AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS
FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTELY
CONVERGENT COEFFICIENTS
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1. Introduction. Let{;: — o <7 <} be a doubly infinite sequence of inde-
pendent, identically distributed random variables which possess a moment
generating function M(t) over an open interval Iy . If {a;: 1 < 7 < »} isa
sequence of numbers for which D 7 |a; < «, then the linear process

{Xk =D a1l Sk< 00}
=

possesses moments of all orders.
Let

7 = E(&), p= n;:,la; and S, = kz-le'

The purpose of this paper is to establish the following theorem. .
TuroREM. For every ¢ > 0 there exist constants A and p < 1 such that

P{n'S, — u|= ¢ forsome n = m} < Ap™.

2. Preliminaries. The following lemma will be needed for the proof of the

theorem.

LemMa. Let {bi: 1 £ i < o} be a sequence of numbers for which Y 5lby| <
and 2 51 b; > 0.If Sy = D oy Xy where Xi = Doy bifu—i, and if 1 < 0, then
there exist constants C and vy < 1 such that P{S, = 0} = Cy".

ProOF. Let Xy, = D i1 Difi—i, S = Yt X, and take r > n. By a re-
arrangement of terms, S,,, may be put in the form

n—r—1 n—l

= Z By .8 + Z By ibr + Z By ke

k=1—r k=n—r

where Bmn = 2 i-mb;. Hence, the moment generating function of S, is

n—1 r—n

(1) My, (t) = H M(Biyr—i.t) H M (Biikn+it) H M (B ut).

Since the series D s b; converges, the partial sums B;,; are uniformly bounded
in ¢ and 7 for ¢ < j. Thus Mg, ,(t) exists on an open interval Iy which is inde-

pendent of r and n.
It will now be shown that for each n, M, () converges to a function >\(t) >0

on Iyg as r tends to infinity.
Received November 8, 1960; revised December 17, 1960.
' 583

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Mathematical Statistics. BINORN

www.jstor.org



584 L. H. KOOPMANS

The first product in Equation 1 tends to 1 as r becomes infinite, since the
partial sums B;ir_,» tend to zero for all k and M (¢) is continuous at the origin.

The second product converges (t0 a non zero limit) for all n and every ¢ € Iysg .
To prove this we apply the test for the absolute convergence of an infinite prod-
uct (see, e.g., page 15 of [2]). Write

M(Byyknsit) = 1 4 M'(054(t) Biys,nyit) Brys nit

where |6, = 1. It is then sufficient to show that
kZl | M’ (04, (t) Brik nti) Biyknsit| <

for each n and, for every closed subinterval of s which contains the origin. Since
M’(t) is continuous, it is clear that M’ (6, 4(t) Biis,x+xt) is bounded uniformly in
n, k and in ¢ in the aforementioned closed subintervals of Iys. Hence, we need
only show D i |Biknsz] < o for all n.

Let Ci = max;ir<ign+x |bs]. Then the sequence {C:} coincides with a subse-
quence of {|b;|} except for at most n repetitions of each term. Thus,

) ) n+k ) )
Z | Brtknte] = Z E o) = n E Cr =0 E b < oo.
k=1 k=1 t=14k k=1 7=al

Since the last product in Equation 1 is independent of r, the convergence of
Mg, . (t) is established.

In order to conclude the proof of the lemma, it will be shown that the moment
generating function of S, exists and coincides with A(¢) on Iys. let 2z = ¢t + u
and Mg, (2) = Ee*™’. Then Mg, (2) is a bilateral Laplace-Stieltjes transform
which, since |Ms, (2)] < Ms, (1), is analytic in the semi-infinite strip ¢ =
{2:t € Iug}. The convergence of My, (t) implies that Mg, (2) is bounded uni-
formly in 7 and in 2 for ¢ in every closed subinterval of Iys which contains the
origin. Hence, by Vitali’s theorem ([2] page 168), Mg, (z) converges uniformly
to a limit A(z) for every region bounded by a contour in o.

The function A(z) is then analytic in ¢ and, since ¢ contains the imaginary
axis, im,., Mg, (7u) = A(7u) for all . Also it is easily seen that 1.im. e Sur =
S, , where Li.m. denotes limit in the mean of order 2. Hence, by the Lévy conti-
nuity theorem, A(tu) = Mg, (iu) = Ee™*. But then for all z in ¢ the coefficient
of 2"/m! in the power series expansion of A(z) is the mth moment of S, about
the origin. It follows that My, (t) exists and is equal to N(¢) on Iys.

We have shown that

Mg (t) = HM(Bl+k,"+kt) gM(Bl,kt).

Since Z‘Z;l b; > 0, there exists an integer N such that forallk = N, e < B, < 8
for some ¢ > 0 and § < . Select t* > 0 in Iys so that

v = max[M(et*), M(8t*)] < 1.
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This is possible since M(0) = 1 and M’(0) = 5 < 0. Then, since M (t) is also
convex, M(ut*) < v for ¢ < p =< 8. The conclusion of the lemma now follows
from the well known inequality P{S, = 0} < M, (t*) where we may take
C= max{l/‘YN_l, SuPnz~ Hi?-l M (Bikn+4t*)}.

3. Proof of the theorem. Let {a;: 1 < 7 < «} be an arbitrary sequence for
which D 7. |a;] <  and let the value of 4 = E(%) be arbitrary. Now,

1 ge}

P{n
[P{(S. — nup — ne) = 0} + P{(—8, + nu — ne) = 0}]

0
= ¢ for some ngm}gz P{%S,,—u

_Sn_“

=

it

A m A,
1— P1 p + 1 -
provided max (p; , p2) < 1. Thus the theorem will be proved if it can be shown
that, for ¢ > 0, S, — nu — ne and —8, + nu — ne can be translated into
sums of the form considered in the lemma.

It suffices to concentrate on the expression S, — np — ne since the argu-
ments are the same for both. Write X; — u = Z?.l ai0y—; where the random
variables 8; = £ — 7 have zero expectation. We now analyse three cases.

Case L. D 71a; > 0.8et ¢ = ¢/ +-1a;. Then

Xe —pu—e= 2 raai(0; —¢)

where E(6, — €) < 0. The theorem now follows from the Lemma.
Case IL. X 7. a; < 0. Write

=

4 4 ) [max(p: pz)]"'

"‘§2max< —
p2p2 1—P1’1—P2

Xy —p—e= g (—a)(—0; — €

where ¢’ = —e¢/ D 71 a; and again apply the Lemma.
Case II1.

> a;=0. Let Zla.~= dtai+ D ai

1=l

where D% a; is the sum of the positive terms and Y.~ a; the sum of the nega-
tive terms of the series. Similarly, let Xi = > VT aits, Xi = X aifas,
pt =92 aandy” = 9 > a;. Thenif S§ = D i X¥and 87 = D it Xx,

P{S, — np — ne = 0} £ P{St — nu* — ine = 0}

(2) -
+ P{S% — nu” — jne 2 O}

The two terms on the right hand side of this inequality may be dealt with under
Cases I and II except when one of the sums, ), ' a;or 2 a;, contains a finite
number of terms. In this event, the corresponding process
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(Xir = 2 adii:1 Sk < o}

is an r dependent process of identically distributed random variables, where r
is the number of terms ih the sum. Then S,, = D i Xk, may be written in
the form S,, = D 7—1Zn.,; where Z, ; is the sum of independent, identically
distributed random variables obtained by taking every (r 4 1)st term of S,,,
starting with the jth. It is well known (e.g. from [1]) that the existence of M(¢)
and the condition u < 0 are sufficient to guarantee an exponential bound for
P{Z,; =2 0}; 1 £j = r. The bound for S, is then easily obtained from the
inequality

P{S,, =0 Z P{Z

= =

CoROLLARY. If the sequence {a} is doubly infinite with Y i« |a;| < o, the con-
clusion of the theorem applies to the linear process

{Xk = Zt=—eo atzk—z <k< °°}.
Proor. Write X, = Xu + sz where ,Xkl = ZE’=_¢, QiEp—i and Xy =

> 2.1 a&_; . Then an inequality analogous to Inequality 2 reduces this to two
applications of the theorem.
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