SOME EXTENSIONS OF THE IDEA OF BIAS
By H. R. vAN DER VAART!

Leiden University

1. Introduction and Summary. Laplace ([13], p. 44, lines 5 and 6), in his state-
ment concerning the “milieu de probabilité”, seems to have referred to a proba-
bility distribution of the true value of a certain quantity (‘le véritable instant du
phénomeéne’’), or, as we would say at present, to a probability distribution of a
certain parameter. Thereby he differs from the attitude adopted in most of the
work discussed in the present paper. Yet, one might hold that he possessed the
idea of median-unbiased estimators. At any rate, when applying his notions to
what Todhunter ([26] p. 469, art. 875) calls a case of no practical value, Laplace
([13], p. 48, lines 11 and 12 from the bottom) virtually rejected the use of arith-
metic means of observations. Judging from innumerable texts, one finds that
after him emphasis has long been mainly on mean-unbiasedness (see, however,
Pitman (]20], bottom of p. 215), who mentions the existence of bias in the sense
that the probability that a certain mean-unbiased estimator is less than the
parameter in question is >3%). Yet it is hard to find the requirement of mean-
unbiasedness justified in print (cf., Brown ([3], lines 6-8 of Section 3) : the average
of independent mean-unbiased estimates is consistent; Lehmann ([14], lines 4-10
from bottom of p. 588) : mean-unbiasedness flows from his general concept in the
case of a quadratic loss function; Birnbaum ([2], p. 32): mean-unbiasedness is
merely a technically useful property of the classical estimators in the linear
estimation problem, which, at least in the case of normal errors, could equally
well or preferably be justified on the basis of median-unbiasedness), much harder,
in fact, than to find warnings against the hope that much is gained if an estimator
be mean-unbiased (cf., Kendall ([12], Vol. 2, Section 17.9) ; the examples provided
by Girshick, Mosteller and Savage (9], middle of p. 20), Halmos ([10], the end
of p. 43), Savage ([23], bottom of p. 244); lack of invariance under certain trans-
formations being stressed by Halmos ([10], bottom of p. 42), Brown ([3], lines
13-16 of Section 3), Fisher ([7], p. 143, line 13 from bottom)). All the same, much
interesting work has been devoted to mean-unbiased estimators, some of it in-
vestigating the conversion of biased estimators into unbiased ones (e.g., Que-
nouille [21], Olkin and Pratt [17]), or deriving unbiased estimators ab ¢nitio (e.g.
Tate [25]). It is not the purpose of this paper to provide a bibliography that is
at all near completeness, but it is interesting that the last two references illus-
trate a statement, made by Schmetterer ([24], middle of p. 215), to the effect
that a close connection exists between integral equations and linear operators
on the one hand, and the theory of mean-unbiased estimators on the other. This
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suggests that part of the motivation for the research in this field is of a mathe-
matical, rather than a statistical nature. This view seems to be corroborated by
Fraser’s statement ([8], lines 12—14 from bottom of p. 49) to the effect that median-
unbiasedness does not seem to lend itself to the mathematical analysis needed to
find minimum risk estimates, and hence has found little application.

The present paper seeks to extend the notion of unbiasedness (and the notion
of bias) in a direction different from Lehmann [14] (who gave a definition within
the framework of general decision theory), and from Brown [3] (who was pri-
marily concerned with types of unbiasedness, among them median-unbiasedness,
that are invariant ‘“under simultaneous one-to-one transformations of the
parameter and (its) estimate”, or rather under simultaneous strictly monotone
transformations of the parameter and its estimate), and from Peterson’s [19]
density-unbiasedness. It originated in work by the author [29], [30], on the esti-
mation of the latent roots of certain matrices occurring in response surface
theory. It had become clear that in this case it was of primary interest whether
or not the frequency of obtaining too small (or too large, respectively) estimates
would be unduly large. The present paper will make this notion more precise.
Several types of bias (or of unbiasedness, respectively) will emerge, all of them
clearly invariant in the sense of Brown. Median-unbiasedness will turn out to be
a special case of this larger concept. Finally, certain seemingly unfamiliar proper-
ties of the sample median, of the product-moment correlation coefficient, and of
Olkin and Pratt’s function of the latter [17] will be proved and used to illustrate
some of the concepts discussed.

2. Some new bias concepts. Let ¢(P) be a real valued function (a ‘“parameter’’)
defined on a set ® of probability distributions P on a space X of points z. Let
the real function f(X) of the random variable X represent an estimator of ¢(P).
When would one call an estimate f(x) too small? A reasonable answer would be:
if this estimate is smaller than a certain value (possibly depending on P) which
is to be called the comparing value, and to be denoted by «(P); the selection of
useful comparing values will be discussed after Definition 1. When would one
call the frequency of obtaining too small estimates unduly large? A reasonable
answer to this second question would be: if it is larger than it would have been
if a different (“better’’) method of estimation would have been used, that is,
if it is larger than it would have been with a different estimator, which is to
called the comparing estimator, and to be denoted by ¢(X). This tentative argu-
ment naturally leads to the concept described in

DEerFINITION 1. The estimator f(X) of ¢(P) will be called negatively v(P)-biased
relative to the estimator ¢(X) if

21)  P[f(X) £ v(P)] > Ple(X) < v(P)] foreach Pe@.
By replacing the two =<-signs in (2.1) by =-signs one obtains the definition

of positive v(P)-bias. Definition 1 has left the function v(P) unspecified: so
this type of bias comprises as many varieties as there are choices of comparing
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values v(P). Whether, in a given estimation problem, a comparing value v (P)
and a comparing estimator ¢(X) can be chosen so as to provide a useful variety
of relative y(P)-bias, will depend on the nature of the problem. We shall indicate
two examples in the next two paragraphs and refer the reader to point e and to
the last sentence of point & in Section 5 for an additional one.

As a first example, consider the problem of estimating the coefficients of the
canonical form of the second degree part of the equation for a quadratic response
surface. It is well known that the signs of these coefficients are important since
they .determine the type (hyperbolic, ellipsoidal, etc.) of the surface. So here
¥(P) = 0 suggests itself as a comparing value, and if for all possible quadratic
response surfaces with positive true values of the canonical coefficients a certain
estimator f(X) of the smallest coefficient is negatively zero-biased relative to a
comparing estimator ¢(X), it is quite clear that in this respect the comparing
estimator is better than f(X) (although it may be worse in some other respect;
cf., for instance point d of Section 5).

The second example is connected with the concept of median-bias. Suppose
that an estimator g(X) of the “parameter” o(P) exists which satisfies the
condition

(2.2) Medr g(X) = o(P) foreach P e@;

if more than one function g(X) satisfies (2.2), just choose one of them;
Medr g(X) denotes (one of) the median(s) of g(X) under the probability dis-
tribution P on the space %; Lehmann [15, p. 80-83], pointing out a simple con-
nexion between median-unbiased estimators and confidence intervals, gives a
condition on ®, which guarantees that one and only one estimator g(X) will
satisfy (2.2). Now in (2.1) choose v(P) = ¢(P), ¢(X) = g(X), then because of
(2.2) condition (2.1) becomes

(2.3) PIf(X) = o(P)] > Plg(X) = ¢(P)] = Plg(X) = Medrg(X)] z 3.

Now, on one hand (2.3) means that, as an estlmator of o(P), f(X) is negatively

¢(P)-biased relative to the estimator g(X), on the other hand, under a certain
condition, (2.3) entails the inequality Medsf(z) < o(P), which means that,
as an estimator of ¢(P), f(X) is negatively median-biased (the above-mentioned
condition being that not only P[f(X) = ¢(P)] — % > 0, which follows from
(2.3), but also P[f(X) = ¢(P)] — % > P[f(X) = ¢(P)], which is certainly true
if for each P ¢ @ the distribution of f(X) is continuous). Thus the concept of
relative v(P)-bias described in our Definition 1 is seen to generalize the concept
of median-bias.

In certain contexts it is useful to admit as comparing values all values
0(Q) € o(®), i.e., all possible values of the parameter This leads to the concept
deseribed in

DerintTION 2. The estimator f(X) of o(P) will be called negatively distribution-
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biased relative to the estimator ¢(X) if
(24) PIf(X) = ¢(Q)] 2 Ple(X) = ¢(Q)] for each Pe® Qe@,

and the inequality is strict for at least one pair (P, Q).

By replacing the two =<-signs in (2.4) by =-signs one obtains the definition of
positive distribution-bias. A close connexion clearly exists between the condition
for the estimator f(X) being negatively distribution-biased with respect to the
estimator ¢(X), and the condition for the random variable f(X) being sto-
chastically smaller than the random variable ¢(X); as to the latter concept see
Mann and Whitney ([16], line 3 of Section 2).

Note that, whereas the definitions of v(P)-unbiasedness and median-unbiased-
ness are self-evident (in (2.1) and (2.3) replace > by =), the definition of dis-
tribution-unbiasedness presents difficulties. On one hand, it seems impracticable
to define distribution-unbiasedness of f(X) relative to ¢(X) otherwise than as
f(X) and ¢(X) having the same distribution function. On the other hand, to
call f(X) distribution-unbiased relative to ¢(X) only if f(X) and ¢(X) have the
same distribution function for each P ¢ ® (a condition obtained if in (2.4) the
= -sign is replaced by =) is unsatisfactory, because estimators will exist which
are neither biased nor unbiased in this sense. Hence we will not attempt a defi-
nition of distribution-unbiasedness.

One more point has to be mentioned. One might think that it should be pos-
sible to make the rather vague notion of negative bias as an unduly large fre-
quency of obtaining too small estimates more precise without introducing the
concept of comparing estimators: one might endeavour to define the frequency of
obtaining too small estimates (i.e., estimates smaller than the comparing value
v(P)) as being unduly large if the probability of obtaining estimates <vy(P)
would be large as compared with the probability of obtaining estimates =y (P);
that is to say, if the ratio P[f(X) = v(P)l/P[f(X) = v(P)] would be large, >k,
say. Thus, in order to make this approach work, we should have to decide upon
the value of k. Decisions of this kind would be to a large extent arbitrary. Upon
a moment’s reflection it turns out that about the only natural way to find
“plausible” values of k consists in considering the value of the above-mentioned
ratio of probabilities when another estimator, ¢(X) say, is substituted for f(X).
Therewith our comparing estimator has proved indispensable. -

3. A remark on terminology. To avoid confusion we note that for median-(un)-
bias(edness) and mean-(un)bias(edness) (cf., Brown [3], p. 583) other terms may
be substituted. For example, Eisenhart and Martin [6] use the term “downward
bias in the probability sense” instead of ‘‘negative median-bias”, andin a personal
communication to the author (June, 1958) Eisenhart uses ‘“probability-wise un-
biasedness” instead of “median-unbiasedness”.

As is well known, f(X) is a mean-unbiased estimator of ¢(P) if

(3.1) &f(X) = ¢(P) foreach Pe@.

Instead of “mean-bias” Eisenhart and Martin [6] use “bias in the mean-value
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sense”, in the above-mentioned communication to the author Eisenhart uses
“on-the-average bias”, and the present author personally prefers expectation-bias
(similarly expectation-unbiasedness), since bias and unbiasedness of an estimator
are properties of its theoretical distribution, and statistical usage tends to substi-
tute “expectation’ for “mean” in connexion with theoretical distributions.

4. A lemma. A very simple lemma, which nevertheless is a useful tool in prov-
ing that certain estimators are biased in the sense discussed in Section 2, is

Lemma 1. Whether the random variables T = (X) and U = uw(X) are inde-
pendent or dependent, if

4.1) PlU =z =1,
then
(4.2) PT=+7=PIT+UZ=r7+0).

A necessary and sufficient condition for the equality sign to hold in (4.2) 4s
(4.3) PTH+U>r4+vN(T=1))]=0.

Proor. Let U*¥ = U — vand T* = T — 7; the proof is then immediate from
a sketch in the (1%, U*)-plane.

Although joint distributions of T' and U satisfying (4.3) may be rather un-
common, it is evident that (4.3) cannot be proved or disproved from the con-
ditions of the lemma alone. Two extra conditions, each of them sufficient for
(4.3) not to hold, are

(«) each (measurable) set in the half plane U > vin (7T, U)-space has positive
probability,

(B) (implied by a:) Some set [(U > v) N (r = T > =) with 7o +vo > 7 + v,
70 < 7, has positive probability; this condition is satisfied for instance if U and
T are independent and P[r = T > 7] > 0, P[U > v] > 0.

While Lemma 1 may serve to prove negative bias of the types discussed in
Section 2, positive bias may be derived from Lemma 1/, which is obtained from
Lemma 1 by reversing all six inequality-signs in Lemma, 1, except the second in-
equality-sign in (4.2).

6. Supplementary remarks and examples.

(a). From Definition 1 it follows easily that relative v(P)-bias is transitive:
if g1(X), ¢:(X), and gs(X) are estimators of ¢(P), and if ¢:(X) is negatively
v(P)-biased relative to g2(X), and ¢.(X) is negatively v(P)-biased relative to
gs(X), then ¢:(X) is negatively v(P)-biased relative to gs(X). Hence it is pos-
sible to arrange any number of estimators according to degree of negative y(P)-
bias; in the above case we would have: g;(X) > ¢.(X) > ¢3(X) (where > would
mean: ‘“has more negative y(P)-bias than’; the value of the difference
P[gi(X) = v(P)] — Plgao(X) = v(P)] would be a useful measure of how much
more y(P)-biased ¢;(X) is than ¢,(X)). Although this arrangement would not



EXTENDED IDEAS OF BIAS 441

without further consideration permit the conclusion that g;(X) is a better
estimator than g.(X), and ¢2(X) a better estimator than ¢(X); it is clear that
in general, if y(P) < ¢(P) for each P ¢ @, one would tend to consider estimators
to be worse as they are more biased in the sense of negative y(P)-bias. In the same
vein, if y(P) > ¢(P) for each P ¢ @, one would tend to consider estimators to be
worse as they are more biased in the sense of positive y(P)-bias.

(b). Through the concept of y(P)-bias the notions of bias and of inefficiency
merge into each other: if the estimator fi(X) of ¢(P) is distributed N (¢(P), 26%)
and the estimator f2(X) is distributed N'(¢(P), ¢*), then f(X) is both negatively
(¢(P) — ko)-biased (k > 0) relative to f2(X) and less efficient than fo(X)
(Note that in the examples b, ¢, d the parameter o is assumed to be known).

(¢). It should not be surprising (though it is worth while noting) that differ-
ent criteria of (un)bias(edness) may be incompatible (see also point f below)..
Thus, even an expectation-biased and median-biased estimator like f;(X), dis-
tributed N(o(P) — %0, ¢°), would from the point of view of negative
(¢(P) — 20)-bias, say, be better (i.e., less biased) than the expectation-unbiased
and median-unbiased estimator f;(X), distributed N(¢(P), 26°). This pair of
estimators is interesting for yet another reason: f3(X) has also a smaller mean
square error than has f;(X): &[fs(X) — o(P)I < &[fi(X) — ¢(P)I*. Thus the
idea of y(P)-bias, in cases where a comparing value v(P) naturally suggests
itself, may help to bridge the gap which often exists between the requirements of
least bias and least mean square error.

(d). However, the requirement of least v(P)-bias will not always agree so
well with other criteria for “good”’ estimators. For instance, the above-mentioned
estimator f2(X) of o(P), distributed N(¢(P), o*), is negatively (¢(P) — ko)-
biased (k > 0) relative to the estimator fy(X), distributed N(¢(P) + o, o’).
So, according to point a above, one would tend to consider fi(X) a better esti-
mator. Yet, fo(X) has a number of undesirable features: for instance, it is not
only positively expectation-biased and median-biased, it has also greater mean
square error than f2(X). On closer inspection another thing turns out to be
wrong with fi(X) as an estimator of ¢(P): for any &k > 0 it is posi-
tively (¢(P) + ko)-biased relative to f2(X); so, according to the last sentence
of point a above, fy(X) is worse than f2(X) in this respect. Thus, here is a simple
example where the probability of obtaining too small estimates has been cor-
rected at the expense of enlarging the probability of obtaining too large estimates.
In certain contexts this may be all right, in other contexts it may be undesirable:
if negative v'(P)-bias (v'(P) < ¢(P)) and positive v"(P)-bias (v"(P) > o(P))
are about equally undesirable features, both have to be kept as small as possible
in some sense. This remark points out the relationship between our concept of
(relative) y(P)-bias and two other criteria for “good” estimators:

(1) criterion 3 of L. J. Savage [23, p. 224], according to which an estimator
¢1(X) is called better than an estimator g»(X) if Plgy(X) < v] + Plgi(X) >
ve] £ Plgo(X) < ml + Plga(X) > 7o) for every v1 = »(P), 12 2 o(P), Pe ®
(with strict inequality for some v , 72, and some P);
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(2) the approach of A. Birnbaum® ([2], pp. 113 seq.), who uses as a criterion the
behavior of the function a(y, P;g) for P ¢ ®,v € o(®): a(y, P;¢) = Plg(X) =< 4]
ify < ¢(P) and a(y, P;g) = Plg(X) 2 v]if v > o(P).

(e). Summarizing, it seems fitting to note that, if it is of primary importance
to avoid an unduly large frequency of obtaining too small estimates, then the
concept of (relative) negative y(P)-bias, v(P) < ¢(P), leads to a useful criterion
for good estimators. Similarly, positive y(P)-bias is a useful concept if it is im-
portant to avoid too large estimates. Examples of this situation are the estimation
of latent roots (discussed at the end of Section 1, and in the first example after
Definition 1 in Section 2), and the estimation of the correlation coefficient (to
be discussed in points i and k below) : in both these cases the comparing value of
interest is zero. However, if it is important to avoid errors of under-estimation
and over-estimation at the same time, then criterion 3 of Savage [23, p. 224] and
the approach by Birnbaum, although the latter leads only to a partial ordering
of estimators, provide more natural criteria than does the concept of distribution-
bias (Definition 2 in Section 2)-though this term is useful in that it permits
a succinet statement of certain results. ‘

(f). Next, we will give examples of an expectation-unbiased estimator which
is median-biased (variance), of a median-unbiased estimator which is
expectation-biased (median), of a negatively expectation-biased estimator
which is positively median-biased (correlation-coefficient), of median-bias
becoming less when an estimator is corrected for expectation-bias (variance), and
of median-bias becoming worse when an estimator is corrected for expectation-
bias (correlation-coefficient).

(g). Let X;, Xz, -+, X, be an n-fold sample from a normal distribution
N(u, ¢°). Then

S = (n — 1)“-2()(,. - X)?

is an expectation-unbiased estimator of the variance o*. However, S* is negatively
median-biased: we will show that
(5.1) PIS*= 41> 4.
Note that
(52) P8 <d]=1—-Q(n—1|n—1)

= v{3(n —1),3(n — 1)} / T{5(n — 1)},
where the function Q(»’ | ») is defined by Pearson and Hartley [18, p. 122] and
v(e, x) = Joe " dt, (cf., [1], Vol. 2, p. 133). Now, as

a+1
e “a” > f e 't di,

2 T want to thank the referee for drawing my attention to Mr. Birnbaum’s paper and to
the connection between his approach and mine.
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we have
a a a+1
o f e dt = ¢ %" + f et dt > f e 't dt,
o o )
whence
a’Y(a, a) > 7(“ + 1; o+ 1))
S0

v(e, @)/T(a) > y(ea+ 1,a +1)/T(a+ 1) forany a > 0.
Hence, for any 8,0 < 8 < 1, lim,.uy(8 + 7,8+ n)/T(B+n) = L(B) 20
exists and

(5.3) y(B + n, 8+ n)/T(8 +n) > L(B)

for any integer n > 0. From the asymptotic expression for y(a + 1, & + (2a)ty),
given by Tricomi [27, p. 144, eq. (27)], one can derive that

(54) y(a, @)/T(a) = } + B(2rx)'1™ + 0(a™),
which shows that in (5.3) L(8) = %, independent of 8. Therefore,
(5.5) v(a, @)/T(a) > 3 forany o« >0,

which, together with (5.2), proves (5.1).

Equation (5.2) permits the calculation of P[S* < o] from the table of x’
by Pearson and Hartley [18, p. 122]. For n —1 = 1,2, 3 one finds P[§* < ¢°] =
0.683, 0.632, 0.608. For n — 1 = 4 the asymptotic expression (5.4) turns out
to yield results which are accurate to 3 significant decimal places!

The median-bias of S°, hence of S, is of interest in quality control, cf., Eisenhart
[5]. The present author wants to thank Mr. Eisenhart for his kind letter (of
June, 1958), in which he mentioned this interesting article as well as the ab-
stract [6], where six different estimators of o are investigated as to their median-
bias, and the report [4], where among other things a table for P[s < o] is given.

(h). Let Xy, Xz, **+ , Xomt1 be an odd-sized sample from a univariate dis-
tribution with continuous distribution function F(z), for which dF(x)/dx is
positive in one (finite or infinite) z-interval. Rearranging the 2m + 1 values
in the sample, use the notation X® < X® < ... £ X®"*, Under the condi-
tions stated the occurrence of equality-signs has probability zero; X"+ is the
sample median. Let G denote the inverse (defined for 0 < F < 1) of the function
F, so that G(}) is the median of the distribution considered.

From the well-known formula

PIX™ 5 9] = [B(m + 1, m + DI [ (PG)I™ 11 = Fo)I" aF ()
it follows immediately that
4
(56) PIX"* < ¢(3)] = [Blm 4+ 1,m + 1) [o F"(1 — F)"dF = }.
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Hence the sample median X"tV is a median-unbiased estimator of the median
G(3), whether F(z) represents a skew distribution or a symmetric one.

On the other hand, it is very simple to define classes of continuous distribution
functions such that the sample median X™* is an expectation-biased estimator
of the median G'(3). For we have

+o
Bim + Lm+1)-6X" - 6)] = [ Iy — 63

@~ P ar) = | ' [G(F) — G()1-F(1 — F)" aF
(57) "
- L [G(3 +B) — GBI — )™ dh

]
= f (63 + h) — @B — [6(}) — @G — W]} -G — &)™ dh.

Hence a sufficient condition for the sample median being a positively expectation-
biased estimator of the median is that G(3 + h) — G(3) > G(3) — G3 — h),
0 < b < %, which describés a certain type of skewness of the distribution func-
tion F(z).

(i). Let (X1, Y1), (X2, Y2), + -+, (Xs, Y4,) be an n-fold sample from a bivari-
ate normal distribution with correlation coefficient p. Define the sample correla-
tion coefficient R® in the usual way by

R=[X(X:—X)(Y:— DX (X: = X)X (v; - 7).

It is well known (ecf.,s Kendall ([12], Vol. 1, p. 344, eq. (14.55)), Romanovsky
(122, p. 42, eq. (128)), and reference ([1], Vol. 1, p. 59, eq. (10), and p. 114,
eq. (1))) that
&R = p-g(n, o) = p- {T(3n) - (T§(n — DI-TH(x + DI}
(5.8) F(3, 3 3(n + 1); p?
= p-T(m) - (T@)-Th(n — DI [ 470 - 0" - )P e
0

where Euler’s integral representation for the hypergeometric function has been
applied. From (1 — #*)™ < (1 — ) for any * = 1, ¢t > 0, it follows that
for any p° # 1 the integral in the last member of (5.8) is less than

1 .
j #71 (1 — ¥V = B3, 3(n — 1)),
0

whence in (5.8) g(n, p°) < 1for any p* > 1, so that |[8R| < |o|: R is a negatively
expectation-biased estimator of p if p > 0, a positively expectation-biased estimator
ifp <O.

3 Note that here R is not the multiple correlation coefficient: capitals are used through-
out the paper in order to denote random variables.
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In order to investigate possible median-bias of R as an estimator of p, use
formula (25) of Hotelling [11, p. 200] (note that Hotelling’s n stands for our
n — 1), by which

PIR2pl = (n—2)Tn—1)-2r){T(n = 1)} = 2P

(5.9) 1
. f (1 = P01 = )R (L, 4 n — 3531+ pr)) dr

By means of the substitution (» — p)/(1 — pr) = y the second member of (5.9)
after some patient algebra reduces to

(=T —=1) (" svgen .
Tk A=+ )

(5.10) . \
Fbbn-51-5270 Ya

As p increases from 0 to 1, the integrand of (5.10) increases with p for any y > 0.
Since P[R = p] = % if p = 0, this means that P[R = p] > 3ifp > 0:Risa
positively median-biased estimator of p ¢f p.> 0. The same argument yields the
result that R is a negatively median-biased estimator of p if p < 0. In fact, P[R < p]
equals the second member of (5.9) after integration from p to 1 has been replaced
by integration from —1 to p; in the expression thus obtained one may replace
p by —|p| if p < 0; from the elementary substitution » = —z in the resulting
integral it then follows immediately that if p < 0, P[R = p] exactly equals the
second member of (5.9), hence equals (5.10), if only || is substituted for p;
hence P[R = p] > 3if p < 0.

This example is interesting since it shows that the contention made by
Tschuprow [28, p. 116], to the effect that the estimator B systematically underrates
p, is dubious in that it may be taken to mean that R more frequently than not
underrates p—which is not true as R more frequently than not overrates p(p > 0).

(j). With 8%, see under point g, compare *S* as an estimator of ¢*: *§* =
2" 2 (X — X)P Evidently *S* = 8* (1 — n™"),hence o* > Med §* > Med *§°.
At the same time o = &8* > &*S%. So when the estimator *$* is replaced
by S its expectation-bias is corrected, and its median-bias becomes less. Un-
fortunately, such a state of affairs is not universal as is shown by the
next example.

(k). With R, see under point i, compare *R as an estimator of p:

(5.11) *R=R-F(}3;3(n —1);1 — R,

cf., Olkin and Pratt ([17], p. 202, eq. (2.3)). The second member of (5.11) is
a strictly increasing function of R, cf., [17, Section 2.2]. Hence

(5.12) Med, *R = (Med,R)-F{3, %; 3(n — 1); 1 —(Med, R)%.

As |[Med, R| < 1if |p| < 1, the hypergeometric series in (5.12) is easily seen
to be strictly larger than 1 if |p| < 1. Therefore,if 0 < p < 1, Med, B > p > 0
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(see under point i) and Med, *R > Med, R;if0 > p> —1,Med, R < p <0
(see under point i) and Med, *B < Med, R.

So substituting *R for R as an estimator of p corrects expectation-bias, but
makes median-bias worse. Finally, it is evident from (5.11) that *R and R are
zero-unbiased with respect to each other.
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