AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTELY CONVERGENT COEFFICIENTS

By L. H. KOOPMANS

Sandia Corporation

1. Introduction. Let $\{\xi_i: -\infty < i < \infty\}$ be a doubly infinite sequence of independent, identically distributed random variables which possess a moment generating function M(t) over an open interval I_M . If $\{a_i: 1 \le i < \infty\}$ is a sequence of numbers for which $\sum_{i=1}^{\infty} |a_i| < \infty$, then the linear process

$$\left\{ X_k = \sum_{i=1}^{\infty} a_i \, \xi_{k-i} \colon 1 \leq k < \infty \right\}$$

possesses moments of all orders.

Let

$$\eta = E(\xi_0), \quad \mu = \eta \sum_{i=1}^{\infty} a_i \text{ and } S_n = \sum_{k=1}^n X_k.$$

The purpose of this paper is to establish the following theorem.

THEOREM. For every $\epsilon > 0$ there exist constants A and $\rho < 1$ such that

$$P\{|n^{-1}S_n - \mu| \ge \epsilon \text{ for some } n \ge m\} \le A\rho^m.$$

2. Preliminaries. The following lemma will be needed for the proof of the theorem.

LEMMA. Let $\{b_i: 1 \leq i < \infty\}$ be a sequence of numbers for which $\sum_{i=1}^{\infty} |b_i| < \infty$ and $\sum_{i=1}^{\infty} b_i > 0$. If $S_n = \sum_{k=1}^n X_k$ where $X_k = \sum_{i=1}^{\infty} b_i \xi_{k-i}$, and if $\eta < 0$, then there exist constants C and $\gamma < 1$ such that $P\{S_n \geq 0\} \leq C\gamma^n$.

PROOF. Let $X_{k,r} = \sum_{i=1}^{r} b_i \xi_{k-i}$, $S_{n,r} = \sum_{k=1}^{n} X_{k,r}$ and take r > n. By a rearrangement of terms, $S_{n,r}$ may be put in the form

$$S_{n,r} = \sum_{k=1-r}^{n-r-1} B_{1-k,r} \xi_k + \sum_{k=n-r}^{-1} B_{1-k,n-k} \xi_k + \sum_{k=0}^{n-1} B_{1,n-k} \xi_k ,$$

where $B_{m,n} = \sum_{i=m}^{n} b_i$. Hence, the moment generating function of $S_{n,r}$ is

(1)
$$M_{S_{n,r}}(t) = \prod_{k=1}^{n-1} M(B_{1+r-k,r}t) \prod_{k=1}^{r-n} M(B_{1+k,n+k}t) \prod_{k=1}^{n} M(B_{1,k}t).$$

Since the series $\sum_{i=1}^{\infty} b_i$ converges, the partial sums $B_{i,j}$ are uniformly bounded in i and j for $i \leq j$. Thus $M_{S_{n,r}}(t)$ exists on an open interval I_{MS} which is independent of r and n.

It will now be shown that for each n, $M_{S_{n,r}}(t)$ converges to a function $\lambda(t) > 0$ on I_{MS} as r tends to infinity.

Received November 8, 1960; revised December 17, 1960.

The first product in Equation 1 tends to 1 as r becomes infinite, since the partial sums $B_{1+r-k,r}$ tend to zero for all k and M(t) is continuous at the origin.

The second product converges (to a non zero limit) for all n and every $t \in I_{MS}$. To prove this we apply the test for the absolute convergence of an infinite product (see, e.g., page 15 of [2]). Write

$$M(B_{1+k,n+k}t) = 1 + M'(\theta_{n,k}(t)B_{1+k,n+k}t)B_{1+k,n+k}t$$

where $|\theta_{n,k}| \leq 1$. It is then sufficient to show that

$$\sum_{k=1}^{\infty} |M'(\theta_{n,k}(t)B_{1+k,n+k}t)B_{1+k,n+k}t| \; < \; \infty$$

for each n and for every closed subinterval of I_{MS} which contains the origin. Since M'(t) is continuous, it is clear that $M'(\theta_{n,k}(t)B_{1+k,n+k}t)$ is bounded uniformly in n, k and in t in the aforementioned closed subintervals of I_{MS} . Hence, we need only show $\sum_{k=1}^{\infty} |B_{1+k,n+k}| < \infty$ for all n.

Let $C_k = \max_{1+k \le i \le n+k} |b_i|$. Then the sequence $\{C_k\}$ coincides with a subsequence of $\{|b_i|\}$ except for at most n repetitions of each term. Thus,

$$\sum_{k=1}^{\infty} |B_{1+k,n+k}| \leq \sum_{k=1}^{\infty} \sum_{i=1+k}^{n+k} |b_i| \leq n \sum_{k=1}^{\infty} C_k \leq n^2 \sum_{i=1}^{\infty} |b_i| < \infty.$$

Since the last product in Equation 1 is independent of r, the convergence of $M_{S_{n,r}}(t)$ is established.

In order to conclude the proof of the lemma it will be shown that the moment generating function of S_n exists and coincides with $\lambda(t)$ on I_{MS} . Let z=t+iu and $M_{S_{n,r}}(z)=Ee^{zS_{n,r}}$. Then $M_{S_{n,r}}(z)$ is a bilateral Laplace-Stieltjes transform which, since $|M_{S_{n,r}}(z)| \leq M_{S_{n,r}}(t)$, is analytic in the semi-infinite strip $\sigma=\{z:t\ \varepsilon\ I_{MS}\}$. The convergence of $M_{S_{n,r}}(t)$ implies that $M_{S_{n,r}}(z)$ is bounded uniformly in r and in z for t in every closed subinterval of I_{MS} which contains the origin. Hence, by Vitali's theorem ([2] page 168), $M_{S_{n,r}}(z)$ converges uniformly to a limit $\lambda(z)$ for every region bounded by a contour in σ .

The function $\lambda(z)$ is then analytic in σ and, since σ contains the imaginary axis, $\lim_{r\to\infty} M_{S_{n,r}}(iu) = \lambda(iu)$ for all u. Also it is easily seen that $\lim_{r\to\infty} S_{n,r} = S_n$, where $\lim_{r\to\infty} M_{S_n,r}(iu) = \lim_{r\to\infty} M_{S_n}(iu) =$

We have shown that

$$M_{S_n}(t) \; = \; \prod_{k=1}^\infty M(B_{1+k,n+k}t) \; \prod_{k=1}^n M(B_{1,k}t) \, .$$

Since $\sum_{i=1}^{\infty} b_i > 0$, there exists an integer N such that for all $k \geq N$, $\epsilon < B_{1,k} < \delta$ for some $\epsilon > 0$ and $\delta < \infty$. Select $t^* > 0$ in I_{MS} so that

$$\gamma = \max[M(\epsilon t^*), M(\delta t^*)] < 1.$$

This is possible since M(0) = 1 and $M'(0) = \eta < 0$. Then, since M(t) is also convex, $M(\mu t^*) \leq \gamma$ for $\epsilon \leq \mu \leq \delta$. The conclusion of the lemma now follows from the well known inequality $P\{S_n \ge 0\} \le M_{S_n}(t^*)$ where we may take $C = \max\{1/\gamma^{N-1}, \sup_{n\ge N} \prod_{k=1}^{\infty} M(B_{1+k,n+k}t^*)\}.$

3. Proof of the theorem. Let $\{a_i: 1 \leq i < \infty\}$ be an arbitrary sequence for which $\sum_{i=1}^{\infty} |a_i| < \infty$ and let the value of $\eta = E(\xi_0)$ be arbitrary. Now,

$$P\left\{\left|\frac{1}{n}S_{n}-\mu\right| \geq \epsilon \quad \text{for some} \quad n \geq m\right\} \leq \sum_{n=m}^{\infty} P\left\{\left|\frac{1}{n}S_{n}-\mu\right| \geq \epsilon\right\}$$

$$\leq \sum_{n=m}^{\infty} \left[P\left\{\left(S_{n}-n\mu-n\epsilon\right) \geq 0\right\} + P\left\{\left(-S_{n}+n\mu-n\epsilon\right) \geq 0\right\}\right]$$

$$\leq \frac{A_{1}}{1-\rho_{1}}\rho_{1}^{m} + \frac{A_{2}}{1-\rho_{2}}\rho_{2}^{m} \leq 2 \max\left(\frac{A_{1}}{1-\rho_{1}}, \frac{A_{2}}{1-\rho_{2}}\right) \left[\max(\rho_{1}, \rho_{2})\right]^{m}$$

provided max $(\rho_1, \rho_2) < 1$. Thus the theorem will be proved if it can be shown that, for $\epsilon > 0$, $S_n - n\mu - n\epsilon$ and $-S_n + n\mu - n\epsilon$ can be translated into sums of the form considered in the lemma.

It suffices to concentrate on the expression $S_n - n\mu - n\epsilon$ since the arguments are the same for both. Write $X_k - \mu = \sum_{i=1}^{\infty} a_i \theta_{k-i}$ where the random variables $\theta_i = \xi_i - \eta$ have zero expectation. We now analyse three cases. Case I. $\sum_{i=1}^{\infty} a_i > 0$. Set $\epsilon' = \epsilon / \sum_{i=1}^{\infty} a_i$. Then

$$X_k - \mu - \epsilon = \sum_{i=1}^{\infty} a_i(\theta_i - \epsilon')$$

where $E(\theta_0 - \epsilon') < 0$. The theorem now follows from the Lemma. Case II. $\sum_{i=1}^{\infty} a_i < 0$. Write

$$X_k - \mu - \epsilon = \sum_{i=1}^{\infty} (-a_i)(-\theta_i - \epsilon'')$$

where $\epsilon'' = -\epsilon/\sum_{i=1}^{\infty} a_i$ and again apply the Lemma.

CASE III.

$$\sum_{i=1}^{\infty} a_i = 0. \quad \text{Let} \quad \sum_{i=1}^{\infty} a_i = \sum^{+} a_i + \sum^{-} a_i$$

where $\sum_{i=1}^{n} a_i$ is the sum of the positive terms and $\sum_{i=1}^{n} a_i$ the sum of the negative terms of the series. Similarly, let $X_k^+ = \sum_{i=1}^{n} a_i \xi_{k-i}$, $X_k^- = \sum_{i=1}^{n} a_i \xi_{k-i}$, $\mu^+ = \eta \sum_{i=1}^{n} X_k^-$ and $\mu^- = \eta \sum_{i=1}^{n} X_i^-$. Then if $S_n^+ = \sum_{i=1}^{n} X_k^+$ and $S_n^- = \sum_{i=1}^{n} X_k^-$,

(2)
$$P\{S_n - n\mu - n\epsilon \ge 0\} \le P\{S_n^+ - n\mu^+ - \frac{1}{2}n\epsilon \ge 0\} + P\{S_n^- - n\mu^- - \frac{1}{2}n\epsilon \ge 0\}.$$

The two terms on the right hand side of this inequality may be dealt with under Cases I and II except when one of the sums, $\sum_{i=1}^{n} a_{i}$ or $\sum_{i=1}^{n} a_{i}$, contains a finite number of terms. In this event, the corresponding process

$${X_{k,r} = \sum^{\pm} a_i \xi_{k-i} : 1 \leq k < \infty}$$

is an r dependent process of identically distributed random variables, where r is the number of terms in the sum. Then $S_{n,r} = \sum_{k=1}^{n} X_{k,r}$ may be written in the form $S_{n,r} = \sum_{j=1}^{r} Z_{n,j}$ where $Z_{n,j}$ is the sum of independent, identically distributed random variables obtained by taking every (r+1)st term of $S_{n,r}$ starting with the jth. It is well known (e.g. from [1]) that the existence of M(t) and the condition $\mu < 0$ are sufficient to guarantee an exponential bound for $P\{Z_{n,j} \geq 0\}$; $1 \leq j \leq r$. The bound for $S_{n,r}$ is then easily obtained from the inequality

$$P\{S_{n,r} \ge 0\} \le \sum_{i=1}^r P\{Z_{n,i} \ge 0\}.$$

COROLLARY. If the sequence $\{a_i\}$ is doubly infinite with $\sum_{i=-\infty}^{\infty} |a_i| < \infty$, the conclusion of the theorem applies to the linear process

$$\{X_k = \sum_{i=-\infty}^{\infty} a_i \xi_{k-i} : 1 \le k < \infty\}.$$

PROOF. Write $X_k = X_{k1} + X_{k2}$ where $X_{k1} = \sum_{i=-\infty}^{0} a_i \xi_{k-i}$ and $X_{k2} = \sum_{i=1}^{\infty} a_i \xi_{k-i}$. Then an inequality analogous to Inequality 2 reduces this to two applications of the theorem.

REFERENCES

- [1] HERMAN CHERNOFF, "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Stat., Vol. 23 (1952), pp. 492-507.
- [2] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, Cambridge, 1939.