MULTIVARIATE CHEBYSHEV IN EQUALITIES'

By ALBERT W. MARSHALL AND INGRAM OLKIN®
Stanford University; Michigan State University and Stanford University

1. Summary and Introduction. If X is a random variable with EX* = ¢°, then
by Chebyshev’s inequality,

(1.1) P{|X|=¢ =4/
If in addition EX = 0, one obtains a corresponding one-sided inequality
(1.2) P{X = ¢ = /(& + o)

(see, e.g., [8] p. 198). In each case a distribution for X is known that results in
equality, so that the bounds are sharp. By a ‘change of variable we can take
e = 1.

There are many possible multivariate extensions of (1.1) and (1.2). Those
providing bounds for P{max;<;<i|X;| = 1} and P{max;<;<x X; = 1} have
been investigated in [3, 5, 9] and [4], respectively. We consider here various
inequalities involving (i) the minimum component or (ii) the product of the
components of a random vector. Derivations and proofs of sharpness for these
two classes of extensions show remarkable similarities. Some of each type occur
as special cases of a general theorem in Section 3.

Bounds are given under various assumptions concerning variances, covariances
and independence. '

Notation. We denote the vector (1, ---, 1) by e and (0, ---, 0) by 0; the
dimensionality will be clear from the context. If z = (z;, ---, 2x) and y =
(31, -+ ,y), wewritez 2 y(z > y) tomean z; = y;(z; > y;),7 = 1,2, -+, k.
If 2 = (04): k X k is a moment matrix, for convenience we write ¢;; = o7,
J =1, .-+, k. Unless otherwise stated, we assume that X is positive definite.

2. On Proving Sharpness. Chebyshev inequalities are usually proved by
defining a non-negative function f on R* (k-dimensional Euclidean space) such
that f(z) = 1for all z ¢ T C R*. Then if X is a k-dimensional random vector,

(21) Ef(X) = f jxap+ [ 1(x)ap 2 f f(X)dP 2 P{X ¢ T}.

{XeT} ‘ {Xe¢T} {XeT} .
Ordinarily, one states the inequality with some hypotheses 3¢ on the distribution
of X (e.g., EX'X = Z) that permit an explicit determination of the bound

Ef(X).
We call such an inequality sharp, if for every ¢ > 0 and every value of Ef(Z)
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possible under 3¢, there exists a random vector Z satisfying 3¢, with P{Z ¢ T} =
Ef(Z) — e

Except in Section 6, the sharpness of (2.1) will follow as a consequence of the
stronger result that there exists a random vector (satisfying 3¢) for which
equality is attained.

If one is to prove (2.1) sharp by exhibiting a distribution for X attaining
equality, then that distribution must assign probability only to points z & T
for which f(z) = 1 and to points z £ T for which f(z) = 0. Hence, to obtain a
distribution for X achieving equality in (2.1), we begin by considering distribu-

tions that assign probability only to the rows of a matrix (%’) with

(2'2) f(c“)) =0, f(w(j)) = 17 1= 1, cet, My j =1,--- »

where ¢ is the sth row of C: m X & and w'® is the jth row of W: n X k. Since
f(z) = 1forze T, (2.2) implies ¢ 2 T for all 4, but we still must specify ‘that

(2.3) w?eT, for all 5.

Conditions (2.2) and (2.3) may be sufficient to define both C and W (e.g., see
[4, 5]). However, if f is a quadratic form that is not positive definite (p.d.) but
only positive semi-definite (p.s.d.), then {z:f(x) = 0} is not finite and (2.2)
will not define C. This means that when p.s.d. functions are used, there is no
clear-cut way to find the spectrum of a distribution attaining equality.

If P{c”} = ps,5=1,2, ---,mand P{w?’} = ¢;,5 = 1,2, --+, nthen
attainment of equality in (2.1) means that
(24) 26=9=E(X), Xp=1-gq

Most inequalities considered in this paper are stated with the hypotheses
EX'X = Z)ie, '

(2.5) C¢'D,C + WDW = Z,

and sometimes also with X = 0, namely,

(2.6) eD,C + eD,W = 0,

where D, = diag (p1, - -, pm) and D, = diag (g, --- , ¢a).

One can try to solve these equations subject to conditions (2.3) and (2.4)
with the realization that (2.2) is then satisfied. Then by (2.1), such a solution
satisfies ¢” £ T for all . The above requirements may not be sufficient to define
the various parameters, in which case the example attaining equality is not
unique.

If T is symmetric about the origin, then we lose no generality in assuming
that the distribution attaining equality is symmetric about the origin, since
(2.5) and the probability assigned to 7' are left unchanged if C, W, D, , and D,
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are replaced by

(c) W ID,O)andlDQO
-c) -w)> 32\0 D,) 2\0 D)’

respectively, in which case (2.6) is automatically satisfied.

8. Bounds Involving Convex Sets. If we wish the bound Ef(X) to be in terms
of the first and second moments then f(x) must be quadratic, possibly with
linear terms, i.e., f(z) = (x — @) A(x — a)’. A bound is then obtained by
minimizing Ef(X) subject to the conditions f(z) = 0, f(z) = 1forxeT. If
the complement of T is bounded, then clearly these conditions are satisfied only
for p.d. A. However, if T is either convex or the union of two convex sets, a
minimizing A cannot be p.d. For if 4 is p.d., then by (2.2) C = 0:1 X k. Fur-
thermore, {z: f(z) < 1} is strictly convex (an ellipsoid) so {f(z) = 1} N T has
at most two points and W:1 X kor 2 X k. However, a three point distribution
is not in general sufficient to fulfill all the conditions EX'X = Z.

The following theorem gives conditions when a minimizing A has rank 1, so
that A = a’a, for some a: 1 X k, and the above procedure leads to sharp in-
equalities.

3.1. A General Theorem.

TereoreM 3.1. Let X = (Xy, ---, X&) be a random vector with EX =
0, EX'X = 2. Let T = T U {x: —x e Ty}, where T4 & R* is a closed, convex
set.
() IfQ={aeR (ax’) = 1forall x& T}, then

(3.1) P{X eT} < inf aZd/,
aEq
(3.2) P{X eT,} < iof (aZa')/(1 + aZa’).
asx

(ii) Equality in (3.1) can be attained whenever the bound = 1; equality in (3.2)
can always be attained.

ReMAREK. If 0 £ T, then @ is non-empty, since 7' and {0} have a separating
hyperplane. If 0 ¢ T, then the bound one is sharp for both T and T, and we
henceforth assume that 0 2 T'.

Proor oF (i). If a ¢ @, then (3.1) and (3.2) follow from (2.1) with f(z) =
(az’)? and f(z) = (az’ + aZa’)’/(1 + aZa’)?, respectively.

Note that the hypothesis EX = 0 is not required for (3.1).

To prove (ii) we need the following lemmas. We write

g =q(a) = a3/, ¢*=¢*0a)=9¢(1+q, w=uw()=aZ/q

LemMMaA 3.2. £ — qw'w is p.s.d. and 2 — ¢*w'w ¢s p.d. (Recall that = was as-

sumed to be p.d.).
Proo¥. From Cauchy’s inequality, for all z & R¥,

222z (aw')’/ (w2 7w') = g(aw')* = g*(aw')



1004 ALBERT W. MARSHALL AND INGRAM OLKIN

If z 5 0, then strict inequality must hold in one of the two 1nequaht1es .

Lemuma 3.3. There exists an aoe @ with inf aZa’ = a'Zas. For such an ao ,
wy = w(ay) e Ty .

Proo¥. Since we can obtain = = I by a cha,nge of va,rxa,bles, it is clear that
there exists (uniquely) an ao ¢ @ with inf aZa’ = aoZas . _

To show that woe T, , assume the contrary so that there is a hyperplane
separating wy and T, i.e., there is a vector v and a number a with vw, < o,
vt = afor allte T, . Ifwe replace v by v + (1 — a)ao, we can assume o = 1.
Since vwy < 1 implies a@Eaé > ao2v’, for sufficiently small e,

(V20 — 20020 + wZas) < 2(aZas — aoZv').

This is equivalent to uZw’ < apZas, where v = & + (1 — €)as. But ue @,
which is a contradiction. Hence wy £ T+ I

REMARK. One can also obtain ayZa, by computing 1/ [mfm L2 smce for
teT,, (aoan)(tE'lt' ) = (at')’ =1, which implies that aoZas = 1/ (wo=""wo) =
1/(¢=7%) forallte T, .

Proor orF (ii). For convenience the subscripts on 0 = (), qo = ¢*(m),
and wy = w(ao) will be omitted.

We first prove that (3.1) is sharp. Choose » = k and let M: r X k be such
that M'M = Z — quw'w. Choose D = diag(p1, ---, p-), such that p; > 0,
Zp; = 1 — ¢, and define ¢ = D 'M. Consider a random vector Z
with P{Z = ¢} = P{Z = =} = pi/2, G =1, -+ ,r), P{Z = w} = P{Z
= —w} = ¢/2, where ¢ is the ¢th row of C. Then EZ = 0, EZ'Z = ¢'DC +
qw'w = 2.

By Lemma 3.3, we T so P{Ze T} = q, but P{Z ¢ T} =< ¢q by (3.1). Hence
equality is attained whenever the random variable X has the same distribution
as Z.

We next prove that (3.2) is sharp. By Lemma 3.2, there exists a non-singular
matrix M: k X k such that M'M = = — q¢*w'w. Choose an orthogonal matrix
I': k& X k which rotates — ¢*wM " to the positive orthant, i.e., —g*wM T > 0.

Define D = diag (1, -+~ , ps) and C'by eD' = [(py)", - © ()Y = —g*wlT,
C D"I"M Cons1der a random vector Z with P{Z = ¢®} = p;,
(t =1, k), P{Z = w} = g¢*, where ¢'” is the sth row of C. Then

BZ = eDC + wg* = (—g*wM~'T)(I"M) + wg* = 0,
EZ'Z = C'DC + ¢*w'w = M'M + ¢*w'w = .
Let us verify that 3 p; = 1 — ¢* = 1/(1 + ¢). Noting that wZw’ = 1/q,
2op: = eDe’ = (¢*)’w(Z — g*w'w)"w' = 1/(1 + g).

By Lemma 3.3, w ¢ T, so that P{Z ¢ T,} = ¢*. Hence by (3.2),P{Z ¢ T} =
¢*, and equality in (3.2) is attained whenever X has the same distribution as Z.||

ReEMARK. Suppose 7. is not convex. The following example shows that (ii)
need no longer be true even when @ is non-empty.
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Letk =2, Ty = {z:2=0,2; + 25 = 1}, and let T = T.U {z: —zeT,}.
P{X ¢ T} < of + o} follows from (2.1) with f(z) = 2} + 2} . Now a2’ = 1 on
T, if and only if a; = 1, as = 1. But aZa’ > o} + o3 whenever o3 > 0 and

o =10 2 1.

3.2. Bounds Involving the Minimum Component.

TaeoreM 34. If X = (X,, ---, Xi) is a random vector with EX = 0, and if
EX'X = 3, then

(3.3) P{XeT} = P{min; X; = 1 or min; (—X;) = 1} < min 1/(eZ;%),
(34) P{X eT,} = P{min; X; = 1} < min 1/(1 + e=;"¢),

where the minimum 1s taken over all principal submatrices Z, of = such that eZ;" > 0.

Equality can be attained in (3.3) whenever the bound < 1; equality can always be
attained in (3.4). .

There always exist principal submatrices 2, of £ such that eZ;* > 0 (e.g., if
Z,is 1 X 1) so that (3.3) and (3.4) always provide a bound.

Proor. The theorem follows from Theorem 3.1 if we show that the bound of
(8.3) is the minimum of aZa’ fora e @ = {a:a = 0, ae’ = 1}.

Suppose the minimum occurs at an ¢ whose non-vanishing co-ordinates are
d > 0; clearly de’ = 1. Since the minimum over d does not occur on the boundary
(where some component is zero), the minimizing ¢ must satisfy 22,4 + \e’ = 0,
obtained by differentiating d=,d’ + A(de’ — 1. Using de¢’ = 1, we obtain

d = eZ; /e’ > 0.

Inequalities (3.3) and (3.4) can also be obtained from (2.1) with f(z) =
(ez7%")?/(ez¢')?, and f(x) = (eZ'& + 1)*/(eZ'¢’ + 1)%, respectively,
where E&'c = Z, .||

ReMARK. If 2, = (Z4),4,7 = 1,2, and 2, = 2y, then 27’ = eZ7'¢’. Thus
in order to find the bound of (3.3) or (3.4), one need not investigate all sub-
matrices =, of = for which ¢=;* > 0.

Some special cases of interest for which the bounds of Theorem 3.4 can be
written more explicitly are given in the following examples.

Exampre 1. If k = 2, o} < o3,

ezt e = l/g?, 2 2 2 2 if ”z = o,
‘ (01 + o2 — 2012) /(1 02 — 012) if o1 > o12.

Examere 2. If o = o, oij = op (6 # 7), then e > 0 and
ez’ = k/[¢*(1 + (k — 1)p)].

ExawmprE 3. Let £ = n(D, — p'p), where D, = diag(p1, *, o), p =
(pr, ~* , o), u = 2ps < 1,v = 2 pi- It is easily verified that e=Z™ > 0
and e2 ¢’ = [ + /(1 — w)]/n. X = (X1, -+, Xe,n — 2.1 X;) hasa
multinomial distribution with parameters p;, ---, px, 1 — u, the covariance

matrix of X is singular, but the covariance matrix of (X;, ---, X;) is =.
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ExAMPLE 4. A special form of Green’s matrle (@sj), 0:5 = aj; = u.'v,(z' <N
1s given by = = (o) with oi = 7 0 = & [[iZi am, i < j, and is p.d. if
of < 1 for all 7. In this case =" has all elements zero except on the main, super-
and sub-diagonals. It can be verified that e=™ > 0, and

-1 _ 1 1 = 1- 27N 7ER] . 1 )
e (1 +a1+§1(1 Fadl +am) T ¥ e

In the abové examples where = has the form ¢ *R, one can replace = by DRD
where D = diag(oy, 02, * -+ , o). Then it may no longer be that e=™ > 0, and
examples can be obta.ined where various submatrices Z, lead to the best bound.
However, if p = 0 in Example 2 or @ = 0 1n Example 4, then 2 =
diag(ei, -+ -, m,) so that 2™ > 0 and eZ 7% = %7t

ExampeLe 5. Let Yl, Yy, -- Y,, be uncorrelated random variables with
EY; —OEY,—T,,]—]. 2 ' kandsuppose’thatX.‘= 2iY;, i =
l 2, , k, are partla,l sums. Then EX =0, z =12 , k, anfi EX'X =

= (a’.,)Wltha., = o7,¢{ < j, where ¢} = El T ,sotha.tal S o3 S .- Lo,
In this case, ¢Z;* > 0 only for Z,: 1 X 1, and min 1/(eZ;%’) = of .

Proor. If U = (u.,) is upper tnangular Uiy =0, > 7, u; = r;, 1 < j, then
S = UU' and 27 = (7%, , , 0). All principal submatrices of = are of the
same form as 2, so that eZ;" > 0 only when Z,is 1 X 1. ||

3.3. Bounds for products of random variables.

TueoremM 3.5. If X = (X1, -+, X&) is a random vector with EX = 0 and
EX'X = Z, then
(3.5) P{XeT} = P{]| I[[X:|=z1and X > 00or X < 0} < min aZa’,

aeq

(36) P(XeTy =P{IIX;] 2 1,X> 0} < min (aZa")/(1 + a3a),

where @ is-given-in Theorem 3.1.
There is a unique solution a* of

(3.7) “aZ = (aZa’)a_/k,

with a* > 0 and Ha; =k, where for any vector v, v_; = (pi’l, «oo, 0z). Further-
more a* ¢ @ and min aZa’ = a*Za*.
Equality can be attained in (3.5) whenever the bound < 1; equality can always

be attained in (3.6).
Proor. Inequalities (3.5), (3.6), and the fact that equality can be attained

all follow from Theorem 3.1.
By the remark following the proof of Lemma 3.3,

inf aZa’ = a*Za* = 1/(wZ7'w') = 1/(t=7t)
Q
for all te T, where w = a*Z/(a*Za*) ¢ T4 . The minimum of 27, te Ty

occurs at { = w, and w must be a boundary point of T, so that JJw: = 1,
w > 0. Minimization of ¢=™' via Lagrange’s multiplier yields 202~ = \w_; .
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Post - multlphcatloh by w’ yields A and the equation kwZ™ = (w= 'w')w.
Since a* = wz™/ (w=" 'w'), we obtain ka* = w_; so the minimizing a* must be a
solutlon of ay = kw = kaZ/aZa'. Furthermore, = JJw: =1 /H(ka.) 80

Ha. K

"To show - uniqueness, ‘suppose there is another solution u of (3 7) with
IIw; = k"‘, u> 0; then uZu’ = a*Za*. Post multiplication by =l in (3.7)
yields u =7 uly = K/ (uZu'). Using the fact that the geometric mean is domi-
nated by the arithmetic mean and then applying Cauchy’ s 1nequahty we obtain

a* Uk - 3 2 @ Ea* H
k—kH< ’) CSuaeY = [(ua2 uli)(a* 2 a*)] = [k uZu’ ] =k

-Hence we have equality, so that u = a*.||

CoRroLLARY 3.6. Equation (3.7) has one and only one solution in each orthant,
subject to | [ a;| = ¢ > 0. -

Proor. One can replace the positive orthant in the arguments of Theorem
3.5 by any other orthant. || ‘

We now consider two special cases for which the bounds can be given exphcltly

ExampLE 1. If ¥ = 2, then min aZa’ = (0102 + 012)/2.

ExampLE 2. If the column sums of = are all equal, then e/k is a solution of
(3.7) and min aZa’ = (eZe')/k*, which is equal to ’[1 + (k — 1)p)/k, when

Oiys = 0, 05 = Op.

4. Some Related Bounds.

TueoreM 4.1..If X s a random vector with EX'X = Z, where min or = of,
then

(41) P{min; | X, | 2 | <o
k &
(42) PIIL X, III :
k k
(4.3) P{IT X, = [Io¥
1 1
Proor. Since {min | X;| = 1} C { |X1| = 1}, (41) follows from (1. 1)

Successive application of (1.1) nd Hélder’s inequality yields
HX Il/ g SE'IIX l?/kS[HEXZI/k

which is (4.2). The relation { [[ X: = c{|II X:| = 1} and (4.2) give
(4.3). ] :
We now consider the questlon of sharpness. Suppose that ¢} = ++- = o} = az,

in which case all three inequalities can be proved by (2.1) with f(z) = i}k
In order to satisfy (2.2) and (2.3), C: 1 X k must be the zero vector, and W
n X k must be a matrix with w;; = 1.

Matrices H = (hi;): m X m with h;; = =1 and HH' = mlI are called Hada-
mard matrices. Various sufﬁclent conditions for their existence can be found in
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[1, 6, 7]; e.g., they exist if m = 4(x" + 1) where = is an odd prime, ris a positive
integer. A necessary condition for their existence is that m = 2 or m = 4¢ for
some positive integer ¢{. If H is a Hadamard matrix, so is HD where D =
diag (=1, .-+, =1). Hence we can assume that the first row of H is e. In this
case all other rows w'” have an equal number of positive and negative entries be-
cause wPw®’ = 0.

From (2.5) and the fact that C consists of the zero vector we know that
attainment of equality depends on the solution of W/ DW = Z. Our use below of
Hadamard matrices for W stems from the fact that matrices = of a certain class
are diagonalized by Ha,damard matrices Wlth first row e.

TuaeoreM 4.2. Let 04 = o < 1, 055 = o'p, (3 # J). (i) Equality can be attained
in (4.1) and (4.2) if a Hadamard mairiz of order k exists or p = 0. (ii) Otherwise
equality may not be attainable.

Proor oF (i). Any Hadamard matrix W (with first row e) of order k will
diagonalize Z; i.e.,

(4.4) z = W'D, W,
where
D, = diag (g1, -+ , a) = diag {[1 + (k — 1)g], (1 = p), -+ , (1 = p)}o’/k.

The characteristic roots of = are kg; > 0.
Consider the random vector Z with

PiZ=0 =1—d, P{Z=uw"} =PZ=—-v? =q/2,

‘ (t=12---, k),
where w® is the ith row of W. Clearly > ¢; = ¢*, EZ'Z = %, and w"? & T when
T= mmlx:|>1}0r{|szI21}

If p = 0, let =* = ¢’[(1 — p)I + pe’e]l: m X m where m = k is such that a
Hadamard matrix of order m exists. Z* is p.d. and

F =P mn|Z]|z1 <P mn|Z|zlsd
15j=m 1<k’ ‘

(4.5)

- Pz 2 1 = PUII 21 2 1,

where the distribution of Z = (Z;, -+ - , Z.) is given as in (4.5).

Proor oF (ii). By {min | X; | = 1} € {|]] X;| = 1}, it is sufficient to
prove that (4.2) is not necessarily sharp. Since w;; = =1, a random vector Z for
which equality is attained when £ = 3 must have a distribution of the form
P{x (1,1,1)} = P{(1,1,1) or (=1, =1, =1)} = ps, P{&= (=1, 1, 1)} = ps,
P{+ (1,-1,1)} = p,,P{:!: 1,1, -1))} = p, P{O} =1 — X The conditions
EZ'Z = = requlre p= (1 + 3p)/4, Pr=DPs=Ps =0 (1 — p)/4. Zis pd.
whenever —% < p < 1 and no distribution attaining equality in (4.2) exists
when—l<p<—l||

TugoreM 4.3. Letk > 2 and o5 = o £ 1, 055 = o'p, (z #% 7). Equality can be
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attained in (4.3) whenever there exists a Hadamard matriz of order k; otherwise,
equality may not be attarnable.

REMARK. Since { XX, = 1} |X1X2| = 1, sign X; = sign X5}, an improve-
ment of (4.3) for £ = 2 and th.lS 2 is given by (8.5) and Example 2 of Section
3.3.

Proor. A distribution attaining equality in (4.3) is given by (4.5). We need
only show that w” ¢ { ][] z; = 1}. The first row w™ of W is ¢, and all other rows
of W must have an equal number of positive and negative entries. Because k is
a multiple of 4, this means w'” has an even number of negative entries.

Equality cannot be attained in (4.3) if it cannot be attained in (4.2). ||

6. Bounds when only variances are known.
TaeorEM 5.1. If X = (X4, -+, X&) 7s a random vector with EX = 0 and

EX?=0’§,Wh€T€0’%§0’§,j= 1)'2"",]6’”1‘6"'

(5.1) P{min X; 21 or min (—X;) 2 1} < o,
J 7
(5.2) P{min X; 2 1} = ¢i/(1 + o),
7
(5.3) P{IIXi|=1 and X>0 or X <0} =[] %%
(54)  P{IIIXi|2z1 and X >0} = JTo"*/(1 4 II ),
(5.5) P{min | X;| 2 1} = i,
J
(5.6) P I Xl z 1} = JT %%
(5.7) PI[X; =z 1} = [I <~

REemARK. The hypothesis EX = 0 is required only for (5.2) and (5.4).

Proor. If T C T* C R* and P{X ¢ T* =< p, then trivially P{X T} < p
In this manner, inequalities (5.1) and (5.5) follow from (1.1); (5.2) follows from
(1.2); and (5.3) follows from (4.2). Inequalities (5.4), (5.6) and (5.7) follow
respectively from (5.3) and Theorem 3.5, (3.11), (4.2) and (4.3).]|

TreEOREM 5.2. Equality can be attained in (5.1)-(5.6); equality can be attained
wm (5.7) if £ > 1, whenever the bound =< 1.

Proor. Equality in each of (5.1)-(5.7) is achieved by one of the following
distributions after a change of variable.

6)) PlY =¢ =P{Y = —¢} =4/2, P{Y=0=1-7,
(i) PliZ =¢ =d/(1+d"), P{Z=—d¢=1/1+d),
(i) P{U = w?) = o'/(2k — 2),j =1, -+, k,

P{U = e} =k — 2)/(2k —2),P{U=0 =1-4,
where w"? is the jth row of (21 — e’e): k X k.

Equality is achieved in (5.1) and (5.5) if X; = (a,/a) Yi,in (62) if X; =
(¢j/c) Z;, where ¢ = o01.
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‘Define o> = []%o¥*. Equality is achieved in (5.3), (5.6) and for k even in
(57) if Xj = (G'j/o') Yj , in (54:) if Xj = (O'j/U)Zj ) in (57) for k odd if X,' =
(oi/a)U; .||

6. Analogs of Kolmogorov’s Inequality. The following theorem restates some
of the previously proven inequalities with the hypotheses strengthened so that
they become, in a sense, analogs of Kolmogorov’s inequality. Of course, no
added hypothesis can destroy the validity of an inequality, but it may destroy
sharpness by permitting a better bound. For the following inequalities, we show
that this is not the case.

TrEOREM 6.1. If Yy, .-+, Y1 are mutually independent random variables with
E(Y;) =0and E(Y}) =o3,j =1, -+ ,k,and X; = D1 Y;, then

(6.1) P{min X; 21 or min (—X,) 21} <4},
7 . J
(6.2) P{min X; 2 1} = ¢1/(1 + o}),
J
(6.3) P{min | X;|z2 1} <01

Proor. (6.1), (6.2), (6.3) follow from (3.5), (3.6), and (4.1), respectively.
- Direct proofs are immediate since {min X; = 1 or min —X; = 1} C
{min | X;| 21} S {|X,| 2 1}, and {min X; =2 1} S {X; = 1}. |
We now show that the above inequalities are sharp. Inequalities (6.1) and
(6.2) are the only inequalities that we prove sharp without showing that equality
is attainable. (See Section 2 for a clarification of this distinction.) Indeed, we
show that unless o3 = .-+ = o} = 0, equality cannot be attained in (6.1) and
(6.2) so that the probabilities of these inequalities are strictly less than the
given bounds.
TrEOREM 6.2. Inequalities (6.1), (6.2) and (6.3) are sharp. Equality in (6.1)

and (6.2) can be attained only if o3 = -+ = oy = 0. Equality in (6.3) can be at-
tained whenever the bound < 1.

Proor.

Case of (6.1).Let0 < d < land Z = (Z,, ---, Zx) be a random vector with

mutually independent components such that
P{Zy =1} = P{Z, = —1} = 6}/2, P{Zi=0} =1— 4},
P{Z; = 0;/8} = P{Z; = —o;/8} =&, P{Z; =0 =1-7¢,

j=2 -,k
Y
k

>P{Z =1 orZi = —1}[[ P{Z; = 0} = oi(1 — &),
2

Then
j Jj
P{min >.Z;=1 or min (-Z Z,~>
j 1 ] 1

J J

%
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which approaches o3 as 6 — 0. Since EZ; = 0 and EZ; = o5,7 =1, -+, k,
(6.1) is sharp.
To attain equality in (6.1), i.e., in

(64)  PminX;21 or min(—X,) 21} SP{X |21 =a,
J 7

it must be that equality is attained in the right hand inequality. By (2.2), this
means that if the random vector Z attains equality, {Z1 =1lor—1lor0} =
and since EZ, = 0, P{Z, = 1} = P{Z, = -1} = al, P{Z, =0} =1—o}.
Suppose tha,t 7 IS the smallest index (¢ > 1) for which o} > 0.Then P{Z; = 0} =
1,7=2,-- — 1, but Z; must assume some value » 5 0 with positive proba-
bility. va>Oand1fZ1 = —1,Z;=v,then (Z,,:-+ , Z;) £ T because Z; £ 1
and — (Z1+ -+ Z;) 2 1.ButP{Z1 =-1,Z;= v} =P{Z, = —1} P{Z; = v}
> 0. This means equality is not attained in the left hand inequality of (6.4). A
similar argument holds when v < 0.

Case of (6.2). Let Z be a random vector with mutually independent com-
ponents such that P{Z, = 1} = oi/(1 + 0}), P{Z, = —ai} = 1/(1 + o}),
P{Z; = 8 = o’/ (8 + 03), P{Z; = —o}/8} = 8'/(8* + o}). Then if 6 > 0,

. 2 k 2
- 1 0
P{m}n(z‘ +Z)‘1}-1+01,I_1252+a

which approaches [¢5/(1 + o3)] as 8 — 0, so that (6.2) is sharp.

The argument that equality cannot be attained in (6.2) is essentjally the same
as for (6.1). In this case a random vector Z attalmng equahty requires P{Z, = 1}
= 0’1/(1 + 0'1) and P{Zl = —0'1} 1/(1 + 0’1)

Case of (6.3). Let Z;,7 = 1, , k& be mutually independent random vari-
ables such that P{Z; = 427} = a?-/z“—l, P{Z;=0=1—o/2"%(G=1,---,
k), then EZ; = 0, EZ} = o for all j, and P{min;|Z, + --- + Z;| 2 1} =
P{| Z,| = 1} = of. Hence, equality is attained in (6.3) whenever ¥ has the
same distribution as Z.

Since {min; X; = 1 or min;(—X;) = 1} € {min; | X;| = 1}, sharpness of
(6.1) implies sharpness of (6.3), but does not imply that equality can be attained
in (6.3) as we have just proved.

The inequalities of Theorem 6.1 can be obtained by specializing previous
results to the case that Y, , - -+, ¥; are uncorrelated, then adding the hypotheses
that Yy, ---, Y, are independent. The same procedure when applied to Lal’s
inequality [2] yields a bound for P{| ¥;| = lor | ¥Y; + Y.| 2 1} with V1, ¥,
independent; in curious.contrast to our case, it is not sharp since Kolmogorov’s
inequality provides a better bound.

7. Some Extensions. There are a number of methods by which the results
can be extended. We mention only a few and give some partial results.
7.1. Extensions to Stochastic Processes. If {X. , ¢ ¢ T} is a real stochastic process
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with EX, = 0 for all { ¢ T, then

(7.1) Plinf | X, | 2 1} < inf EX} = p,
teT teT
(7.2) Plinf X, 21 or supX, < —1} £ p.
teT teT
(7.3) Plinf X, 2 1} < p/(1 + p)

whenever the probabilities are defined. The proof is analogous to that of Theorem
6.1.

In view of Theorem 3.4, we can hope sometimes to improve (7.2) and (7.3)
if the covariance function of the process is known. General results are not easily
obtained. We content ourselves with a single example for which (7.2) and (7.3)
can be improved and concentrate on showing that no improvement is possible
if the process is a martingale.

Turorem 7.1. If T is not finite and {X,, t £ T} is a process with EX; = 0 and
EX; = ¢*, EX.X: = o*, (s 5 t), for all s,teT, (where0 < p £ 1), then

(7.4) Piinf X, =21 or supX; < —1} £ o,
teT teT
(7.5) P{inf X, = 1} = o’p/(1 + o*).

teT

whenever the probabilities are defined.

Proor. This follows from Example 2 of Section 3.1. ||

Tueorem 7.2. If {X,,te T = [0, ]} is a martingale with EX, = 0 and EX? =
a*(t), then

(7.6) P{inf X:=1 or sup X, £ —1} = 4%0),
(7.7) Pfinf X, = 1} = ¢*(0)/[1 + ¢°(0)]

teT

whenever the probabilities are defined.

Egquality is attainable in both of these inequalities if a*(-) is right continuous.

REeMARK. Inequalities (7.6) and (7.7) remain true if we replace the condition
that the process is a martingale by the condition that the process has covariance
EX.X: = o’(s), s = t (of course, ¢°(-) must be non-decreasing). This is the
case, e.g., if the process has orthogonal increments, and with this replacement
the theorem would generalize Example 5 of Section 3.2. We have not chosen to
weaken the conditions of the theorem because to do so would weaken the result
that equality is attainable.

Proor. (7.6) and (7.7) are immediate consequences of (7.2) and (7.3). We
now indicate how a martingale {Z,, ¢ ¢ [0, 7]} can be defined attaining equality
in (7.6). Let 6 be a random time with its distribution to be chosen later. Let the
sample functions Z; be zero for ¢ < 6, and for¢ = 6 % 0, let Z, = a or —a with
equal probability. If § = 0, let Z, be constant at 1 or —1 with equal probability.
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Obviously Z, is a martingale and EZ, = 0. EZ; = P{0 = 0} + &’ P{0
and this is o*(2) if 6 has the distribution P{§ = 0} =
(1) — o*(0)]/a® + ¢*(0). Choosmg a so that P{ =< 7}

which is less than one. Hence
P{inf Z, 21 or sup Z £ —1} = P{6 = 0} = ¢°(0),

te[0,7] te[0,7]
so that equality is attained in (7.6).

To attain equality in (7.7 ), again let  be random in [0, 7] and let Z, = 1'if
6=0.If 6 = 0,let Z, = —o*(0) for ¢t < 6 and for ¢ > 0, letZ,be -0'(0) + B
or —d*(0) — B with equal probability. If 8 = {[1 + o*(0)][ 2(7) — o*(0)]}} and
6 has distribution

_d(0)
1 + ¢*(0)

aw a*(0)
+ eI s )

it is easily verified that the process Z. has the desired properties. ||

7.2. Extensions Through Transformations. Let X be a random variable with
EX = 0, EX® = . By means of the linear transformation y = 7z 4+ u, n > 0,
one can obtain Chebyshev’s inequality in its usual generality from (1.1) with

= 1.

Multivariate Chebyshev-type inequalities with hypotheses concerning means
and covariances can be extended similarly by linear transformations, and, in
fact, the possibilities are much greater than in the univariate case.

Let X be a random vector with EX = 0, EX'X = =, and suppose that one
has the inequality

(7.8) P{XeT} = p(2).

If H is a non-singular matrix, then using the transformation y = zH ' + uone
obtains

P{6 = 0} = *(0)/[1 + *(0)], P{o=t} =

(7.9) P{Y ¢ 8} < p(H'IIH),
whenever Y isa random vector with EY = u, EY'Y = I, and 8 = {y: (y — p)H
e T}.

Clearly, (7.9) is sharp whenever (7.8) is sharp.
Non-linear transformations may also be useful, e.g., with Y; = X3, 5=1,
, k, the results of Section 5 yield corresponding results for positive random
variables in terms of their expectations.
7.3. Bounds for Subsets. It is immediate that if T; € Ty and (i) P(Ty) =
then (ii) P(T:) < p. Obviously, if (ii) is sharp, then (i) is sharp, and it is per-



1014 ALBERT W. MARSHALL AND INGRAM OLKIN

haps surpnsmg that in many cases (ii) is sharp. Examples of this are (4.1), (5.1),
and. (5.2).

As a further application, let us consider inequality (3.4), but suppose that
some entries of the covariance matrix = are unknown. Then we can consider
subvectors (X, , -+, Xy,) of (Xy, ---, X)) for which the corresponding co-
variance matrix is known and apply (3.4), together with

P{mm X;z=1 = P{mm X, =1}
1=
Whether this procedure (which can also be applied to (3.3)) leads to sharp
inequalities is not known, but in Section 5-we proved sharpness when only the
diagonal elements of = are known. This procedure can be used whenever at least
one diagonal element of = i is known.
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