CONFIDENCE SETS FOR MULTIVARIATE MEDIANS!
By P. G. HoerL anp E. M. ScHEUER?

University of California, Los Angeles

0. Summary. This paper considers the problem of finding confidence sets of
the parallelepiped type based on extreme order statistics for multivariate medians
when no parametric assumptions are made. A partial characterization of a multi-
variate distribution which will minimize the probability of the specified paral-
lelepiped covering the multivariate median is given. This characterization
enables one to obtain a sharp lower bound for the probability of coverage, pro-
vided the number of medians does not exceed seven and under the assumption
that the structure is independent of the sample size.

1. Introduction. There exists a considerable amount of literature on the prob-
lem of estimating means of multivariate distributions by means of confidence
sets. Most of it is concerned with parametric models as such, or with parametric
models that arise from asymptotic considerations. Furthermore, the confidence
sets are often ellipsoids, but these are not the most useful kind for applications.
Parallelepipeds are considerably more useful in most applications. Since medians
are the natural substitutes for means in nonparametric problems, the problem
considered here is that of finding confidence parallelepipeds for multivariate
medians.

2. Formulation. Let (z;, -+, z;) be a random variable having the unique
median (», -+, vs). Let (215, -+, %), =1, -+, n, denote the random
variables corresponding to a random sample of size n. The ordered values of a
sample will be denoted by

z(1) £ 24(2) £ -+ £ zi(n), i=1,---,1
Let the set R be defined by
R={(x, -,z |2:(1) S 2 S wi(n),2 =1, -+, 1.
The problem then is to find a sharp lower bound for
® = P{(n, -, v:) eR}.

The resulting value of @ will be the confidence coefficient that can be guaranteed
for the confidence parallelepiped formed by the planes parallel tc the coordinate
planes which pass through the extreme sample points for each coordinate, re-
gardless of the nature of the distribution of (x,, ---, x¢). A result by Dunn [1]
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for ¢ = 2 shows that this lower bound is attained when the two variables are
independent; however, this property does not hold for higher dimensions.

The method that will be employed here is based on Bonferroni inequalities,
and shows that a distribution that minimizes ® must possess a certain structure.
In the derivation of these inequalities, the following notation will be needed.

Let E; be the event that z;(1) > »; if¢ =1, ---, ¢, and the event that
ZTi¢(n) < vi¢if 2 =t + 1, .-+, 2t. Then, from the definition of R and @, it
follows that

2t
1—@®=P{(n, - ,n)eR} =P{U E,}
1
The last expression can be written [2], p. 89, in the form

2¢
(1) P{‘:’Ei}=sl_sz+"'—82t;
where

2¢
S = ;P{E,«}, S = KZjP{EﬁE:'},“'

Because of the nature of the E;, it follows that S;41 = - -+ = S;: = 0 here.

Probabilities such as P{E;E;} depend only upon the probability mass assigned
to each of the orthants determined by a set of coordinate axes through the median
point (v, «+-, v¢). In this connection, let

Qijeeem = P{E,E, e Em}

for n = 1. This quantity is defined only if all subscripts differ and provided
that no two subscripts are equal mod ¢. The latter restriction is necessary because
E; and E;.., where the sum ¢ 4 ¢ is taken mod 2¢, are incompatible events.
Thus, ¢;;...m yields the probability mass for the region determined by the proper
positive or negative coordinates for the variables z; — v; ,&; — v;, *** , Tm — Vm .
If a subscript exceeds ¢, then the corresponding coordinate is negative, otherwise
it is positive.

3. The case of ¢ = 3. The method of obtaining the desired inequalities for @
is considerably simpler and neater when ¢ = 3; therefore this case will be con-
sidered first. In view of the definition of E; and g¢;;...n , it follows that

P{E} = ¢t = ()", i=1,---,6
P{E’.‘Ej}=q':-,-, z',j:]_’...,ﬁ
P{EEE} = g, ,5,k=1,---,6.

This notation applied to (1) will yield the expression
@2 e=1-8+8—-8=1-6(3"+ _ZQ:"J'—_Z Qi -
<5 i<G<k

Now it follows from the definition of gij.... that ¢ij...im + Qijeccttm+ 9y = Qijeret -
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Using this property and the fact that the ¢’s are nonnegative, one can obtain the
following inequality for S; . In this derivation, sums are over all possible permuta-
tions of indices for which the ¢’s are defined, unless specified otherwise.

Sy =320 qin é%%kzm + quosn]” =3 2 ¢ =% Zii<jq?j =3S.
In view of the convexit}_r of v" for v = 0, it follows that
o} + 0 ;2(”—‘52'—”3)”.
This inequality together with the fact that ¢; = %, may be used to derive the
following inequality for S, .
S =32 dhi=1% ]_ZS; g% + gii+n] 2 3 232[%%]” =32 D" =12()"
If these two inequalities are applied to (2), one will obtain the inequality
(3) ®z1-6("+8DH"
Consider a probability distribution with

Qs = 3, g6 = 0, Qs = 0, Q156 =

-

B R

Qus = 1, e = 0, Qu = 0, Qo =

These values satisfy the restrictions ¢; = 3,7 = 1, - -+, 6. Further, it is easily
seen that they yield the value 8(%)" for the sums on the right side of (2); hence
the lower bound given by (3) can be attained. This completes the proof of the
following theorem.

TueoreM 1. P{z;(1) < v; < z:(n),2=1,2,3} =21 — 6(3)" + 8(3)", and
this lower bound s sharp.

4. The general case. The method used in the preceding section does not seem
to generalize to higher dimensions; therefore a different method of attack is
introduced. It will now be necessary to assume that ¢ < 8.

Let ¢ = max;,; ¢;; and suppose there exists some g;j possessing the value q.
Then, exploiting relations of the type

= = -1
¢ = Qi + Qise+y and ¢ = Qi + Qii+n = 5,
one can easily prove the following lemma, where, as before, sums such as

k + t are taken mod 2¢.
LemMA 1. Let ¢ = max;,; g;; and suppose qape = ¢, then

Qi = Qu+nG+o = G ,j=abe¢ t<j
Qiirn = Qitni =5 — @ 5,Jj=abe t<j
Qabie+t) = Gav+te = Qattpe = 0
Qab+ 0o+ = Qatdern = Qarorne = 3 —

_ 1
Qat+G+oe+s = 2¢ — 3.
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These are the only restrictions on the ¢’s with double and triple subscripts that
result directly from the lemma assumptions.

Now consider the problem of counting the number of double and triple sub-
script ¢’s that assume the maximum value g. The following lemma gives in-
equalities for those two numbers.

LemMma 2. Let there be M quantities qab. that take on the value ¢ = max;, ; q;; . Let
there be M’ quantities qap that arise from these M quantities qas. that have the value g.
Then

(a) ifq# %, M’ > M provided t < 8

(b) ifg=3% M > M provided t < 5.

Proor. To each g¢;. = ¢, Lemma 1 shows that there will correspond six
¢ag’s that have the value g; consequently M’ will certainly exceed M unless
different g.’s having the value g possess a sufficient number of g.s’s in common.
Since the objective here is to show that M’ > M, it will suffice to give a proof
for the least favorable situation in which M is as large as possible and M’ is as
small as possible for any fixed number, , of distinct subscripts.

(a) Suppose ¢ ¥ 3. Then one can form at most (g) @ave’s With the value ¢

and, by Lemma 1, there will be 2 (r

2
2 (" > ") provided r < 8
2 3)P :

(b) Suppose ¢ = }. Then, using the last conclusion of Lemma 1, one can form

at most 2 r gabo’s With the value g, while again there will be 2 r correspond-
3 2

corresponding g.s’s with the value g. But

ing gug’s with this value. But 2 (;) > 2 (g) provided r < 5.

The preceding two lemmas will be used in the proofs of the following two

theorems.

THEOREM 2. For 2 < t < 8, a set of orthant probabilities that minimizes ® for
all sample sizes must be one for which all ¢:;; = %.

Proor. Consider a set of orthant probabilities for which the g;; are not all
equal in value. Let P* and P denote the values of ® for an orthant probability
configuration for which the g;; have the common value %, and one for which
they do not have this common value, respectively. Then, by a Bonferroni in-
equality [2], p. 100,

“ 1\" ¢ 1\"
* — — sl
P <1 2t(2) +4(2)(4) ,
P>1—2t<%> +M’q”— Z q:':ik’
i<j<k

where M’ is the number of ¢;; assuming the maximum value g. Then

P—Pr>Mg— 3 q:-‘,.,,—4(‘>(l).
i<G<k 2/ \4
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X, .=V,
] ]

[ l /72
X. =V.

1/72 | [
Fia. 1

Under the assumption that the g¢;; are not all equal in value, it follows that
g > % here. Now if max ¢;;» < ¢, the term M’q" will dominate the right side of
this inequality as n — «; consequently P > P* for sufficiently large n. This
shows that no probability configuration in which the ¢;; are not equal can pos-
sibly minimize ® for all sample sizes, provided max ¢ < ¢.

If max g;x = ¢ ¥ 3 and ¢ < 8, then

P—P*>M ”—Mq"—o(q”)—4(t2)<i)

= (M' — M)g" — o(g") — 4 (t2> (i)”'

From Lemma 2, M’ — M > 0; consequently the term (M’ — M)q" dominates
the right side of this inequality, and therefore the same conclusion follows.

This same proof holds for ¢ = %, provided that ¢ < 5. To complete the proof
of the theorem it is therefore necessary to show that ® cannot be minimized for
all sample sizes when ¢ = $and ¢ = 5,6, or 7.

It follows from Lemma, 1 that g;y¢,;4¢ = % if ¢;; = %. In the two dimensional
space of the variables x; and z;, the probability distribution is therefore as
shown in Figure 1. This distribution implies that »; will be covered by the confi-
dence parallelepiped if and only if »; is covered. If the probability of covering
the median point is not zero for a configuration satisfying the preceding restriction
shown in Figure 1, then this probability can be decreased by constructing a
configuration for which the probability that x; — »; will assume a given sign is
independent of the remaining z’s, without changing their probability distribution.
This is accomplished by halving all orthant probabilities and shifting one half
of each such probability mass to the corresponding orthant with the opposite
sign of x; — v; . That the probability of coverage has been decreased follows from
the fact that the conditional probability of »; being covered, given that the re-
maining »’s are covered, will no longer be equal to one and that this shift in
probabilities does not affect the probability of the remaining »’s being covered.
For sufficiently large n, the probability of covering the median point cannot be
zero. Thus, ¢ = % can be excluded from consideration in characterizing dis-
tributions that minimize ®°. The next theorem places further restrictions on any
minimizing configuration.

3 We are indebted to John W. Pratt for suggesting this method of proof for disposing of
¢ = %. It is much shorter and neater than our original proof.
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TueoreM 3. For t < 8, a set of orthant probabilities that minimizes @ for all
sample sizes must be one for which the mazimum number of q.; assume the value 1.

Proor. If ¢;; = % forall 7, j, then it is easily shown that ¢;;u; < % forall 4, 7, k, 1.
Any ¢ with more than four subscripts will of course also satisfy this inequality.
From Theorem 2 it follows that for a minimizing set of probabilities,

1\" £\ (1) n 1\"
o=1-up) +4() (@) - Zanre ()

Let A denote the number of ¢; having the value 1. Then it is clear that

®=1— 2(2)" +4 (;)(%)” 3 A(i)” + o(i_)”’

and that this quantity can be minimized for all n by a given distribution only
if that distribution has maximum possible A.

6. Numerical lower bounds. The preceding theorems, together with the follow-
ing lemma, will suffice to yield a theorem on the magnitude of sharp lower bounds
for ®. '

LemMa 3. If q;j = % for all i, j and @i = % for some k, then

—_ —_ — 1
Qijk+r) = QiG+ G+ = QG+ G+ U4+ = QG+ G+ = 8

and

Qi+ = QG+oka+n = QGatoikitn = QG+0G+OGE+oa+n = 0

forls 4,5, kandr = 0andr = ¢

Proor. It suffices to consider orthant probabilities in the four dimensional
space of the variables z; , ;, 2x , z; as shown in Figure 2. The condition ¢:5 = %
implies that a; + @ = %. Imposing the condition that each g.s = % yields
0 =03 =g = Qg = Gy = Gy = Au = G35 = % and zero values for the remaining
a’s. This suffices to prove the lemma.

The desired lower bounds are now given by the following theorem.

TuroreM 4. Under the assumption that there exists a set of orthant probabilities

xk -yk Xk"l/k
23 - Su /~ Y10
97 e 9 %5 VA
X. V. X. =V,
J J ] J )
Ja S Je 1 9 _
9 95 %6 I %
i e
X,>v X,<V
A a4

FiG. 2
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X3 ~V3
a3 /S o a7 / =
o /// 02 o ’/ 6 < >y
=Xy "Vy  emm———e 5°°5
- a1 o 1
04 (] aa : (]
=Y
bs /S o il ] s
) // b o 7/ b
’ 2 4 s X _<v
4
e - . 5 5
e LA o pobs
bg o bg ! °
! |
X >V X <v
FAS 4<"a

Fic. 3

that minimizes @ for all sample sizes, sharp lower bounds for ® for 2 < t < 8 are
given by the formula :

®21—26(3)" + 43 —7)()" — 16(¢ — 3)(H)"™

Proor. Theorem 1 has already given these bounds for ¢ = 3; therefore consider
t > 3. The method of proof is essentially the same for all values of ¢ satisfying
3 < t < 8; consequently only the proof for { = 5 will be given to illustrate the
nature of the proofs.

Without loss of generality, suppose that ge; is a ¢;jx that assumes the value .
By Lemma 3, it then follows, for example, that

Qi2at = Qu2s9 = Qu2ss = Q2310 = 5

These values, together with the other values given by this lemma, suffice to
yield the orthant configuration .shown in Figure 3. The lemma conclusions re-
quire, for example, that

4) aa+b=3% ata=% a+b=23% b+b=3

and therefore that b; = az and b; = a; .

Since a configuration is to be chosen that has the maximum number of g
possessing the value %, suppose that ¢« = . Then a; 4+ b; = %, but (4) shows
that this choice is not possible. It follows readily that no g;; with two indices in
common with gi2; can be chosen. Suppose next that qiis = %. Then, by Lemma 3,
Qo5 = Qust1 = Qs = Quss = 3. The values of the a’s and b’s in Figure 3 are
now completely determined and are given by a; = a4 = a5 = ar = by = b; =
bs = bs = %, and zero values for the remaining symbols.

If instead of assuming that g had the value %, one had chosen some other
¢:i% with one index in common with ¢u;, then the same configuration would
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have been obtained except for a reflection in an axis. The value of ® would, of
course, be unaffected. If one now uses the configuration values just obtained to
calculate the values of the respective terms in the Bonferroni expansion of @,
he will obtain the value

P=1-10(3)"+40(H)" — BEI)" + 64(%)" + 8(0)7]
+ [40(3)" + 40(0)"] — 8(3)".
Consequently, collecting terms, it follows that
®z1-—10(3)" + 32(H)" — 32(H)"

for t = 5, and that this result is sharp.

Similar, but considerably more tedious, methods will demonstrate the cor-
rectness of the formula given by the theorem for the larger values of ¢ The
demonstration for { = 4 is of course the simplest one.

Although the formula of Theorem 4 has been demonstrated only for 2 < ¢ < 8,
it is conjectured that the formula holds in general and that there always exists a
configuration of orthant probabilities that minimizes @ for all sample sizes.

6. Other order statistics. As 7 increases, the confidence coefficient will in-
crease, but so will the size of the confidence parallelepiped. A smaller size
parallelepiped, at the expense of a smaller confidence coefficient could be ob-
tained for a symmetric distribution, for example, by taking means of consecutive
pairs of samples. The median for the new variables will be the same as for the
old variables. This averaging would tend to decrease the size of the parallelepiped
as well as the confidence coefficient. If the sample were very large one could use
means of more than two consecutive samples. For the general situation, in order
to obtain useful confidence regions for various sample sizes, it would be necessary
to find corresponding inequalities for other order statistics.
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