NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR USE FOR EXPERIMENTS INVOLVING LOCATION PARAMETERS

By M. STONE

British Medical Research Council Applied Psychology Unit

- 1. Introduction and summary. Consider experiments of the following type. Observation is made of a univariate random variable X whose absolutely continuous distribution function $F(x \mid \theta)$ and probability density function $p(x \mid \theta)$ are functions of a real unknown parameter θ . Different experiments of this type with random variables X_1, X_2, \cdots will be denoted $\mathcal{E}_1, \mathcal{E}_2, \cdots$ In the following definitions, Θ represents a subset of θ -values.
- (a) Following Blackwell [1], \mathcal{E}_1 is sufficient for \mathcal{E}_2 with respect to Θ or $\mathcal{E}_1 > \mathcal{E}_2(\Theta)$ when there exists a stochastic transformation of X_1 (given by a set of distribution functions $\{G(z \mid x_1) \mid -\infty < x_1 < \infty\}$) to a random variable Z such that, for each $\theta \in \Theta$, $Z(X_1)$ and X_2 have identical distributions.
- (b) Following Lindley [3], \mathcal{E}_1 is not less Shannon informative than \mathcal{E}_2 with respect to Θ or $\mathcal{E}_1 S \geq \mathcal{E}_2(\Theta)$ when $\mathcal{I}[\mathcal{E}_1, F(\theta)] \geq \mathcal{I}[\mathcal{E}_2, F(\theta)]$ for all "prior" distribution functions $F(\theta)$ giving probability one to Θ , where $\mathcal{I}[\mathcal{E}_i, F(\theta)]$ is the mean Shannon information given by \mathcal{E}_i about θ when θ has the prior distribution function $F(\theta)$.
 - (c) When the Fisher informations

$$I_{i}(\theta) = \int_{-\infty}^{\infty} p(x_{i} | \theta) \left[\frac{\partial}{\partial \theta} \log p(x_{i} | \theta) \right]^{2} dx_{i}, \qquad i = 1, 2$$

are definable for $\theta \in \Theta$, ε_1 will be said to be not less Fisher informative than ε_2 with respect to Θ , or $\varepsilon_1 F \geq \varepsilon_2(\Theta)$, when $I_1(\theta) \geq I_2(\theta)$ for $\theta \in \Theta$.

Lindley [3] has shown that $\mathcal{E}_1 > \mathcal{E}_2(\Theta) \Rightarrow \mathcal{E}_1 S \geq \mathcal{E}_2(\Theta)$. In Theorem 1, we show that under certain conditions $\mathcal{E}_1 S \geq \mathcal{E}_2(\Theta) \Rightarrow \mathcal{E}_1 F \geq \mathcal{E}_2(\Theta)$. If this implication always held, comparison by $F \geq$ would be more widely applicable than comparison by $S \geq$ (and a fortiori by >). However the conditions of Theorem 1 suggest that cases exist where $\mathcal{E}_1 S \geq \mathcal{E}_2(\Theta)$ but where $I_1(\theta)$ and $I_2(\theta)$ are not even defined for $\theta \in \Theta$.

When θ is a location parameter, $p(x \mid \theta) = f[x - \theta]$, say. For fixed $f[\cdot]$ consider the class of experiments $\{\mathcal{E}(c) \mid c > 0\}$, where $\mathcal{E}(c)$ is the experiment determined by the probability density function $\mathrm{cf}[c(x - \theta)]$. The conditional distribution of $\mathcal{E}(c_1)$ is a contraction of that of $\mathcal{E}(c_2)$ when $c_1 > c_2$. (Example: $\mathcal{E}(c)$ consisting of c^2 observations from the normal distribution $N(\theta, 1)$ and x their mean). In the theorems of Sections 3, 4 and 5, conditions for $\mathcal{E}(c_1) > \mathcal{E}(c_2)$, $\mathcal{E}(c_1)S \geq \mathcal{E}(c_2)$ or $\mathcal{E}(c_1)F \geq \mathcal{E}(c_2)$ when $c_1 > c_2$ are given. Unless otherwise indicated, integrals will be taken over R^1 .

326

Received July 14, 1960; revised October 7, 1960.

2. Theorem 1. If $p(x_1 | \theta)$ and $p(x_2 | \theta)$ are twice-differentiable with respect to θ and well-behaved enough to justify double differentiation of expression (2.1) under the integral sign with respect to θ at $\theta = \theta^*$ for all $\theta^* \in \Theta$ and if every point of Θ is a limit point, then $\mathcal{E}_1 S \geq \mathcal{E}_2(\Theta) \Rightarrow \mathcal{E}_1 F \geq \mathcal{E}_2(\Theta)$.

PROOF. Choose $\theta^* \in \Theta$. Since θ^* is a limit point of Θ , there exists a sequence $\{\theta_n\}$ in Θ such that $|\theta_n - \theta^*| \to 0$ as $n \to \infty$. Let $F^{(n)}$ be the prior distribution assigning probability $\frac{1}{2}$ to each of θ^* and θ_n . Then, for i = 1, 2,

$$\begin{aligned}
g[\mathcal{E}_{i}, F^{(n)}] &= \iint p(x_{i} \mid \theta) \log \left[p(x_{i} \mid \theta) / p(x_{i}) \right] dx_{i} dF(\theta) \\
&= \frac{1}{2} \iint \left\{ p(x_{i} \mid \theta^{*}) \log p(x_{i} \mid \theta^{*}) + p(x_{i} \mid \theta) \log p(x_{i} \mid \theta) - \left[p(x_{i} \mid \theta^{*}) + p(x_{i} \mid \theta) \right] \log \left[\frac{1}{2} p(x_{i} \mid \theta^{*}) + \frac{1}{2} p(x_{i} \mid \theta) \right] \right\} dx_{i}
\end{aligned}$$

at $\theta = \theta_n$, where $p(x_i) = \int p(x_i \mid \theta) dF(\theta)$. Differentiating (2.1) twice with respect to θ under the integral sign, it is readily verified that

$$\lim_{n\to\infty} \{8\mathfrak{g}[\mathcal{E}_i, F^{(n)}]/(\theta_n - \theta^*)^2\} = I_i(\theta^*), \qquad i = 1, 2.$$

But $\mathfrak{g}[\mathcal{E}_1, F^{(n)}] \geq \mathfrak{g}[\mathcal{E}_2, F^{(n)}]$ for all n. Therefore $I_1(\theta^*) \geq I_2(\theta^*)$ for $\theta^* \varepsilon \Theta$ and $\mathcal{E}_1 F \geq \mathcal{E}_2(\Theta)$.

3. Theorems 2, 3, and 4. For this section, $\Theta = R^1$. For any $\Theta^* \subset R^1$, $\mathcal{E}_1 > \mathcal{E}_2(R^1) \Rightarrow \mathcal{E}_1 > \mathcal{E}_2(\Theta^*)$.

THEOREM 2. If $f[\cdot]$ is bounded, $\phi(t) = \int \exp(itu)f[u] du$ and $c_1 > c_2 > 0$, a sufficient condition that $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ is that $\phi(t/c_2)/\phi(t/c_1)$ be a characteristic function.

Proof. There exists a distribution function $G^*(u)$ such that

$$\phi(t/c_2) = \phi(t/c_1) \int \exp(itu) dG^*(u)$$

or

$$\int \exp(itw)c_2f[c_2w] \ dw = \int \exp(itv)c_1f[c_1v] \ dv. \int \exp(itu) \ dG^*(u)$$
$$= \int \exp(itw)\{ \int c_1f[c_1(w-u)] \ dG^*(u)\} dw$$

with a change of variables. The final expression exists when $f[\cdot]$ is bounded, for $\int c_1 f[c_1(w-u)] dG^*(u)$ is uniformly convergent in $-\infty < w < \infty$ and $\int \int c_1 f[c_1(w-u)] dG^*(u) dw$ exists. Hence, by Fourier's uniqueness theorem,

$$c_2 f[c_2 w] = \int c_1 f[c_1(w - u)] dG^*(u),$$

which gives $F[c_2w] = \int F[c_1(w-u)] dG^*(u) = \int G^*(w-v) d_v F[c_1v]$, where $F[X] = \int_{-\infty}^{x} f[u] du$. Putting $w = z - \theta$ and $v = x_1 - \theta$, $F[c_2(z-\theta)] = \int G^*(z-x_1) d_{x_1} F[c_1(x_1-\theta)]$. If X_1, X_2 are the random variables of $\mathcal{E}(c_1)$, $\mathcal{E}(c_2)$, the set of distribution functions $\{G^*(z-x_1) \mid -\infty < x_1 < \infty\}$ for Z therefore determines a stochastic transformation of X_1 such that Z and X_2 are identically distributed for each $\theta \in R^1$. Hence $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$.

Theorem 3. If (i) $f[\cdot]$ is bounded (ii) the class of functions

$$\{f[u-\psi] \mid -\infty < \psi < \infty\}$$

328 M. STONE

is closed with respect to bounded convolands (that is, if $\int H(u)f[u-\psi] du = 0$, $-\infty < \psi < \infty$, and H(u) bounded in $-\infty < u < \infty$ implies H(u) = 0 a.e.) and (iii) $c_1 > c_2 > 0$, a necessary condition that $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ is that $\phi(t/c_2)/\phi(t/c_1)$ be a characteristic function.

PROOF. $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ implies (see (a), Section 1)

(3.1)
$$\int G(z \mid x_1) c_1 f[c_1(x_1 - \theta)] dx_1 = F[c_2(z - \theta)], \\ - \infty < z < \infty, - \infty < \theta < \infty.$$

In (3.1), put $c_1x_1 = u + c_1z$ and $\theta = \phi + z$; then

$$\int G(z \mid c_1^{-1}u + z)f[u - c_1\phi] du = F[-c_2\phi],$$

$$-\infty < z < \infty, -\infty < \phi < \infty.$$

Choosing any z_1 and z_2 and writing H(u) for $G(z_1 \mid c_1^{-1}u + z_1) - G(z_2 \mid c_1^{-1}u + z_2)$, we have (i) $|H(u)| \leq 1$, $-\infty < u < \infty$, and (ii) $\int H(u)f[u - c_1\phi] du = 0$, $-\infty < \phi < \infty$. Hence H(u) = 0 a.e. and therefore $G(z \mid c_1^{-1}u + z)$ is a.e. a function of u, $G^*(-c_1^{-1}u)$ say; or $G(z \mid x_1) = G^*(z - x_1)$ a.e. The function $G^*(\cdot)$ will be a distribution function on R^1 . Substituting in (3.1),

$$\int G^*(z-x_1)c_1f[c_1(x_1-\theta)]dx_1 = F[c_2(z-\theta)],$$

$$-\infty < z < \infty, -\infty < \theta < \infty,$$

or, reversing some steps in the last proof,

$$\int F[c_1(w-u)] dG^*(u) = F[c_2w], \qquad -\infty < w < \infty,$$

$$\int c_1 f[c_1(w-u)] dG^*(u) = c_2 f[c_2w], \qquad -\infty < w < \infty,$$

the differentiation with respect to w being justified by the uniform convergence of the latter integral in $-\infty < w < \infty$, a fact also allowing integration to give

$$\phi(t/c_2)/\phi(t/c_1) = \int \exp(itu) dG^*(u),$$

a characteristic function.

THEOREM 4. If conditions (i) and (ii) of Theorem 3 hold and if additionally all cumulants of $f[\cdot]$ exist, a necessary condition that $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ whenever $c_1 > c_2$ is that either (i) $f[\cdot]$ is a normal probability density function or (ii) the even-order cumulants of $f[\cdot]$ are positive.

PROOF. Take $c_1 = c > 1$ and $c_2 = 1$. If k_r are the cumulants of $f[\cdot]$,

$$\phi(t)/\phi(t/c) = \exp \left[k_1(1-c^{-1})it + k_2(1-c^{-2})(it)^2/2! + \cdots\right].$$

Write $k_r(c) = (1 - c^{-r})k_r$. Then, by Theorem 3, $k_r(c)$ are the cumulants of some distribution. Write $\mu_r'(c)$ for the corresponding moments. Then it is necessary that the doubly-infinite matrix

be positive-semi-definite (see [4]). Now $\mu'_r(c) - k_r(c)$ is a polynomial in $k_1(c), \dots, k_{r-1}(c)$ with terms of degree greater than one and when $c \cong 1$, $k_r(c) \cong r(c-1)k_r$. Therefore $\mu'_r(c) \cong r(c-1)k_r$ when $c \cong 1$. Substituting in all but the first row and column of (3.3), it is therefore necessary that the doubly-infinite matrix

$$\begin{pmatrix}
2k_2 & 3k_3 & 4k_4 & \cdot & \cdot \\
3k_3 & 4k_4 & 5k_5 & \cdot & \cdot \\
4k_4 & 5k_5 & 6k_6 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{pmatrix}$$

be positive-semi-definite. This firstly implies $k_{2r} \ge 0$, $r = 1, 2, \cdots$. The case $k_2 = 0$ corresponds to the degenerate limiting case when, for some α , $X(c) = \theta + \alpha$ with zero variance for all c. With $k_2 > 0$, either (i) $k_4 = 0$ or (ii) $k_4 > 0$. (i) If $k_4 = 0$, it is readily verified that for (3.4) to be positive-semi-definite, $k_r = 0$ for r > 2; that is, $f[\cdot]$ is a normal probability density function.

(ii) If $k_4 > 0$ and $k_5 \neq 0$ then $4k_4 \cdot 6k_6 - (5k_5)^2 \ge 0$ implies $k_6 > 0$. If $k_4 > 0$ and $k_5 = 0$ then

$$\begin{vmatrix} 2k_2 & 3k_3 & 4k_4 \\ 3k_3 & 4k_4 & 5k_5 \\ 4k_4 & 5k_5 & 6k_6 \end{vmatrix} \ge 0$$

implies $k_6 > 0$. Thus $k_4 > 0$ implies $k_6 > 0$. Similarly $k_6 > 0$ implies $k_8 > 0$ and so on. Therefore $k_{2r} > 0$ for $r \ge 1$ and the theorem is established.

The following comments on Theorem 4 seem appropriate.

(a) Condition (i) is sufficient as well as necessary. For $\phi(t) = \exp(\mu i t - \frac{1}{2}\sigma^2 t^2)$ implies

$$\phi(t/c_2)/\phi(t/c_1) \, = \, \exp \, \left[\mu(c_2^{-1} \, - \, c_1^{-1}) it \, - \, \tfrac{1}{2} \sigma^2(c_2^{-2} \, - \, c_1^{-2}) t^2 \right]$$

which is the characteristic function of another normal distribution. Hence $\mathcal{E}(c_1) > \mathcal{E}(c_2)$ for $c_1 > c_2$.

- (b) It is possible that condition (ii) is inconsistent with $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ whenever $c_1 > c_2$; in which event, yet another characterisation of the normal distribution would be provided.
 - (c) The theorem is not necessarily true unless all cumulants of $f[\cdot]$ exist. For

330 m. stone

the Cauchy distribution given by $f[u] = 1/[\pi(1+u^2)]$ has no cumulants but $\phi(t/c_2)/\phi(t/c_1) = \exp[-(c_2^{-1} - c_1^{-1})|t|]$ which is the characteristic function of another Cauchy distribution.

- (d) As an example of the use of the theorem, if f[u] = 1 for 0 < u < 1 and f[u] = 0 elsewhere then all cumulants exist. However such a distribution has $k_4 < 0$. Therefore it is not possible that $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ whenever $c_1 > c_2$.
- (e) A possible alternative approach, not requiring the condition on the cumulants, is to relate the problem to that of the determination of the indefinitely divisible laws (Lévy, [2]). On p. 159 of [2], the basic equation of such laws is given as

$$(3.5) F^*(x, t_1) = \int F^*(x - y, t_0) d_y F(y, t_0, t_1), t_0 < t_1,$$

where $F^*(x, t)$ is the distribution function of a stochastic random variable X(t) at the time t and $F(y, t_0, t_1)$ is the distribution function of the increment $X(t_1) - X(t_0)$. In Theorem 3, we have established that $\mathcal{E}(c_1) > \mathcal{E}(c_2)(R^1)$ whenever $c_1 > c_2$ implies the existence of a distribution function on R^1 , $G^*(u)$, more accurately written $G^*(u, c_1, c_2)$, such that

$$(3.6) F[c_2w] = \int F[c_1(w-u)] d_u G^*(u, c_1, c_2).$$

(Only condition (ii) of Theorem 3 is needed for this.) That (3.6) is a special case of (3.5) can be seen by writing $c_1 = t_0^{-1}$, $c_2 = t_1^{-1}$, w = x, u = y, and observing that the $F^*(x,t)$ of (3.5) has been specialised to F[x/t]. The "expansion" factor c^{-1} therefore takes the place of time, t. Lévy shows that if X(0) = 0, the distribution functions $F^*(x,t)$ are continuous in t and

$$\psi(z, t) = \log \left[\int \exp(izu) \ d_u F^*(u, t) \right]$$

then the most general solution of (3.5) is given by

(3.7)
$$\psi(z,t) = f(t)iz - \frac{1}{2}g(t)z^2 + \int \left[\exp(izu) - 1 - \frac{izu}{1+u^2}\right] d_u n(t,u)$$

with certain conditions on f(t), g(t) and n(t, u). In our specialization of this, $F^*(x, t) = F[x/t]$ which, being absolutely continuous, is therefore continuous with respect to t. Also as $t \to 0$, $F[x/t] \to H(x)$ where H(x) = 1, x > 0, and H(x) = 0, x < 0, so that, formally, X(0) = 0. Also $\psi(z, t) = \log \phi(zt)$ so that the restrictions on f(t), g(t) and n(t, u) must be increased to make the right-hand-side of (3.7) a function of zt. The solution is, however, left very general. For example, putting f(t) = t, $g(t) = t^2$ and n(t, u) = h(u, t) where h(v) is a bounded non-decreasing function of v which is antisymmetrical about v = 0 and obeys the condition h'(v) + v h''(v) < 0, the necessary conditions are satisfied.

4. Theorem **5.** If $f[\cdot]$ is bounded and differentiable and Θ is any finite interval of R^1 , a sufficient condition that $\mathcal{E}(c_1)S \geq \mathcal{E}(c_2)(\Theta)$ whenever $c_1 > c_2$ is that $f[\cdot]$ be unimodal.

Proof. (The extension of the theorem to the case $\Theta = R^1$ is direct but tedious

and will not be given here. The conditions of uniform convergence necessary to justify local differentiation of certain integrals will be assumed.) For a prior distribution function for θ , $F(\theta)$,

$$\begin{split} \mathfrak{s}[\mathcal{E}(c), F(\theta)] \\ &= \iint \operatorname{cf}[c(x-\theta)] \log \left\{ \operatorname{cf}[c(x-\theta)] / \int \operatorname{cf}[c(x-\phi)] dF(\phi) \right\} dx dF(\theta) \\ &= \iint [u] \log f[u] du - \iint g(v, c) \log g(v, c) dv, \end{split}$$

where $g(v, c) = \int f[v - c\theta] dF(\theta)$. Therefore

$$\begin{split} \frac{d}{dc}\,\mathfrak{s}[\mathfrak{E}(c),\,F(\theta)] &=\, -\int \frac{\partial}{\partial c} \left[g(v,\,c)\,\log\,g(v,\,c)\right]\,dv \\ &=\, -\int \frac{\partial}{\partial c}\,g(v,\,c)\,\cdot\,\log\,g(v,\,c)\,\,dv\,-\,\int \frac{\partial}{\partial c}\,g(v,\,c)\,\,dv. \end{split}$$

But $(\partial/\partial c)g(v, c) = -\int \theta f'[v - c\theta]dF(\theta) = -(\partial/\partial v)\int \theta f[v - c\theta]dF(\theta) = -(\partial/\partial v)h(v, c)$, say, while $\int (\partial/\partial c)g(v, c) dv = (\partial/\partial c)\int g(v, c) dv = 0$ since $\int g(v, c) dv = 1$. Therefore

$$\frac{d}{dc} g[\mathcal{E}(c), F(\theta)] = \int \frac{\partial}{\partial v} h(v, c) \cdot \log g(v, c) dv$$

$$= [h(v, c) \log g(v, c)]_{-\infty}^{\infty} - \int h(v, c) \frac{\partial}{\partial v} \log g(v, c) dv$$

by parts. By the conditions of the theorem, $f[\cdot]$ and $\int \theta^2 dF(\theta)$ are bounded by M and K respectively say. Therefore, using Schwarz's inequality,

$$\begin{split} h(v,\,c) \, \left| \log \, g(v,\,c) \right| \, &= \, \int \, \theta f[v \, - \, c\theta] \, dF(\theta) \cdot \left| \, \log \, g(v,\,c) \right| \\ & \leq \, \left[\, \int \, \theta^2 dF(\theta) \right]^{\frac{1}{2}} \left[\, \int f[v \, - \, c\theta]^2 \, dF(\theta) \right]^{\frac{1}{2}} \left| \, \log \, g(v,\,c) \right| \\ & \leq \, 2K^{\frac{1}{2}} M^{\frac{1}{2}} \left| g(v,\,c)^{\frac{1}{2}} \log \, g(v,\,c)^{\frac{1}{2}} \right| \, . \end{split}$$

But $g(v,c) \to 0$ as $v \to \pm \infty$; therefore $h(v,c) |\log g(v,c)|$ does likewise. Hence

(4.1)
$$\frac{d}{dc} g[\mathcal{E}(c), F(\theta)] = -\int h(v, c) \frac{\partial}{\partial v} \log g(v, c) dv.$$

Consider any point v_1 at which $(\partial/\partial v) \log g(v, c) > 0$. Let v_2 be the least v with $v > v_1$ and $g(v, c) = g(v_1, c)$. Then at v_2 , g(v, c) will be non-increasing. Since $f[\cdot]$ is unimodal, there exists θ^* such that

$$f[v_1 - c\theta] - f[v_2 - c\theta] \ge 0, \qquad \theta < \theta^*,$$

$$f[v_1 - c\theta] - f[v_2 - c\theta] \le 0, \qquad \theta > \theta^*.$$

or $(\theta - \theta^*)(f[v_2 - c\theta] - f[v_1 - c\theta]) \ge 0$. Therefore

$$h(v_2, c) - h(v_1, c) = \int \theta(f[v_2 - c\theta] - f[v_1 - c\theta]) dF(\theta)$$

= $\int (\theta - \theta^*) (f[v_2 - c\theta] - f[v_1 - c\theta]) dF(\theta),$

332 M. STONE

using $\int \theta^*(f[v_2-c\theta]-f[v_1-c\theta]) dF(\theta)=\theta^*[g(v_2,c)-g(v_1,c)]=0$. Hence $h(v_2,c) \geq h(v_1,c)$. Now R^1 for v can be divided by division points $d_1 < d_2 < \cdots < d_{2p+1}$ where $d_1 = -\infty$, $d_{2p+1} = \infty$ and possibly $p = \infty$, such that each interval (d_i,d_{i+1}) is a member of a pair of intervals in each of which g(v,c) varies monotonically between the same two values, increasing in the lower interval and decreasing in the upper. Then

$$\int h(v, c) \frac{\partial}{\partial v} \log g(v, c) dv = \sum_{k=1}^{p} \int_{k} h(v, c) \frac{\partial}{\partial v} \log g(v, c) dv,$$

where \int_k denotes the integral over the kth pair of intervals. Since $\log g(v, c)$ is non-increasing in the upper interval,

(4.2)
$$\int_{k} h(v, c) \frac{\partial}{\partial v} \log g(v, c) dv = \int_{k} h(v, c) d_{v} \log g(v, c)$$

$$= \int_{d_{i}(k)}^{d_{i}(k)+1} [h(v_{1}, c) - h(v_{2}, c)] d_{v} \log g(v_{1}, c),$$

where v_2 is related to v_1 as explained and $(d_{i(k)}, d_{i(k)+1})$ is the lower interval of the kth pair. But in $(d_{i(k)}, d_{i(k)+1})$, $\log g(v, c)$ is non-decreasing and $h(v_1, c) \leq h(v_2, c)$. Therefore (4.2) is non-positive and (4.1) gives

$$(d/dc)\mathfrak{s}[\mathfrak{E}(c), F(\theta)] \geq 0$$

for all c. Therefore $\mathfrak{g}[\mathcal{E}(c_1), F(\theta)] \geq \mathfrak{g}[\mathcal{E}(c_2), F(\theta)]$ whenever $c_1 > c_2$ and the theorem is proved.

5. Theorem 6. When the Fisher informations are definable, $\mathcal{E}(c_1)F \geq \mathcal{E}(c_2)(R^1)$ whenever $c_1 > c_2$.

PROOF. The Fisher information for θ and $\varepsilon(c)$ is

$$I(\theta, c) = \int \operatorname{cf} \left[c(x - \theta) \right] \left\{ \frac{\partial}{\partial \theta} \log \operatorname{cf} \left[c(x - \theta) \right] \right\}^{2} dx$$
$$= c^{2} \int f[u] \left\{ \frac{d}{du} \log f[u] \right\}^{2} du$$

which increases with c.

REFERENCES

- [1] DAVID BLACKWELL, "Equivalent comparisons of experiments," Ann. Math. Stai. Vol. 24 (1953), pp. 265-272.
- [2] PAUL LÉVY, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1954.
- [3] D. V. Lindley, "On a measure of the information provided by an experiment," Ann. Math. Stat., Vol. 27 (1956), pp. 986-1005.
- [4] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Mathematical Surveys No. 1 (1943), Amer. Math. Soc., New York.