THE NON-ABSOLUTE CONVERGENCE OF GIL-PELAEZ' INVERSION INTEGRAL

By J. G. WENDEL

University of Michigan

Let $\varphi(t)$ be the characteristic function corresponding to a distribution function $F(x) = \{F(x-0) + F(x+0)\}/2$,

(1)
$$\varphi(t) = \int_{-\infty}^{+\infty} \exp(itx) dF(x).$$

Gil-Pelaez [1] has given an attractive expression for the inverse correspondence, which we may write in the form

(2)
$$F(x) = \frac{1}{2} - \frac{1}{\pi} \int_{-0}^{-\infty} \operatorname{Im} e^{-itx} \varphi(t) / t \, dt;$$

the arrows signify that the integral might be improper at either or both limits, as is implicit in Gil-Pelaez' proof.

Specializing to the case x = 0 we reduce (2) to the expression

(3)
$$F(0) = \frac{1}{2} - \frac{1}{\pi} \int_{-0}^{\infty} \operatorname{Im} \varphi(t) / t \, dt,$$

from which (3) may be recovered by a translation of the random variable.

Trivial instances where the integral in (3) is improper at the upper limit abound, e.g., $\varphi(t) = \exp(iat)$, $a \neq 0$. The lower limit is, however, a more delicate matter; although an isolated example of nonabsolute convergence at t = 0 may be drawn from ([4], Section 6.11), the "standard" distributions do not exhibit the phenomenon. Some misunderstanding on this point may have crept into the literature ([3], pp. 402, 411), and it is therefore thought that the following result may be of interest.

Let \mathfrak{X} be the space of distribution functions F, metrized by

$$\rho(F, G) = ||F - G|| = \text{total variation of } F(x) - G(x).$$

Let α be the subset of $\mathfrak X$ consisting of those F for which (3) is proper at the lower limit.

THEOREM. α is a set of the first category in \mathfrak{X} .

As $\mathfrak X$ is a complete metric space, hence of second category, the theorem shows not only that $\mathfrak X-\mathfrak A$ is nonempty, but even that $\mathfrak A$ is a very "sparse" subset of $\mathfrak X$. (Category-theoretic existence proofs are well known in analysis; see, for example, ([2], p. 327), where the method is elegantly used to verify the existence of nowhere differentiable continuous functions.)

In order to prove the result we must show that a is contained in the union of

Received July 2, 1960; revised October 25, 1960.

countably many closed sets having empty interiors. To this end let

$$\mathfrak{F}_n = \{ F \left| \int_0^1 |\operatorname{Im} \varphi(t)| / t \, dt \leq n \}.$$

 \mathfrak{T}_n is closed, by an easy application of Fatou's lemma; clearly α is the union of the \mathfrak{T}_n .

Suppose now that some \mathfrak{F}_n has nonempty interior. Then there exists $F \in \mathfrak{F}_n$ and $\epsilon > 0$ such that $\rho(F, G) < 3\epsilon$ implies $G \in \mathfrak{F}_n$. In particular, let E_c be the distribution function of a unit mass at c, and put $G_c = (1 - \epsilon)F + \epsilon E_c$; then $\rho(F, G_c) = ||F - G_c|| \le \epsilon \{||F|| + ||E_c||\} = 2\epsilon$, so that $G_c \in \mathfrak{F}_n$. For the corresponding characteristic functions ψ_c we have

$$\psi_c(t) = (1 - \epsilon)\varphi(t) + \epsilon \exp(ict),$$

whence

$$\operatorname{Im} \psi_c(t) = (1 - \epsilon) \operatorname{Im} \varphi(t) + \epsilon \sin (ct).$$

Therefore

$$|\sin(ct)| \leq \epsilon^{-1} \{ |\operatorname{Im} \psi_c(t)| + |\operatorname{Im} \varphi(t)| \}.$$

Dividing through by t and integrating from 0 to 1 yields

$$\int_0^1 |\sin(ct)|/t \, dt \le \epsilon^{-1} \{n+n\} = 2n\epsilon^{-1}.$$

But the left member is unbounded as $c \to \infty$. This contradiction completes the proof.

REFERENCES

- [1] J. GIL-PELAEZ, "Note on the inversion theorem," Biometrika, Vol. 38 (1951), pp. 481-482.
- [2] Casimir Kuratowski, Topologie I, Monografie Matematyczne, Warsaw, 1948.
- [3] EMANUEL PARZEN, Modern Probability Theory and its Applications, John Wiley and Sons, New York, 1960.
- [4] E. C. TITCHMARSH, Theory of Fourier Integrals, Oxford University Press, Oxford, 1937.