NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND
THEIR USE FOR EXPERIMENTS INVOLVING LOCATION
PARAMETERS

By M. SToNE
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1. Introduction and summary. Consider experiments of the following type.
Observation is made of a univariate random variable X whose absolutely con-
tinuous distribution function F(z | 8) and probability density function p(x | )
are functions of a real unknown parameter 6. Different experiments of this type
with randem variables X; , X, , - - - will be denoted &;, &, - -+ 1n the following
definitions, © represents a subset of 6-values.

(a) Following Blackwell [1], & is sufficient for & with respect to © or
& > &(0) when there exists a stochastic transformation of X, (given by a set
of distribution functions {G(z | 1) | —* < @ < =}) to a random variable Z
such that, for each 6 ¢ ©, Z(X;) and X, have identical distributions.

(b) Following Lindley [3], & is not less Shannon informative than & with
respect to ® or &8 = &(0) when 9[& , F(8)] = 9[8,, F(0)] for all “prior” dis-
tribution functions F(8) giving probability one to ©, where 9[&;, F(8)] is the
mean Shannon information given by &; about § when 6 has the prior distribution
function F(6).

(¢) When the Fisher informations

0 2
I.(0) = j: p(z:|0) [% log p(x,'|0):| dz;, 1=1,2,

are definable for 6 ¢ ©, & will be said to be not less Fisher informative than &
with respect to ©, or &F = &(0), when I1(8) = I»(8) for 6 ¢ O.

Lindley [3] has shown that & > &(0) = &8 = &(0). In Theorem 1, we
show that under certain conditions &8 = &(0) = &F = & (0). If this impli-
cation always held, comparison by F = would be more widely applicable than
comparison by S = (and a fortiori by > ). However the conditions of Theorem 1
suggest that cases exist where €8 = &(®) but where 7:(8) and I 2(6) are not
even defined for 6 ¢ O.

When 6 is a location parameter, p(z | 8) = flz — 6], say. For fixed f[-] con-
sider the class of experiments {&(c) | ¢ > 0}, where &(c) is the experiment deter-
mined by the probability density function cflc(z — 8)]. The conditional distri-
bution of &(c;) is a contraction of that of &(cz) when ¢ > ¢;. (ExampLE: &(c)
consisting of ¢ observations from the normal distribution N (6, 1) and z their
mean). In the theorems of Sections 3, 4 and 5, conditions for &(c:) > &(e),
&(c1)S = &(cs) or &(c;)F = &(c:) when ¢; > ¢ are given. Unless otherwise indi-
cated, integrals will be taken over R'.
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2. Theorem 1. If p(z:|60) and p(z2|6) are twice-differentiable with respect to 6
and well-behaved enough to justify double differentiation of expression (2.1) under
the integral sign with respect to 0 at 6 = 6* for all 6* ¢ ® and if every point of ©
18 a limit point, then &8 = &(0) = &F = &(0).

Proor. Choose 6* ¢ ©. Since 6* is a limit point of ©, there exists a sequence
{6,} in © such that |6, — 6% — 0 as n — . Let F™ be the prior distribution
assigning probability 1 to each of 6* and 6, . Then, for ¢ = 1, 2,

g, F”] = [[ p(x:]60) log [p(: | 0)/p(x:)] da: dF (6)
(2.1) = 3 J (p(x:| 6*) log p(2: | 0*) + p(z:| 6) log p(z: | 0)
— [p(@: | 6%) + p(z:| 0)]log [3p(x: | 6*) + 3p(z:| 6)]} da
at 0 = 6, , where p(z;) = [ p(x;|6) dF(8). Differentiating (2.1) twice with
respect to 6 under the integral sign, it is readily verified that

lim {89[&:, F™)/ (6, — 6%)% = I,(6*), i=12.

But 9[&:, F'™] = 9[&,, F*™] for all n. Therefore I;(6*) = I,(6*) for 6* ¢ ® and
&F = 8(0).

3. Theorems 2, 3, and 4. For this section, ® = R!. For any ©* C R,
& > &(R) = & > &(0%).

TuEOREM 2. If f[-] is bounded, ¢(t) = [ exp(itu)fu] du and ¢; > c2 > 0, a
sufficient condition that &(c,) > &(c2) (R') s that ¢(t/c.) /é(t/c1) be a characteristic
Sfunction.

Proor. There exists a distribution function G*(u) such that

¢(t/cz) = ¢(t/e)) [ exp(itu) dG*(u)
or
f exp (tw)cef[cow] dw = f exp (itv)eiflew] dv. f exp(ttu) dG*(u)

= fexp(itw){ fclf[cl('w — wu)] dG*(u)}dw

with a change of variables. The final expression exists when f{-] is bounded, for
feafla(w — )] dG*(u) is uniformly convergent in —w < w < « and
[ exfles(w — w)] dG*(u)dw exists. Hence, by Fourier’s uniqueness theorem,

eflew] = [ efla(w — )] dG*(w),

which gives Fleew] = [ Fley(w — u)] dG*(u) = [ G*(w — v) d,Flcw], where
FIX] = [Zofluldu. Putting w=2—06 and v =2, — 0, Flea(z — 0)] =
f G*(z — z1) do,Flei(z — 0)). If X1, X, are the random variables of &(c1), &(c2),
the set of distribution functions {G*(z — z;) | — «© < x; < »} for Z therefore
determines a stochastic transformation of X; such that Z and X, are identically
distributed for each 6 ¢ R'. Hence &(c;) > &(c2)(R).

TuaeoreM 3. If (i) f[-] ¢s bounded (ii) the class of functions

flu =Yl — o <¢¥ < o}
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is closed with respect to bounded convolands (that is, if [ H(u)f[u — ¢]du =
—w < ¢ < o, and H(u) bounded in — o < u < o implies H(u) = an)
and (iii) i > ¢2 > 0, a necessary condition that &(c1) > &(c2) (R') is that ¢(t/c2)/
é(t/c1) be a characteristic function.

ProoF. &(c1) > &(c2)(R') implies (see (a), Section 1)

" [ Gz | z)efler(m — 0)] day = Fles(z — 0)],
(3 —w<z< ®,— 0 <0< o,

In (3.1), put &izy = w + ciz and 6 = ¢ + z; then

[ Gz | ciu + 2)ffu — el du = Fl—ca),
— 0 <2< 0, — 0 ¢ < o,
Choosing any 2; and 2, and writing H (u) for G(z | ciu + z) — Gz | cTu + 2),
we have (i) |[H(uw)| £ 1, —o <u < », and (ii) fH(u)fu — c¢ldu =0,
— o < ¢ < . Hence H(u) = 0 a.e. and therefore G(z|ci'u + 2) is a.e. a
function of u, G*(—ci'u) say; or G(z | z1) = G*(z — 1) a.e. The function G*(-)
will be a distribution function on R'. Substituting in (3.1),
fG’*(z — m)eflei(xn — 6))dx = Flea(z — 0)],
—w <z< w0, —0 <0< oo,

or, reversing some steps in the last proof,
[ Flew(w — u)] dG*(u) = Fleaw), —n <w< o,
Jafla(w — w)]d@*(w) = efleaw], — —w <w < o,

the differentiation with respect to w being justified by the uniform convergence
of the latter integral in — o < w < «, a fact also allowing integration to give

$(t/c) /9(t/cr) = [ exp(itu) dG*(u),

a characteristic function.

TuroreM 4. If conditions (i) and (ii) of Theorem 3 hold and if addztwnally all
cumulants of f[-] exist, a necessary condition that &(c1) > &(cz) (R') whenever
¢, > ¢ is that either (i) f[-] is a normal probability density function or (ii) the

even-order cumulants of f[-] are positive.
Proor. Take ¢; = ¢ > 1 and ¢, = 1. If k, are the cumulants of f[-],

&(t)/o(t/c) = exp [r(1 — ¢ )it + ka(1 — ) (3t)°/20 4+ -+ 1.

Write k.(¢c) = (1 — ¢ )k Then, by Theorem 3, k.(¢) are the cumulants of
some distribution. Write y,(c) for the corresponding moments. Then it is neces-
sary that the doubly-infinite matrix
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1 wle) wele)
pi(e) wa(e) ws(e)

(33) us(c) ws(e) male)

be positive-semi-definite (see [4]). Now p:(c) — k.(c) is a polynomial in
ku(c), -+, kr1(c) with terms of degree greater than one and when ¢ =<1,
k.(¢c) = r(¢c — 1)k,. Therefore y:(c) = r(c — 1)k, when ¢ =2 1. Substituting
in all but the first row and column of (3.3), it is therefore necessary that the
doubly-infinite matrix

2ky 3k; 4k,
3ks 4ks 5ks
(3.4) 4k, ks ks
be positive-semi-definite. This firstly implies ko, = 0, r = 1,2, --- . The case

k2 = 0 corresponds to the degenerate limiting case when, for some a, X(c) =
6 + « with zero variance for all ¢. With k. > 0, either (i) ks = 0 or (ii) ks > 0.
(i) If ks = 0, it is readily verified that for (3.4) to be positive-semi-definite,
k., = 0 for r > 2; that is, f[-] is a normal probability density function.

(ii) If ks > 0 and k5 = O then 4k,-6ks — (5ks)® = 0 implies kg > 0. If ks > 0
and ks = O then

2ky 3k 4ks
3ks 4ks 5ks| = 0
4ky 5ks 6ks

implies ks > 0. Thus ks > 0 implies kg > 0. Similarly ks > 0 implies ks > 0 and
so on. Therefore ky» > 0 for » = 1 and the theorem is established.

The following comments on Theorem 4 seem appropriate.

(a) Condition (i) is sufficient as well as necessary. For ¢(t) = exp(uit — 1o°t")
implies

o(t/c) /d(t/cr) = exp [u(cz’ — et')it — do*(ci® — ei)f

which is the characteristic function of another normal distribution. Hence
&(c1) > &(cz) forer > co.

(b) It is possible that condition (ii) is inconsistent with &(¢c;) > &(cz) (R')
whenever ¢; > ¢, ; in which event, yet another characterisation of the normal
distribution would be provided.

(¢) The theorem is not necessarily true unless all cumulants of f-] exist. For
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the Cauchy distribution given by flu] = 1/[x(1 + «*)] has no cumulants but
#(t/c) /p(t/cy) = exp [—(cz' — c1') |t| ] which is the characteristic function of
another Cauchy distribution.

(d) As an example of the use of the theorem, if fl[u] = 1 for 0 < v < 1 and
flu] = 0 elsewhere then all cumulants exist. However such a distribution has
ks < 0. Therefore it is not possible that &(c;) > &(cz) (R') whenever ¢; > c».

(e) A possible alternative approach, not requiring the condition on the cumu-
lants, is to relate the problem to that of the determination of the indefinitely
divisible laws (Lévy, [2]). On p. 159 of [2], the basic equation of such laws is
given as

(3.5) Fx(z, ) = [ F*(x — y, t) &,F(y, bo, 1), b < i,

where F*(z, t) is the distribution function of a stochastic random variable X (t)
at the time ¢t and F(y, &, t;) is the distribution function of the increment X () —
X (%). In Theorem 3, we have established that &(c;) > &(c2)(R') whenever
¢1 > ¢ implies the existence of a distribution function on R', G*(u), more accu-
rately written G*(u, ¢, ¢2), such that

(3.6) Fleaw] = fF[cl('w — )] d.G*(u, ¢, c2).

(Only condition (ii) of Theorem 3 is needed for this.) That (3.6) is a special
case of (3.5) can be seen by writing ¢, = £, c2 = {1, w = ¥, w = y, and ob-
serving that the F*(x, t) of (3.5) has been specialised to Fxz/t]. The ‘“‘expansion”
factor ¢ therefore takes the place of time, ¢t. Lévy shows that if X(0) = 0, the
distribution functions F*(z, t) are continuous in ¢ and

¥(z, 0) = log [ exp(izu) duF*(u, t)]

then the most general solution of (3.5) is given by

B ¥z t) = f(t)iz — %g(t)zz + f [exp (Geu) — 1 — 1_%] dun(t, u)

with certain conditions on f(t), g(¢) and n(¢, w). In our specialization of tl’s,
F*(z, t) = F[x/t] which, being absolutely continuous, is therefore continuous
with respect to t. Also as t — 0, Flz/t] » H(z) where H(z) = 1, + > 0, and
H(z) = 0,z < 0, so that, formally, X(0) = 0. Also ¥(z,t) = log#(zt) so that
the restrictions on f(t), g(¢) and n(f, v) must be increased to make the right-
hand-side of (3.7) a function of zt. The solution is, however, left very general.
For example, putting f(t) = t, g(t) = £ and n(t, w) = h(u, () where h(z) is a
bounded non-decreasing function of » which is antisymmetrical about ¢ = 0 and
obeys the condition 2’(v) + v h”(v) < 0, the necessary conditions are satisfied.

4. Theorem b. If f[-] ¢s bounded and differentiable and © s any finite interval
of R, a sufficient condition that §(c,)S = &(c2) (©) whenever ¢; > ¢ is that f[-]
be unimodal.

Proor. (The extension of the theorem to the case © = R'is direct but tedious
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and will not be given here. The conditions of uniform convergence necessary to
justify local differentiation of certain integrals will be assumed.) For a prior
distribution function for 8, F(#6),

s[&(c), F(6)]
= [[ cflc(z — 8)]log {cflc(z — 0))/ [ cfle(z — ¢)1dF(¢)} dz dF(6)
= [ flu]log flu] du — [ g(v, c) log g(v, ¢) dv,

where g(v, ¢) = [ flv — c6] dF(8). Therefore

2 51601, F@)1 = = [ 2 19w, ) log 900, )] o

F) a
= —fb_cg(v’ c) - log g(v, ¢) dv — /%g(v, c) dv.

But (8/3c)g(v, ¢) = — [ 6f'[v — c6ldF(8) = —(8/dv) [ 6f[v — cb] dF(6) =
—(8/8v)h(v, ¢), say, while [ (3/dc)g(v, ¢) dv = (8/dc) [ g(v, ¢) dv = 0 since
[ g(v, ¢) dv = 1. Therefore

%9[8(0), F(9)] = /(—%h(v, c) - log g(v, ¢) dv
= [h(v, ¢) log g(v, c)]® /h(v c) — log g(v, ¢) dv

by parts. By the conditions of the theorem, f[-] and [ 6°dF(6) are bounded by
M and K respectively say. Therefore, using Schwarz’s inequality,
h(v, ¢) log g(v, ©)| = [ 6ff — c6] dF(6)-|log g(v, )|

< [ #aF(0))'L [ o — cof' dF (6)]'| log g(v, ¢)|

< 2K'M* |g(v, ) log g(v, )} .
But g(v, ¢) — 0 as v — == ; therefore h(v, ¢) |10g g(v, ¢)| does likewise. Hence
4
dc

Consider any point »; at which (9/dv) log g(v, ¢) > 0. Let v, be the least » with
v > v, and ¢g(v, ¢) = ¢g(v1, ¢). Then at v, , g(v, ¢) will be non-increasing. Since
fl+] 1s unimodal, there exists 6* such that

flvn — ¢ — flv. — ¢6] = 0, 6 < 6%
flon — ¢6] — flv. — ) < 0, 6 > 6%
or (6 — 6*)(flva — c8] — flvu — ¢6]) = 0. Therefore
h(vs,¢) — h(v,¢) = [ 6(flvs — 6] — flos — ¢6)) dF(8)
= [ (6 = 6*)(floz — ) — flox — o)) dF(6),

(4.1) gle(e), F(8)] = —fh(v c) — Iog g(v, c) dv.
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using [ 0*(flvz — ¢6] — flox — ¢6]) dF (6) = 6*[g(vz, ¢) — g(v1,¢)] = 0. Hence
h(v2, ¢) = h(v1, ¢). Now R' for » can be divided by division points
di < do < +++ < dypy1 where d; = — ©, dypy1 = © and possibly p = =,
such that each interval (d;, diy1) is a member of a pair of intervals in each of
which g(v, ¢) varies monotonically between the same two values, increasing in
the lower interval and decreasing in the upper. Then

d z ]
f h(v, ¢) % log g(v, ¢) dv = ’;1 j; h(v, ¢) o log g(v, ¢) dv,

where [ denotes the integral over the kth pair of intervals. Since log g(v, ¢) is
non-increasing in the upper interval,

fkh(v, c) %log g(v,¢) dv = fkh(v,C) d, log g(v, ¢)
(42) rdi (k) +1
= f [h(v1, ¢) — (v, )] dylog g(vs,c),

di (k)

where v, is related to v, as explained and (dig) , digy+1) is the lower interval of
the kth pair. But in (diu , dig+1), 10g g(v, ¢) is non-decreasing and h(v:, ¢) =
Rh(ve, ¢). Therefore (4.2) is non-positive and (4.1) gives

(d/dc)s[&(c), F(6)] = 0
for all ¢. Therefore 9[&(c1), F(6)] = 9[&(c2), F(6)] whenever ¢; > ¢ and the
theorem is proved.

6. Theorem 6. When the Fisher informations are definable, &(c.)F = &(c2)(RY)

whenever ¢y > Cz .
Proo¥r. The Fisher information for § and &(¢) is

I(6,c¢) f of [e(x — 0)]{566 log cf [c(x — 0)]}2 dx

2 d ?
c ff[u] {Eﬁ logf[u]} du
which increases with c.
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