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1. Summary. Certain linear estimation procedures for randomized experi-
mental designs are evaluated relative to the criteria of bias, variance and mean
square error. For the designs considered, treatment combinations are randomly
allocated to experimental units, the randomness being subject only to a wide
symmetry condition. Statistical properties refer to the discrete probabilities in-
duced by the randomization hypothesis. Section 2 defines the basic statistical
model and discusses the question of conditional inference relative to this model.
Certain vectorial notation and terminology is introduced in Section 3. Although
the theory of the paper applies directly to k-factor designs with general k, the
notation is set up in Section 3 for a three factor design, and the three factor nota-
tion is used throughout, except for Section 5 which discusses an even simpler
example. Two general classes of linear unbiased estimators are defined in Section
4 and illustrated in Section 5. In Section 6 it is shown that estimators of the
types defined in Section 4 have optimum properties in a wide class of linear es-
timators. Finally, the theory for the basic model is generalized in Section 7 to
cover the case of observations with error.

Formal proofs of stated theorems are to be found at the ends of Sections 4.2,
4.3 and 6.

2. Introduction. Consider a completely crossed k-factor design with R levels
of factor 1, C levels of factor 2, - - - , L levels of factor k. In recent years F. E:
Satterthwaite [6] has proposed designing experiments by drawing at ‘‘random”
from such an array, usually with some restrictions on the random choice, plus
some replication, and then performing the experiments indicated by the random
choice of treatment combinations. This has been termed ‘“‘random balance ex-
perimentation” or ‘“random allocation experimentation.” For example an ex-
periment with » observations could be designed by choosing independently
sets of treatment combinations each according tc the following simple rule: the
level of factor 1 is chosen at random from the R possibilities, independently a
choice of one of the C levels of factor 2 is made, and so on. The general technique
appears to have been introduced primarily for application to very large arrays
where only a very small fraction can be contemplated, and so is often thought
of as a competitor of highly fractionated factorials which deliberately confound
certain effects with others. In the case of random allocation designs, confound-
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ing is random, or at least partly random. The proper place in practice of random
balance designs relative to more conventional designs is a controversial matter
(see [1], [3], [6], [10]). The results presented in this paper were motivated by the
need for a theoretical framework within which random balance designs could
be compared and evaluated relative to more conventional designs. The results
pertain, however, to a general class of models which can be applied not only to
the random balance experiments referred to above but also to a wide range of
other designs including (i) fixed fractions where the labels of the different levels
of each factor are assigned at random, (i) arrays which are complete except for
randomly selected “missing cells,” and (iii) conventional “completely randomized
designs” as discussed in [9]. Subsequently in this paper the term random allo-
cation will be used rather than random balance, partly because the wider appli-
cability than simply to Satterthwaite’s random balance designs makes a more
neutral term desirable, and partly because the term random allocation seems to
be more descriptive.

The basic statistical model is as follows. Corresponding to each of the N =
B X C X -+ X L cells of the complete k-way design there exists a fixed quan-
tity to be thought of as the result of an experiment performed with the corre-
sponding factor level combinations. By a design we mean a subset of n of the N
factor level combinations, and an experiment performed using a given design
provides the values of the n fixed quantities corresponding to the n cells of the
design. For the mathematics of this paper a random allocation scheme is a method
of selecting a design as a random subset of 7 of the N possible factor level com-
binations where the only restriction on the probability of selection of a par-
ticular set of n is-that all other sets of #n obtained from a given set by permu-
tation of factor levels shall have the same probability of selection. It will be
convenient to use group-theoretic language in dealing with this definition of
random allocation. Suppose @ denotes the group of all permutations of the levels
within all factors, so that & has order

P = (R)(CY) --- (L)).
By applying all the elements of @ to a given design one obtains a set of designs
which we call a symmetry class of designs under group ®. In this way all <i\[)

possible designs are classified into mutually exclusive symmetry classes. Our
definition of a random allocation scheme states that all the designs of any one
symmetry class must be equiprobable, but no restriction is placed on the prob-
abilities of selection of the different symmetry classes. The different weights
allowable for different symmetry classes result in the wide range of possible types
of designs alluded to above. Possibly the simplest example occurs when the n
selected combinations are a simple random sample without replacement from
the N possible combinations, and this we call simple random allocation. Two
types of modifications of simple random allocation which may appear separately
or in combination may be termed random allocation with partial balance and
random allocation with partial confounding. An often recommended example of



RANDOM ALLOCATION DESIGNS. I 887

the first type is defined by the restriction of the random choice so as to require
for each factor that each of its levels appear an equal (or as near equal as possible)
number of times. It is clearly possible to extend this technique to balancing with
regard to combinations of factors rather than simply with regard to factors one
at a time. For example, in an experiment of size » = 32 on an array with 20
factors each at 2 levels, one could divide the factors into 4 groups of 5 each and
balance the experiment with regard to 4 complete 2% experiments, i.e., the ex-
periment would be a complete 2° in 4 ways, the 4 ways being randomly superposed
on one another. Partially confounded random allocation, as defined here, would
arise if one were to choose a fixed fractional factorial from the whole array where
certain effects are deliberately confounded, subsample at random in some sense
from the fixed fraction, and finally randomly permute the labels of rows, col-
umns, etc., by choosing at random a member of @. Clearly partial balance can
be built into the second of the three stages of choice of a partially confounded
random allocation design. Alternatively, if the second stage of choice is omitted,
partially confounded random allocation includes any complete standard frac-
tional factorial provided that the experimenter has seen fit to randomly permute
the labels of factor levels independently for each factor. Thus any comparison
between, say, simple random allocation and a prechosen-then-randomized frac- -
tion can be made entirely within our class of random allocation designs. A final
example, to show the breadth of our definition, is the class of completely ran-
domized designs where ¢ treatment combinations are applied at random to ¢
experimental units chosen at random from r = ¢ experimental units. This is
clearly a random allocation design where the ¢ treatment combinations are re-
garded as the ¢ levels of one factor and the i experimental units are regarded as
the 7 levels of a second factor.

A generalization of the basic model will be considered in Section 7. The theory
extends immediately to this generalization, but in the interest of clarity the
main presentation will use the basic model. The generalization allows the fixed
array to become random through the addition of a random error with zero mean
and arbitrary variances and covariances. The generalization can be made to
cover certain methods of design where some of the cells are replicated in the
design. _

Our aims are to provide, for the basic statistical model, methods of estimating
linear combinations of the N fixed cell-values, and to search for optimum methods
of estimation. The same discussion will apply to all of the types of random allo-
cation schemes within our definition. The criteria for good estimators will be the
usual criteria, ‘“unbiasedness”, ‘“unbiasedness with minimum variance” and
“minimum mean square error.” These criteria have been placed in quotes to
emphasize that they are not yet well-defined and indeed that they may be de-
fined in several ways. Controversy over what statistical properties may be prop-
erly associated with randomized designs has a long history as may be seen in the
opposing contentions of Fisher and “Student” [2], [8], and such issues do not
appear to be definitely resolved even today. The question usually comes down
to: how conditional should the inference be? One point of view is that, having
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made our design random, it is only sensible to use this randomness, by averaging
over the random choice of design, when defining statistical properties like means
and variances. The opposing point of view states that the randomness in the
choice of design does not depend on the unknown quantities to be estimated,
i.e., that the chosen design is an ancillary statistic in the sense of Fisher [5],
and so we must make inferences conditional on the design actually used. Curi-
ously enough the two opposing principles, namely the principle of basing in-
ferences on the random properties of randomized designs and the principle that
one must make inferences conditional on ancillary statistics, are both asso-
ciated with the name of Fisher. The author believes the latter principle to be
desirable in theory but not always practicable. In the case of our basic model
where n of N fixed constants are provided by the random allocation scheme, to
condition on the design is to eliminate all randomness from the model. There are
two methods of restoring randomness to the model. The first method, and the
one adopted for our theory, is to relax the conditioning requirement. The second
method is to assume a more structured model for the observations; for example
we might assume a model I fixed effects analysis of variance model with fewer
than n fixed effects to be estimated. The choice of method poses a dilemma, for
the logically more satisfying second method may yield incorrect results because
the more structured model makes incorrect assumptions.

In this paper we develop theory for the general unstructured model and take
averages over the random choice of design. We can also, however, take one step
towards conditioning on the design and condition on the observed symmetry
class of designs, i.e., rather than average over all designs we can just average
over the observed symmetry class. This conditioning is equivalent to the as-
sumption that the random allocation scheme used has just the observed sym-
metry class with probability one. Since all of the designs of one symmetry-class
have similar confounding patterns the procedure of conditioning on the ob-
served symmetry. class has the intuitive appeal of averaging only over designs
with confounding patterns similar to that observed. In any case we will be deal-
ing with estimators which are unbiased in one of two senses: they may be @)
U,-unbiased, i.e., conditionally unbiased given the symmetry class, or (ii) Us-
unbiased, i.e., unbiased under averaging over symmetry classes as well as within.
Clearly any Uj-unbiased estimator is also Us-unbiased.

The consequences of adopting the method of averaging over designs may at
first appear startling. For example it becomes possible to find unbiased estimates
of every linear combination of the N fixed quantities for every random alloca-
tion design, even with » = 1. Suppose the N fixed quantities are denoted by
1,02, -+, vy. Then a random allocation experiment with n = 1 amounts to
observing one of the »; chosen at random. For each ¢ an unbiased estimator of
v; can be defined as. '

9; = Nv; if v; is observed

=0 otherwise.
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Consequently an unbiased estimator of Z?;l av; is Zﬁ-",l aid; . Of course, such
an estimator based on n = 1 would have so large a variance that it would be
useless, but still it retains theoretical validity.

3. Terminology and notation. Although the theory applies directly to de-
signs with any number of factors, suppose, to simplify notation, that we use as
prototype a design with three factors having R, C and L levels and so N = RCL
cells altogether. Suppose the cells have associated numbers

viik(i: ,2,---,R;j=12,---,C;k=1,2,---, L)

to be regarded as fixed quantities or parameters. The quantities v, , together
with all linear combinations of these quantities, may be taken as the values
assumed by a particular linear functional f; over an N-dimensional vector space
E. The vector space E is defined abstractly in terms of N basis vectors

Vijk(’l:'-: 1’2:“'7R;.7'=‘1’27°"10;k= 1’27°°°,L),

which are in one to one correspondence with the cells of the basic array; and
fi, called the total functional, is defined by

f t(z: aijivijk) = Z i jkligk -
.7,k 2,5,k

In particular f;(Viz) = v for all 7, j and k. The random allocation experiment
provides observations for a random subset of n of the N cells. Suppose the corre-
sponding n vectors V,; span subspace ¥, of E. Note that the experiment pro-
vides the values of f:(V) for V ¢ E, only.

An alternative method of introducing vectorial terminology would be to regard
the v,; as defining an N-dimensional vector. Such a vector lies in the dual space
(see [7]) of the vector space E introduced in the preceding paragraph. Since
we wish to work with vectors in E we prefer the terminology which calls the set
of v a linear functional rather than a vector.

A Euclidean metric may be inserted in £ by regarding each V;; to be a unit
vector orthogonal to all other V;j , i.e., the metric is such that the vector

Zi,i.k Q’ijkvs‘jk
has squared length >_; ;z oz . This metric will be referred to throughout as
the formal metric and, unless otherwise stated, orthogonality relationships and
lengths will be relative to the formal metric.

In accordance with standard analysis of variance ideas, the space E can be
expressed as the direct sum of eight mutually orthogonal subspaces, Ey , Er , Ec,
E., Egc, Bz, Ec¢i and Egcy, of dimensions respectively 1, B — 1, C — 1
L-1,(R-1)(C-1),(R—1)(L—-1),(C—-1)(L—1)and

(R —1)(C — 1)(L —1).

For example, the space Erc consists of all vectors D,z a;Viz such that
analysis of variance of the array «;; produces zero mean squares for all effects
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except possibly the RC interactions. Similar definitions apply to the other
subspaces.

A class of metrics may be introduced in E by stretching or shrinking the space
along the subspaces Ey , - -+ , Egcr . More precisely, suppose V ¢ E is expressed
as

V= aMVM + aRVR + .- + aR,C'LVRCL

where Vy e Ey, -+, Vzcr € Ercr and these are unit vectors according to the
formal metric. Then, according to the \-metric defined by (Aa, Az, -+ , Ares),
V has squared M-length

Ny + -+ + drorker
Note that the formal metric is the particular A-metric where
)\M= AR"—" A —f‘-kch= 1

Metrical properties relative to a general \-metric will be referred to as A-proper-
ties, e.g., a vector has a N-length or a pair of vectors have a M-angle.

4. General classes of estimation methods.

4.1. Motivation. Our purpose is to find unbiased estimators of f,(V) for any
V based on data giving the values of f.(V), where V belongs to the random sub-
space E, . The values of f,(V) for V belonging to one of the subspaces

EM,...,ERC'L

have special intefpreta.tions and are of special interest. For example a typical
\' & E R iS

1 . .
Vo = oL Jzk (Vi — Vigin)
and its associated f; value, namely
1
Yo = E’T; < (viljk - vigjk),

is of special interest as the difference of two row main effects. A brief discussion
of methods of estimating », will help to motivate subsequent general methods.

The first unbiased estimator of v, which comes to mind is probably the differ-
ence of two means, the mean of those v;5 which were observed with ¢ = 7,
and the mean of those with 7 = 4, . Provided that each possible design yields at
least one observation in every row, this estimator is evidently both defined and
Ui-unbiased for any random allocation scheme. If, however, it is suspected that
large column effects are present, and if the design permits, one would probably
apply the foregoing method to the data corrected for column main effects. In
both cases these estimators are values of f; for vectors in E,, in the first case
for a vector in E, which is (i) perpendicular to Ex , and (ii) perpendicular to
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that part of Ex orthogonal to Vi, and which makes the smallest angle with V,
subject to conditions (i) and (ii). In the second case a third condition must be
added: (iii) perpendicular to E¢ . Both of these methods and their natural ex-
tensions are discussed by Anscombe [1]. The first method avoids any influence
of the grand mean on an estimate, whereas the second method avoids any in-
fluence of the grand mean or column effects. Extensions to the correction for
other effects are evident. This example is intended to illustrate the following
heuristic viewpoint: in estimating an effect v one will use f;(V) for a vector V in
E, chosen as a compromise between being near V, and not too near other direc-
tions with large associated effects. In the example, the device for keeping away
from dangerous directions is to require the used direction to be orthogonal to
dangerous directions.

A generalization of this device with much greater flexibility is to use a vector
in E, which makes minimum A-angle with V, for A-metric (A, *-+ , Azcw). The
two methods described above may be shown to be limiting cases of this general
method where

(a) Ay = Ng— © and A¢ = Agc = **+ = Ager = 1
and
(b) Ay = Ar = A¢— © and Age¢ = *++ = Azcz = 1 respectively. The general

method was motivated by the belief that it would be better to stop between
these extremes. In fact the author’s heuristic feeling led him to conjecture that
one should stretch (or shrink) the metric until the effects corresponding to
A-unit vectors in the directions Fy, - -+ , Ezcy are in some sense equalized, or
more specifically until

= (M8)u, e = (M8)z, -+, Necr = (M8)zer

where the (M S) values are the mean squares appearing in an analysis of variance
table for the complete array v;; . The sense in Whlch such a procedure is optimum
will be indicated in Section 6.

There is one direction in F, A-nearest to Vo, but there are many vectors in
this direction. The question of which to use in defining the estimator has been
up to now mostly ignored in our discussion. We now proceed to more precise
definitions of estimators. ,

4.2. -minimum extensions. The objective is to find an unbiased (U;- or U,-)
estimator of f;(V) for all V& E. We shall consider only estimators which are
themselves linear functionals over E, i.e., if :(Vy) estimates f,(V1) and f.(Vs)
estimates f.(V:) then the estimator of f;(aVi + 8V) is of (V1) =+ Bf:(V,). The
estimators which we shall consider are conveniently expressed in terms of a
random linear functional denoted by fx(V) and called the A-minimum extension of
fefrom E, to E.

The linear functional f) is determined by the observations and the A-metric
()\M y Tty >\ROL)~ It is defined by

A(V) = fu(V) for Ve E,
=0 . for V M-orthogonal to E,, .
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These two statements define fi completely, since any V ¢ E has a unique ex-
pression as Vi + V; where V; & B, and V, is \-orthogonal to E, and so

AV) = A(V1) + A(V2) = fi(V).

It is clear that an alternative characterization of £, is to define A(V) for any
V & E to be f.(Vy) where V, is that vector in E, at minimum A-distance from V.
This characterization ties in with the description in Section 4.1 of estimators
of v as f; values for vectors in E, nearest to V.

A third, and quite different, characterization of f is as follows. The values of
I for Vi corresponding to the unobserved cells are those numbers which, together
with the known fi(= f.) values for V:j corresponding to the observed cells, produce
that full array which minimizes the expression

(88)a , (88)

A3 A%

(88)zez

2
>\RCL

- + o

where (88)u , -+, (88)rer, are the sums of squares arising from the analysis of
variance of the full array. To prove that this characterization agrees with the
first given, consider the class F, of linear functionals which agree with f, for
Ve E, but are otherwise arbitrary. Pick any basis of E consisting of A-unit
and \-orthogonal vectors Wi, W, -+, Wy and consider for any f ¢ F, the
property

S() = XL IFWT,

which may easily be checked to be independent of the choice of basis. According
to the first definition, f) is that member of ¥, which is zero over the subspace
E, of E where £, consists of those V¢ E M-orthogonal to #, . In terms of a basis
Wi, -+, Wy such that Wy, -+, W,e E, and Woya, -+, Wy e B, it is seen
to be equivalent to say that fy is that member of F, which minimizes S(f). On
the other hand, when a basis Wy, - - - , Wy is selected which lies entirely within
the subspaces Ey , Er, -+, Erct , it becomes evident that '

S(f) = (S_E')M + (Sg)ﬂ o (Slg)ncz, ,
Ay AR Aker

as required.

4.3. Unbiased estimators. For a given random allocation scheme and a given
A-metric (Aw, Az, -+, Ngcz) We define two unbiased estimators of f,(V), called
the class 1 estimator and the class 2 estimator. The class 1 estimator is U;-un-
biased and the class 2 estimator is U,-unbiased. The definitions of these esti-
mators rest on the following theorem which is proved at the end of this section.

TrEOREM. Suppose A is a generic symbol representing ome of the subscript
combinations M, R, - - - , RCL. Suppose the symbol “ave{ - --}” denotes average
over the random choice of design of a random allocation scheme. Then there exist
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constants Yu, Yr, -+, Yror, depending in general on the random allocation
scheme, such that

ave {fx(VA)} = ’YAfz(VA)

for any Va € Ex and for all A. Further, if Aac , * + + , Mrcy are all finile and non-zero,
then yu , -+ , Yrer ore also all finite and non-zero.

The definition of the class 2 estimator follows immediately: any V ¢ E has a
unique expression as

V= EA_‘,VA where Vac E,

and, from the theorem, the class 2 estimator defined as
AV = ZAah(Va)

is Uy-unbiased for f(V) for all V¢ E. The definition of the class 1 estimator
follows from an application of the theorem to the random allocation scheme
which restricts designs to a single symmetry class G under ®. This results in a
set of constants yae for each symmetry class G. Then the class 1 estimator is
defined as

AV = Zaehi(Va)

for any V = Z,Vae E, where G denotes the observed symmetry class. The
class 1 estimator is clearly U;-unbiased. In general the class 1 and class 2 esti-
mators are different and the class 2 estimator is not U;-unbiased. Notice, however,
that if the random allocation scheme allows only one symmetry class with prob-
ability one, then the class 1 and class 2 estimators coincide as do the concepts
of U;— and Us,—unbiasedness.

To prove the theorem stated above we shall express ave {A(Vin)} successively
in terms of the following three sets of eight quantities each:

(PO ® » Vi@ > V@it 5 ° 5 Vijk)
(2)... 3y Ve g Uiy o0y Uijk)
(m y Mgee y Mojoy o0, m,-ﬂ,).
The first set represents a method of breaking 2, ,,:r.; into

Viyhw = Evm,
r#s
8]
t #k

Vi) = ; Vist
877
t #k
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ete. In the second set a dot means that a mean is taken over the corresponding
index, e.g.,

1 1
V.. = R—_Ol—l "'Ea" Upst 5 Vi, = EE a,zt Vist
etc. The third set gives the standard representation of the observation v;; in
terms of its mean effect, row effect, ete.,:

Mo = V...,

M. = Voo — V..., and so on to

Mije = Vijk = Vi5. = Vip — V.jx + ;.. + v.j. + Vg = V... ®

It is easily seen that any one of these three sets can be expressed as linear func-
tions of any other of the three, where the coefficients do not depend on the par-
ticular 7, § and & involved. Thus

v... = (1/RCL) (veypay + vicyw + -+ + vig),
vi.. = (1/CL) (vschyay + vijwy + viciw + vijn),

ete.
Now ave {fa(Viz)} is evidently expressible as a certain linear combination of

the v;,; . The symmetry under ® of the defining property of all random allocation
schemes implies the equality of those coefficients in this linear combination
corresponding to v, values comprising a particular sum of the eight sums
(o > Yipw s 5 vin). Hence there are just eight different coefficients.
The symmetry further implies that these eight coefficients do not depend on
i, § and k. Going over to m-quantities, it follows that there exist constants
Ym,Yr, *** , Yrer independent of 7, j and & such that

ave {A(Vii)} = vyum... + yami. + -+ + Yreamize .
By taking linear combinations of both sides it follows that

ave {A(Va)} = vafi(Va)

for any Vac E, .

Since fA(Va) = fe(V) for that V ¢ E, which is A-nearest to V, , the contribu-
tion to yaf:(Va) from any particular E, must be a positive or zero multiple of
fi(Va). Thus ya = 0 only if all £, are A-orthogonal to V, , which is in turn
possible only if all V;;; are A-orthogonal to V, . Since V, is a linear combination
of V;j this last cannot happen unless the A-metric degenerates e.g., by some
A-values becoming zero or infinite. This completes the proof of the theorem.

In degenerate cases where y4 = 0 for one or several A our estimators are un-
defined. Such cases can be of practical interest. In a later paper [4] we shall
discuss our estimators when several A, tend to infinity and relate our estimators
to well-known least squares estimators. The non-existence of our estimators
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can in these cases be related to the inability to estimate by least squares more
parameters than there are observations.

6. Simple examples. No mention has yet been made of the difficulty of com-
putation of general estimators of the kinds just defined. To compute f) for a
given set of observations and a given arbitrary A-metric in general requires that
the » observations be orthogonalized with respect to the A-metric. Further, no
general formula has been found for the correction factors v, for unbiasedness,
which are different for different random allocation schemes and, as the theory
now stands, must be computed directly for each scheme. In this section we
illustrate the computation of estimates in the case of simple random allocation
designs with n = 2 and n = 3 from an underlying array with two factors at two
levels each, i.e., N = 2°. The complexity of the general method is such that even
these very simple examples are not quite trivial, and so they serve to illustrate
the definitions of Section 4. Our objective is to find expressions for the class 1
and class 2 estimators and for their variances.

For the underlying 2° array, the four fixed numbers »;;( = 1,2 andj = 1, 2)
define f; for the four unit orthogonal basis vectors V;; of E. The vectors

Vi = 3(Vu + Vi + Vo + V)
Ve =5(Vu + Vi — Vo — Vi)
Ve=3(Vu — Vi + Vo — Vi)
Vee = (Vi — Vie — Vo + Vi)

define unit vectors in the directions of mean effect, row effect, column effect
and row-column interaction effect. These directions define the one-spaces F ,
Er , B¢ and Egc respectively. The corresponding f; values v , v , vc and vge can
be similarly expressed in terms of the v;; . We shall denote class 1 and class 2
estimators of vs by 94 and v, , respectively, for each A.

Take first the case where the observations are a random sample of three from
the four possible cells. Here there are four possible samples of three, each with
probability one quarter. Since all four possible samples belong to one symmetry
class, class 1 and class 2 estimators are the same. Suppose A-metric (Ax, Az,
Ae, Axe) is adopted and we set out to find f,(Va) using the second. characteriza-
tion of f\ given in Section 4.2. Thus we seek V ¢ E, A-nearest to V4 . This need
only be done for one choice of A, say R, and one sample of three, say vy , v, and
vy , since it will follow by symmetry for other choices. Let us therefore find the
vector an Vi + a12Viz + aa1(— V) subject to the restriction ay + a2 + an = 1
which makes the smallest A\-angle with Vi . Each of Vi, Vi, and — V), has the
same A-inner product with Vi and hence this same inner product is shared with
auVu + auVlz - (121V21 where an + ap + an = 1. Thus to minimize the A-
angle of this vector with V we need only minimize its A-length. Its (A-length)? is
found from summing the properly weighted (component)® along Vi, Ve, Ve
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and Ve, to be
Av(au + a1 — an)® + Ai(an + oz + az)’
+(7\%(au - Gz — 0'21)2 + )\21}20(0/11 — ap + 021)2-

It is easily seen that this expression is minimized when

1 1\ 11 1 1
0/11=K()\§’+)\10),012=K(RL+>‘%),G21=K<)\%+)"@;>;

where K is a normalizing constant. By symmetry we could now write down the
coefficients for each of the other three possible samples, with the same normalizing
constant K. In order to define the class 1 or class 2 estimator 5 it is only necessary
to choose factor K to produce unbiasedness. By direct algebra this K is found
to be

1 1 1\
k=(z+m+m)
so that
. 1 1 1\ /1
UR=(E+;"%+;‘§;) [()\2 + )Un
1 1 1
+(E+i§‘;>vu—(z+ Rc)”zl]

when vy, 912, and vz are observed. Similar expressions could be written for the
other three possible samples. Also by direct algebra we find

1 1 1 \?
var (i) = (vu 4 X +:I4;Z)/[<E +>Tz;+5\‘{;)].

The various symmetries permit deduction of the corresponding estimators
Py, Dcand dge . For example, formulas for the case of vy , v1 and vy observed are

o (L 1 L1\ 1.1
by = )\i'l')\%'l')\z;c [ A +>\2 v + )\2 +>\Rc vi2 + >\i~+7\§w U |,
)—1 -(_1_ 1 ) _(l 1) (.1._ _1_) ]
(2 +)‘2 +)\2 ; )\§4+>\§zc vn )\3:+>\3w v + )\il‘l‘)‘; va1

. 1 1 VAt 1 1 1 1 1
Ure = ')‘—'il'l‘)\z‘f' _-)E_'_X% b — ;‘Z'i")\—z; Vg — E'l‘ﬁ vy |,
Corresponding formulas for var (9,), var (dc) and var (9z¢c) could be immedi-

ately written down.
If var (9z) is minimized over different choices of A\-metric (Aar, « + - , Are) it is
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easily seen that the resulting minimum is

1 -1
(&+u+m
occurring when
loud _ lool _ [omel

Thus, by symmetry, the choice of a A-metric such that

M _ |val _ lve| _ lvme|

Au Az Ae Arc

minimizes var (9) for all A. This result agrees with the general theory of Section
6 and the heuristic feeling of Section 4.1. It is to be noted that this optimum is
not available as a practical method since the ch01ce of A-metric depends on
unknown quantities.,

To illustrate the difference between class 1-and class 2 estimators we discuss
the case of samples of two from the 2 array. Here, in the case of simple random
allocation, there are six equiprobable pairs of observations defining three sym-
metry classes of size two each, say G1, G» and G :

Gi: (vu,v) and (va, v2)
Gy: (vu,vn) and (viz, ve)
Gs: (vu,ve) and (viz,vn).

If a A-metric (A, - - - , Azc) is selected and we seek a V ¢ E, making minimum
A-angle with Vi we find that in the six cases such vectors are:

Va4 Vie=Ve+ Vu, =Vy — Vs = Vi — Vu
Vi— Va=Ve+ Vec, Vig = Vo = Vg — Vge
Vi— Ve =Ve+ Ve, Ve — Vg = Ve — V.

In any scheme of weighting these to produee an unbiased estimator of vy it is
evidently necessary to weight the members of each pair of a symmetry class
equally, so the questlon is how to choose three coefficients o, 8 and ¥ where
the resulting estimator is:

a(vn + vi2) = a(vr + vu), a(—vy — })22) = a(vg — Vu)
B(vu — va) = B(vr + vre), B(v1z — v2) = B(vr — vrc)
y(vn — ve) = v(ve + ve), Y(vi2 — va) = y(ve — ve)

which, gince each sample has probability 1/6, yields a U,-unbiased estimator
whenever @ + B + v = 3. The variance of this estimator is given by

HeP(vh + k) + Bk + vre) + ¥ (vr + )] — vk .
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For the class 2 estimator it is easily seen that

Az A AR AR AR 4L

whence, using « 4 8 + v = 3, the class 2 estimator is defined. Also, if the above
general expression for the variance is minimized over choices of &, 8 and v it is
seen that the minimum variance occurs for

a B o4
2 7 = 2 3 = 3 2
Vr + Vu vz + Vre vr + ve

indicating again that the metric with | va |/Aa constant produces optimum esti-
mators.

For U;-unbiasedness it is necessary that « = 8 = ¥ = 1 and so this choice
produces the class 1 estimator. Note that this estimator happens to be inde-
pendent of the A-metric. Its variance is 3(v3; + v& + vkc). Since the class 1
estimator is conditionally unbiased given the symmetry class it makes sense to
quote the conditional variances given the symmetry class, namely v , vkc or
.ve given symmetry class Gy, Gs or G respectively. ,

The formulas for these estimators and their variances are not as simple as
one might expect from the simplicity of the examples. To give some feeling for

TABLE 1
Variances for the numerical example N = 4, v1; = 8.5, v12 = .5, v = 2.5
and vz = —1.5: class 2 estimators forn = 2 andn = 3
and for various N\-metrics.

Metrice n var (D) var (Og) var (O¢) var Orc)
Ay = Arp = A¢ 2 18.67 21.67 15.00 25.67
=Ag¢c=2¢ 3 6.22 7.22 5.00 8.56
Ay — ®,Ap = A¢ 2 18.67 38.00 -33.00 41.00
=Ngc=2¢ 3 6.22 10.00 5.00 13.00

AM =Ap— @ 2 23.12 23.00 84.00 116.00.
Ac=Arc=2¢ 3 10.00 10.00 4.00 36.00
Ay =A¢g— © 2 15.92 44.00 15.00 56.00
M =Arc=2¢ 3 5.00 4.00 5.00 16.00
Ay =Ag=A¢g— @ 2 15.88 16.44 15.15 25.67
ARc=¢ 3 4.00 4.00 4.00 8.56

Au/b = \g/4 = 2 14.86 16.04 13.49 23.40
Ae/6 = Arc/2 =c¢ 3 2.94 3.14 2.84 7.67
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TABLE 2
Variances for the numerical example N = 4, vy = 8.5, v;5 = .5, vy = 2.5
and v = —1.5: class 1 estimators for n = 2 and for any N-metric
Conditioning var (9x) - var (Pg) var (9¢) var (Or¢)
Conditional on Gy.......|  16.00 25.00 4.00 36.00
Conditional on @G;. ... ... 36.00 4.00 25.00 16.00
Conditional on Gs. . ... .. 4.00 36.00 16.00 25.00
Unconditional .. .......... 18.76 21.67 15:00 . 25.67

actual numbers produced by these methods consider the numerical example
where vy = 5, vr = 4, vc = 6 and vzc = 2, i.e., the basic 2* array where

n = 8.5, V12 = .5, Vg = 2.5

and v = —1.5. Variances pertaining to this example are presented in Tables 1
and 2.

Table 1 illustrates how variances corresponding to various A-metrics which
might be used in practice are related to variances corresponding to the unknown
optimum A-metric Ax/5 = Az/4 = A¢/6 = Arc/2. A comparison of Table 1
and Table 2 shows that, unconditionally, var (8x) > var (9») for the optimum
A\-metric, but that this inequality does not always hold for different A-metrics.
The inequality illustrates the general fact that the minimum variance of esti-
mators in the class of Us-unbiased estimators must be less than or equal to the
minimum  variance of estimators in the more restricted class of Uj-unbiased
estimators. '

6. Optimum properties. In this section we define a wide class of linear un-
biased estimators of f;(V) for any random allocation scheme and show that
certain estimators of the types defined in Section 4 are optimum in the wide
class. The criteria of optimality are minimum symmetrized variance among
U,- or Uj-unbiased estimators and minimum symmetrized mean square error
among all estimators. These “symmetrized” criteria will be defined shortly.

Suppose the random allocation scheme permits exactly d distinct n-spaces E,
each with positive probability. Consider nd arbitrary real numbers to be used
as d sets of n coefficients applicable to the n observations corresponding to each
possible E, . The resulting linear combinations define the values of a random
variable whose random properties are induced by.the random choice of E, . As
the nd coefficients assume all real values they define an nd-dimensional vector
space O of random variables. Any v* € O has for its average some linear combina-
tion of the N quantities v;; of the underlying array, i.e.,

ave {v¥} = fi(V) for some. VeFE,

where averaging is over the complete random choice of designs, and so »* is a
U,-unbiased estimator of f,(V). For any given V ¢ E we consider as our general
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class of linear Us-unbiased estimators of f,(V) all those v* £ O satisfying
ave {v*} = fu(V),

and we seek the optimum in this general class. Denote this subset of O by O(V).
One might first decide to seek that v* ¢ O(V) with minimum variance. Un-
fortunately the class O(V) is sufficiently large to include estimators which have -
variance zero but which are of an uninteresting and asymmetrical type. Note
that in general the variance of an estimator is a quadratic function of the v
and what we are doing is finding estimators which are unbiased for any v;; but
whose variance is minimum for a particular set of v;; (i.e., the “true” values).
For example, consider a simple random allocation scheme observing n of the N
quantities v;5 . Let us now define an unbiased estimator of, say, vi;; which will
have variance zero when the v;; are in fact equal to a set of numbers z;; . The
coefficients in this estimator will depend of course on the ;s . Suppose for
simplicity that all the z;;. are non-zero, and define z;;; = vi/Z: . Define random
variable Z to be the mean of the n observed values of v;; . Define random variable

Zm = N-1 Zm — N~ P if v111 is observed
n—1 n—1
=Z otherwise.

Then it may be easily checked that ZZm is Us-unbiased for v, and has zero
variance when v, = z;; for all 7, 7 and k. Similarly we can define zero variance
U;-unbiased estimators for any v;5 and thence for f,(V) for any Ve E.

In order to have a more interesting optimum v* we define the criterion of
symmetrized variance of an estimator »*. Symmetry here refers to symmetry
under the group ® of P = (R!)(C!) (L!) permutations of the R rows, C columns
and L layers of the basic array. For any g ¢ ®, any V ¢ E and any n-space E,
contained in £ we denote by g(V) the vector in E found by operating with g
on V and we denote by g(E,) the subspace of E found by operating with g on
E, . If v* £ O is a Uz-unbiased estimator of f,(V) and v* = f,(V*) where V* ¢ E,,
then for any g ¢ ® we can define g(v*) ¢ O, a Uz-unbiased estimator of f,(g(V)),
to be g(v*) = fi.(g(V*)) when ¢g(E,) is the subspace corresponding to the ob-
servations. Then we define the symmetrized variance of v* to be

F(o%) = %;'var {g(v®)}.

Thus the group @ breaks the space O into mutually exclusive symmetry classes
of estimators such that the estimators of one class share a common symmetrized
variance, namely the mean variance over the class. The use of the criterion
o’ (v*) seems reasonable when one’s a priori beliefs about the array of v, are
symmetrical under ®. For, if v* were adopted as the estimator of f,(V), then it
would be only reasonable to adopt g(»*) as the estimator of f;(g(V)) and to
judge all such estimators together by their mean variance. For similar reasons
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we may wish to use the criterion of symmetrized mean square error of v* defined
analogously as

L ave (0" — ()P,

The following optimality Theorems 6.1, 6.2 and 6.3 will be proved in order
at the end of this section. Suppose we select any A-metric such that

A A2 : Arcr

MSx (M8 = (MO

where the (M 8), are the mean squares resulting from the analysis of variance
of the complete array of »; ;x , and suppose we refer to this A-metric as the optimum
A-metric.

TaeorEM 6.1. For any random allocation scheme and any V ¢ E, that v* & O
with minimum symmetrized mean square error for f,(V) is given by the »-minimum
extension fr(V) corresponding to the optimum \-metric. The symmetrized mean
square error of (V) 7s minimum both unconditionally and. conditionally with
conditioning on each symmetry. class G of designs.

THEOREM 6.2. For any random allocation scheme and any V ¢ E, that v* €O
which is Uyunbiased for fi(V) with minimum symmetrized variance is given by
the class 2 estimator }r(V) corresponding to the optimum A-metric.

THEOREM 6.3. For any random allocation scheme and any V e E, that v* e O
which s Ur-unbiased for (V) with minimum symmetrized variance is given by
the class 1 estimator (V) corresponding to the optimum M-metric. The symmetrized
variance of H\(V) is minimum both unconditionally and conditionally with con-
ditioning on each symmetry class G of designs.

Note that in these theorems it is the same \-minimum extension or class 2
estimator or class 1 estimator (i.e., the A-minimum extension or class 2 estimator
or class 1 estimator corresponding to the same A-metric) which is optimum for
all Ve E. Note also that in each case the optimum estimator depends on the
“true” underlying v,; through its choice of optimum A-metric.

In the case of underlying arrays with factors at two levels each a slightly
different corollary of each theorem can be stated. Here the subspaces Ex of E
are one-dimensional and the principal aims are to estimate the vs = f;(Va) where
Vae Ea. If v* is unbiased for »a then g(v*) is unbiased for v, for all g @,
and so it is natural to consider only those v* £ O which are identical with +g(v*)
as possible estimators. For such estimators variance and symmetrized variance
are the same, and mean square error and symmetrized mean square error are
the same. Thus, for example, as a corollary to Theorem 6.2 we have that, in
the case of factors at two levels each (i.e., N = 2), among all estimators v* & O
which are Uyunbiased for va and symmetric in the sense that v* = +g(v*) for all
ge®, the class 2 estimator }X(VA) corresponding to the optimum \-metric has
minimum variance. Similar corollaries clearly hold for Theorems 6.1 and 6.3.

We now prove Theorem 6.1. Suppose Wy, --- , Wy is a set of basis' vectors
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of .E which are unit orthogonal in the sense of the formal metric and where
W, spans Ey , Wy up to W span Er , Wey up to Wec; span E¢, and so on.
Suppose we set out to estimate f,(V) where

V= Zﬁh

=1

and for a particular E, suppose the estimator is
N
* = f(V¥) where V*= > oW
=1

and where V* ¢ E, . We should like to minimize the contribution to the sym-
metrized mean square error from the symmetry class G of E, by choosing V* ¢ E,,
to minimize

2

L3 - g [

where g(w;) denotes f:(g(W;)). Suppose (M S)a is the mean square associated
with E, in the analysis of variance of the complete array of »;; , and suppose
(M8); is defined to be (M S)a for the A such that W; ¢ E5 . Then the desired
result will follow if we show the last expression to be equal to

“Z (Oh ﬁc (MS)1»7

for clearly this expression is minimized by choosing V* to be that vector in
E, A\-nearest to V in the sense of the optimum A-metric, and this amounts to
choosing »* = f,(V) for the optimum A-metric.

In order to prove the desired equality we need only show that

‘lng(wi)g(wi) =0 for¢ = j
9
and

Za: lg(w)]? = (MS);.

"UI""

One way of regarding this problem is to suppose that the fixed array v.j; is
made into a random array by choosing at random with equal probabilities an
element g ¢ ® and applying g to the array. Under this scheme we are looking
for average squares and average cross-products for the set of degrees of freedom
corresponding to Wy, - -+, Wy . The first equality for W; and W; in different
subspaces E, is easily seen directly; for example if W; ¢ Er and W; £ Ezc, then
summation over those elements of & which leave rows unchanged is summation
for which g(w;) is constant and hence this summation over g(w:)g(w;) is zero
by the well-known property that triple interactions sum to zero when summed
over any of their indices. The remaining equalities are best shown indirectly.
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Suppose W; and W; both belong to E4 . The left hand sides of both of the above
sums are symmetric quadratic expressions and so can be expressed as linear
combinations of (MS8)ux, -+, (MS)rc . But the left hand sides are clearly
unaffected by changes in any of these except (MS), so that the right hand
sides must in each case be a constant times (M S), . By supposing the v;; to be
N independent N (0, 1) variables and by averaging both sides over this normal
variation we deduce that the constants are as shown. This completes the proof
of Theorem 6.1. .

To deduce Theorem 6.2 from Theorem 6.1 we need some relations between
symmetrized variance and symmetrized mean square error. Suppose v* £ O(V),
i.e., v* £ 0 and is Us,-unbiased for f,(V). Suppose v* has symmetrized variance
p*(v*). We may define the symmetrized squared mean of v* to be

R0 = 5 3 lave (g0 = 5 3 [lg(V)F
and so the symmetrized mean square error of v* is
1132.,: ave {[g(v*) — fi(g(V)I} = o' (v*) + 4*(v*).

Among the statistics k v* for different & suppose v** is the one with minimum
symmetrized mean square deviation from f;(V). It is easily seen that

v** = (W)W (*) + o' (0)]}o*
with symmetrized mean square deviation from f,(V) given by
[26°(v*) 0" (v*))/ [ (v*) + *(v*)].

It may also be easily checked that »* has minimum symmetrized variance in
O(V) if and only if the corresponding »** has minimum symmetrized mean
square error among estimators in O which are unbiased except for a constant
factor. Thus in a sense it is immaterial whether we find the optimum »* or the
corresponding optimum »**, Theorem 6.1 tells us that fo(V) for the optimum
A-metric provides the minimum symmetrized mean square error estimator in
0, and Section 4.3 tells us that, for Vae Ea, fA(Va) is unbiased except for a
constant factor. Thus, for any Vae Ea, fi(Va) is the optimum »** described
above and hence the corresponding v* is the class 2 estimator 7(V4). This proves
Theorem 6.2 for vectors V of the special type belonging to an Ea for some A.

To complete the proof we need only show that the minimum symmetrized
variance estimator v* ¢ O(V) for any V ¢ E can be written

v* = > oa
. A
where the corresponding V can be written
V = ; VA
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with Vs & E, and where v} is the minimum symmetrized variance Us-unbiased
- estimator of f,(Va). This gives the desired result since it is known that

V) = ZR(V).

As may be easily checked, a Euclidean metric may be defined for vector space O
by setting the squared length of v* £ O equal to its symmetrized variance o (v*).
Define O, to be the subspace of O consisting of all v* £ O whose average is identi-
cally zero, and define O, to be the subspace of O orthogonal to O, according to
the p-metric. Any v* ¢ O(V) can be written as »* = v + »; where -

i e04: =1,2).
~ Clearly vs € O(V) and, since '
P(0%) = p(of +03) = p(of) + FP(3) = P'(02),
vs has minimum symmetrized variance in O(V). If
| V=XV
and if v4 is any element of O(V,) then .
, v¥ = ;vst(V).

Also, if v* = of + vy and v = via + vea where v; and via belong to O; (¢ =
1, 2), then, .
vz* = ;U;‘A

which is the desired result, completing the proof of Theorem 6.2.
Theorem 6.3 follows immediately from the application of Theorem 6.2 to
random allocation schemes with just one symmetry class of designs.

7. Generalization of the theory for the basic model. In this section we suppose
the observations v;; to be random such that vz = vijx -+ ejx where v are
-constant and ave {e;;4} = 0. We suppose the-¢;;: for all 7, j and & to have arbi-
trary variances and covariances. The e;; are assumed independent of the random
“choice of design. The same estimators used for the basic model can be considered
for the generalized model, but when we compute their means and variances we
will average over the randomness of the e;; in addition to the randomness of
the choice of design. For example, an estimator is now defined to be U;-unbiased
if it is unbiased under averaging over both e;; and the random choice of £, con-
_ ditional on each symmetry class G of designs. Us-unbiasedness is similarly
defined omitting the conditioning provision.

The total functional f,(V) is now redefined in terms of . rather than v.j .
Thus

ft(' aijkvijk) = Z QijkVijk
i,k 4,55k
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Clearly any estimator which was Uz-unbiased for f,(V) in the basic model re-
mains Uj-unbiased for f:(V), with the new definitions, under the generalized
model. The same statement holds for U;-unbiasedness. The optimality theorems
of Section 6 remain valid along with their proofs, provided only that (MS), is
replaced by ave {(MS)a} where averaging is over the randomness induced by
the €% . Thus the optimum A-metric becomes a A-metric such that

Na/ave {(MS)a}

is constant for all A. It has now been shown that the entire theory given for the
basic model generalizes with no gaps to the generalized model.

The generalized model covers a standard model I analysis of variance model,
this being the case where the ¢;; have common variance and zero covariance.
An application with a more general set of variances and covariances would be as
follows. Suppose our notion of a random allocation design were broadened to
allow random replication of certain cells. We may suppose in this case our
estimators of f;(V) to be based on cell means. If the basic observations have a
model I structure then the cell means, with differing numbers of observations
per cell, do not. However, if our random allocation scheme required those cells
with no replication, those cells with one replicate, etc., each to have probability
schemes symmetrical under ®, then the cell means can evidently be treated as
observations under the generalized model, and the theory applies.
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