also be considered as a function defined on D. Let ¢(P) = ¢[0(P)]. If {¢s} is a
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sequence of continuous functions defined on D and converging uniformly to
¥ (P) on the images of the elements of & then {¢i} defined by ¢x(8) = ¥ (Ps)
converges F-uniformly to ¢. Hence the necessity of the condition.

To prove the sufficiency, let {C,} be a sequence of compact subsets of ® such
that C, C Cny1 and such that every compact subset of ® be contained in a C,, .
Let A, = {Ps ; 0 ¢ C.} be the image of C, in D.

Since the function § — Py is continuous and one to one, the inverse function
P — Py is continuous on each one of the compacts A, .

Let {¢4} be a sequence of continuous functions of 8 converging to ¢ uniformly
on the elements of §. Define ¥ by ¥x(0) = ¢[0(P)]. Then ¥4 converges to ¢
uniformly on the images of the elements of & and ¢ is continuous, hence uni-
formly continuous on each A, . The result follows by the remark made at the
end of the proof of Theorem 1.

As an example of application consider the case where § is either the family
of compact subsets of ® or more generally any family of compact sets such that
each 6 ¢ O is interior to an element Fy of &.

Then a function ¢ is F-consistently estimable if and only if it is continuous on
0.
Another result obtainable directly from Proposition 1 is the following. Let
D be relatively compact in @ for U, . Let A and B be two disjoint subsets of D.

A sequence of tests of the hypothesis A against the alternative B is a sequence
of measurable functions T, from {X", @"} to the interval [0, 1]. The sequence is
called uniformly consistent if ¢,(P) = E[T, | P] converges to zero on'A and to
one on B, the convergence being uniform in P. It is clear that the existence of a
uniformly consistent sequence of tests is equivalent to the existence of a uniformly
consistent estimate of the function ¢ equal to zero on 4 and to one on B. There-
fore, such a sequence T, will exist if and only if the indicator of 4 in D is U;-
uniformly continuous, that is, if there is a finite family {f; ;7 = 1,2, --- , m} of
@-measurable bounded functions on & such that

fffdP—fffdQ‘<l

implies that either both P and @ are elements of A or both are elements of B.

Another type of restriction on D under which the structure U can be replaced
by a somewhat more accessible structure is the restriction considered by W.
Hoeffding and J. Wolfowitz in [9].

To simplify we shall present this condition only for the case of the line, al-
though the argument is given by these authors for an arbitrary Euclidean space.
Let P and @ be two probability measures on the line and let f and ¢ be the densi-
ties of P and @ with respect to u = P + Q.

If there are intervals I;, ¢ = 1, 2, - -- , m such that f-g has a constant sign on
each I;,let V° = U, I,. Let J[P, Q; €] be the smallest value of m for which
min [P(V), Q(V)] = eif such a value exists. Otherwise let J[P, Q; €] = .

sup
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A family D satisfies the H-W condition if for every ¢ > 0 the quantity
(25) sup {J[P,Q;¢]; Pe®d, Qe

is finite.

Hoeffding and Wolfowitz show that most of the usual parametric families of
univariate distributions satisfy the H-W condition. Furthermore, these authors
have shown that, § representing the Kolmogorov-Smirnov distance, the in-

equality

always holds. This inequality implies that, on a set D satisfying the H-W con-
dition the distance 6 and the norm || P — @ || are equivalent. In other words, the
H-W condition implies that w(91) = aL(s).

The classical result of Glivenko and Cantelli implies that, P, denoting the
empirical distribution of a sample of n independent variables having a distribu-
tion P, the distance 6(P,, P) converges to zero in probability uniformly for
P ¢ @. This, in turn, by application of Theorem 1, shows that, whatever may be
D a function ¢ from D to K which is U(§) uniformly continuous on D is also
U-uniformly continuous on D.

Conversely, if D satisfies the H-W condition, the space of functions which are
W) -uniformly continuous coincides with the space of functions which are W-uni-
formly continuous and with the space of functions which are WU(8)-uniformly con-
tinuous. Hence, under the H-W condition, the structure U can be replaced by either
w(N) or U(8) tn Theorem 1.

4. Historical note. Several authors have obtained results on the existence of
consistent estimates. Here are some incomplete references on the subject.

A study of the existence of consistent tests has been made for particular cases
by Mrs. A. Berger in [10] and [11]. The subject was investigated further by C.
Kraft in [12] without making assumptions of independence and identity of dis-
tributions. The recent paper [9] by W. Hoeffding and J. Wolfowitz contains a
very deep study of the concept of distinguishability of sets of probability meas-
ures. These authors place themselves in a framework where the variables are
independent and identically distributed. Their concept of finite distinguisha-
bility corresponds roughly to the concept of existence of uniformly consistent
tests.

Theorems of the same nature as Theorem 1 have been obtained by J. L.
Hodges, Jr. for the existence of consistent tests and by C. Stein for the existence
of consistent estimates, and presented at a meeting of the Institute of Mathe-
matical Statistics in Boston in 1952. These two authors restricted themselves to
pointwise convergence. The result mentioned by C. Stein could be quoted as
follows: “For a function ¢ on D to be pointwise consistently estimable it is
necessary that it be the limit of a sequence of W (9 )-uniformly continuous func-
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tions and it is sufficient that it be the limit of a sequence of AU(8) uniformly
continuous function.” Thus, under the H-W condition C. Stein’s result coincides
with ours.
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