A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MARKOV PROCESSES

By Melvin Katz, Jr. and A. J. Thomasian²

University of Chicago and University of California, Berkeley

- **1.** Summary. An exponential bound is obtained for the law of large numbers for $S_n = \sum_{k=1}^n f(X_k)$ where $\{X_k : k = 1, 2, \dots\}$ is a discrete parameter Markov process satisfying Doeblin's condition and f is a bounded, real-valued, measurable function.
- 2. Introduction. Let $(\mathfrak{X}, \mathfrak{A}, P)$ be an arbitrary probability space and p(x, A) a stationary transition probability function which we shall assume satisfies Doeblin's condition [1]. As a matter of convenience we assume there exists only one ergodic set. We denote by π the unique stationary measure and by ν_x the initial measure concentrating all the probability at the point $x \in \mathfrak{X}$. Let

$$\{X_k: k=1, 2, \cdots\}$$

be the discrete Markov process determined by p(x, A) and an arbitrary initial distribution. Denote by f an arbitrary bounded, real-valued, measurable function on \mathfrak{X} and let $\mu = \int f(x)\pi(dx)$.

The purpose of this note is to prove the following

Theorem. For every $\epsilon > 0$ there exist two constants, C and $\gamma < 1$, such that for all m and any initial distribution

$$P\left\{\left|\frac{1}{n}S_n - \mu\right| \ge \epsilon \text{ for some } n \ge m\right\} \le C\gamma^m.$$

An explicit bound was obtained by a more complicated proof in [2] for the case when $\mathfrak X$ is finite.

3. Proof of the theorem. We will need the following

Lemma. If $\mu < 0$ then there exist two constants A and $\rho < 1$ such that for all n and any initial distribution

$$P\{S_n \geq 0\} \leq A\rho^n.$$

Proof. Let $E_x e^{tS_n}$ denote the expected value of e^{tS_n} with respect to the initial measure ν_x . Define

$$\phi(n, t) = \sup_{x \in \mathfrak{X}} E_x e^{tS_n}.$$

If n = k + l, then

$$Ee^{tS_n} = E\{E(\exp[tS_k + t\sum_{j=k+1}^n f(X_j)] | X_1, \dots, X_k)\}$$

= $E\{e^{tS_k}E(\exp[t\sum_{j=k+1}^n f(X_j)] | X_k)\} \le \phi(k, t)\phi(l, t).$

Received August 4, 1960.

¹ Supported in part by the Logistics and Mathematical Statistics Branch of the Office of Naval Research under Contract Nonr-2121(09).

² Supported by the Information Systems Branch of the Office of Naval Research under Contract Nonr-222(53).

Consider any integer d and for $n \ge d$ write n = md + l where $0 \le l \le d - 1$. Then

$$\phi(n, t) \leq \phi(md, t)\phi(l, t) \leq [\phi(d, t)]^m \phi(l, t).$$

Therefore $(Ee^{tS_n})^{1/n} \leq [\phi(d, t)]^{m/n} [\phi(l, t)]^{1/n}$. Now let $n \to \infty$ and it follows that $\lim_n \sup (Ee^{tS_n})^{1/n} \leq [\phi(d, t)]^{1/d}$.

Next we show that there exists a $t_0 > 0$ and an integer d_0 such that $\phi(d_0, t_0) < 1$. From Doeblin's condition we have that

$$(1/n)\sum_{k=1}^{n} p^{(k)}(x, A) \to \pi(A)$$
 uniformly in x and A

and thus, since $|S_n/n| \leq M$ where $|f| \leq M$, it follows that

$$E_x(S_n/n) \to \mu < 0$$
 uniformly in x.

Thus we can find an integer d_0 so that

$$E_x(S_{d_0}/d_0) \leq \delta < 0$$
 for all x.

Further note that for t < 1

$$E_x e^{tS_{d_0}} \leq E_x \{1 + td_0(S^{d_0}/d_0) + t^2 M^2 d_0^2 e^{Md_0} \}.$$

Thus there exists a sufficiently small $t_0 > 0$ so that

$$E_x e^{t_0 S_{d_0}} \le 1 + t_0 d_0 \delta + t_0^2 M^2 d_0^2 e^{M d_0} < 1$$

for all x. Hence $\phi(d_0\,,\,t_0)<1$ and since $P(S_n\geqq0)\leqq Ee^{t_0S_n}$ we have shown that

$$P(S_n \ge 0) \le A\rho^n$$
 where $\rho = \{ [\phi(d_0, t_0)]^{1/d_0} + \epsilon \}$

with $\epsilon > 0$ chosen so that $\rho < 1$ and the Lemma is proved.

The Theorem is an immediate consequence of the Lemma since

$$P\{|(1/n)S_{n} - \mu| \geq \epsilon \text{ some } n \geq m\} \leq \sum_{n=m}^{\infty} P\{|(1/n)S_{n} - \mu| \leq \epsilon\}$$

$$\leq \sum_{n=m}^{\infty} \{P[(S_{n} - n\mu - n\epsilon) \geq 0] + P[(-S_{n} + n\mu - n\epsilon) \geq 0]\}$$

$$\leq \frac{A_{1}}{1 - \rho_{1}} \rho_{1}^{m} + \frac{A_{2}}{1 - \rho_{2}} \rho_{2}^{m}$$

$$\leq 2 \max\left(\frac{A_{1}}{1 - \rho_{1}}, \frac{A_{2}}{1 - \rho_{2}}\right) [\max(\rho_{1}, \rho_{2})]^{m}.$$

REFERENCES

- [1] J. L. Doob, Stochastic Processes, John Wiley and Sons, New York, 1953.
- [2] MELVIN KATZ, JR., AND A. J. THOMASIAN, "An exponential bound for functions of a Markov chain," Ann. Math. Stat., Vol. 31 (1960), pp. 470-474.