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A BOUND FOR THE LAW OF LARGE NUMBERS FOR
DISCRETE MARKOV PROCESSES
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1. Summary. An exponential bound is obtained for the law of large numbers
for S, = D.pmy f(Xi) where {X: &k = 1,2, - - - } is a discrete parameter Markov
process satisfying Doeblin’s condition and f is a bounded, real-valued, measurable
function.

2. Introduction. Let (X, @, P) be an arbitrary probability space and p(z, A) a
stationary transition probability function which we shall assume satisfies
Doeblin’s condition [1]. As a matter of convenience we assume there exists only
one ergodic set. We denote by = the unique stationary measure and by ». the
initial measure concentrating all the probability at the point x ¢ . Let

{(Xy:k=12 .-}
be the discrete Markov process determined by p(z, A) and an arbitrary initial
distribution. Denote by f an arbitrary bounded, real-valued, measurable func-
tion on & and let u = [f(x)w(dx).

The purpose of this note is to prove the following

THEOREM. For every ¢ > 0 there exist two constants, C and v < 1, such that for
all m and any initial distribution

1
P{fs. -

An explicit bound was obtained by a more complicated proof in [2] for the
case when X is finite.

3. Proof of the theorem. We will need the following
LeMMA. If p < O then there exist two constants A and p < 1 such that for all n
and any initial distribution

> ¢ forsome n = m} < Cy™.

P{S, = 0} < Ap".
Proor. Let E.¢'*" denote the expected value of e'*" with respect to the initial
measure v, . Define
é(n, t) = sup E.e'"
If n = k + [, then .
Ee'™ = E{E(exp [tSk + t 2 Junn S(X) X1, -+, Xa)}
= E{e'*E( exp [t 2 jers f(X )| X&)} = ¢(k, )o(1, 1).
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Consider any integer d and forn = d writen = md + I where 0 £ 1 < d — 1.
Then
o(n, t) = ¢(md, t)¢(l, t) < [o(d, 1)]"(l, t).
Therefore (Ee'™)"'" < [¢(d, t)]™"6(l, t)]"/". Now let n —  and it follows that
lim, sup (Ee‘*)"" < [¢(d, £)]"°.

Next we show that there exists a t, > 0 and an integer do such that ¢(dy , &) < 1.
From Doeblin’s condition we have that

(1/n) 2 i p® (2, A) — x(A) uniformly in z and 4

and thus, since |S,/n| < M where |f| £ M, it follows that

E.(S./n) = p <0 uniformly in z.

Thus we can find an integer dy so that
E.(Ss/do) =6 <0 forall 2.
Further note that for ¢t < 1
E.e'% < E,{1 + tdo(S™/do) + £:M* die™*?}.
Thus there exists a sufficiently small ¢, > 0 so that
B < 1 + tudod + M die™™ < 1

for all z. Hence ¢(do, t) < 1 and since P(S, = 0) < Ee*** we have shown
that

P(S. 2 0) < Ap" where p = {[¢(do, 8)]"* + ¢

with ¢ > 0 chosen so that p < 1 and the Lemma is proved.
The Theorem is an immediate consequence of the Lemma since

P{|(1/n)8, — u| = esomen = m} £ D 7 . P{{(1/n)S, — p| < €}
n=m {P[(Sy — nu — ne) = 0] + P[(—8, + nu — ne) = 0]}

Al m A-2 m
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