ON CERTAIN CHARACTERISTICS OF THE DISTRIBUTION OF THE
LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX
UNDER GENERAL CONDITIONS!

By H. R. vAN DER VAART

Leiden University, Netherlands

1. Summary. Under certain conditions, to be specified in Theorems 2 and 4,
the latent roots of the symmetric random matrix F with 6F = & are biased
estimators of the latent roots of ®; the smallest (largest) root is negatively
(positively) biased. Here bias includes both expectation-bias and median-bias.
Further properties of the distribution of the latent roots are given, among them
some relations between covariances of the latent roots, covariances of elements
of F, and the amounts of expectation-bias of the latent roots. Also, a sufficient
condition is given for a certain type of symmetry in the joint distribution of the
latent roots. For applications of the theory presented in this paper to the theory
of response surface estimation see van der Vaart [9].

2. Introduction, notations, definitions, statement of the problem. We shall
use Latin letters for random variables, Greek letters for parameters, small letters
for real-valued variables, capital letters for square matrices (examples: fs;,
In, ugn, Vi real-valued random variables; F, L, U, V random matrices; ¢;;,
b, Ugn , vr Teal-valued parameters; @, A, T, T' matrices consisting of parameters).
Let u, be an element of a matrix U, then u., will be used for the Ath column
vector in U so that u.; is a k X 1 matrix whose transpose, .5 , is the hth row of
U’. Finally, a symbol like §(F), the expectation of a matrix, will denote the
matrix of the expectations,

i=1---k
where the superscript ¢ = 1 - - - k denotes row numbers, the subscriptj =1 --- k

denotes column numbers (a good example of the usefulness of this compact
notation is the defining equation (4.21) in Section 4).

Now consider a & X k matrix M with real elements m,;. If a probability
measure is defined in 9, the set of possible k*-tuples (my, - -+, mu), then
the matrix M will be called a random matrix. This probability measure is singular
(relative to k*-dimensional Lebesgue measure in %), if a subset of 9t exists with
Lebesgue measure zero and probability measure one (cf., p. 30 of Saks [6],
or p. 611 of Doob [2]). This subset, defined up to a set of k*-dimensional Lebesgue
measure zero, will be denoted by the term M-space, and the probability distri-
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bution over M-space will be denoted by the term (probability) distribution of
M.

Examples of singular probability measures in I%: M may be prescribed to be
orthogonal (M-space is then 3k(k — 1)-dimensional) or symmetric (M-space is
3k(k + 1)-dimensional). In the latter case, M-space could be represented as a
subset of I by the equations
(22) mij=ty; Gzui=1-,k); my=ty G<iGi=1--,k).
We shall, however, define M-space to be the projection of this subset on
(Mar, =+ + ) Mk, Moz, ++, Mok, *** y Mi—i ko1, Mp—1k, Mi)-Space. We shall
call the distribution of a k X k symmetric random matriz continuous if it is ab-
solutely continuous relative to 3k(k + 1)-dimensional Lebesgue measure on
mii(1 £ 17 =5 = k)-space.

Two random matrices M’ and M” are called (stochastically) equivalent,

(2.32) M~ M,

if M" = M” with probability one (cf., p. 33 of Kolmogorov [4]). Let f(M) be a
real-valued function of the matrix M; if M’ and M” are equivalent, then

(2.3b) &f(M") = &f(M"),

provided these expectations exist.

Our problem now is this. Let ® be a real symmetric £ X k matrix. Let F be a
real symmetric ¥ X & random matrix, which is continuously distributed and
satisfies

(2.4) &(F) = &.

Then the k latent roots, I, of F and N\, of ®, are real (h = 1, ---, k). Assign
the subscripts in such a way that

(2.5) LhEsbhs - Sh;MENE - SN

Define diagonal matrices L and A by

26) D=l 2100 A=l §T 10

Our aim is to investigate the distribution of L. Note that, although two or more
roots A\, may be exactly equal, the probability that two or more roots I be
exactly equal, is always zero, since F is continuously distributed.

3. Definition of a few important matrices. As is well known, one can always
construct a random orthogonal matrix U with real elements such that FU = UL.
Here the column u., of U is the latent vector (= eigenvector) corresponding
to the latent root I, . If two or more latent roots are equal, Iy, = Iy, = +++ = I,
say, then the columns w.;, , w.4,, - - -, U.z, of any orthogonal U with FU = UL
are a basis for the eigenspace corresponding to the latent root Iy, = -+ = b, .

£
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What we have said just now, may be repeated with T, ®, A, v, X instead of U, F,
L, u, l. We list the following for reference:

(3.1a) ® = TAY, F = ULU,
(3.1b) 8T = TA , FU = UL,
(3.1c) TET = A, U'FU = L,
(3.1d) vY$ = AT, UF = LU

As the probability that two or more latent roots of F' be equal, is zero, the
columns u., of U are uniquely defined with probability one, except for their
sign. As to this question of signs, for the purposes of the present paper it is
sufficient to observe that it is possible to restrict this ambiguity in such a way
that Det (U) = 41 throughout, and that, with L fixed and U variable, the matrix
F = ULU’ runs just once through all values F that have the same matrix L
of latent roots [y £ --- = I . If two or more latent roots of ® are equal, then in
order to represent ® by TAT’ it will suffice to choose just one orthogonal basis
in the corresponding eigenspace.

U and T being defined, we will now define V by one of the equivalent relations

vV =10, v =U, T =UV,
V' = U, vVt = U, T =VU.
Evidently V is an orthogonal random matrix with Det (V) = +1.
Finally, define
(3.3) L=vLv.
Equations (3.1¢), (2.4), (2.1), (3.2), (3.1¢c) show that
(34) A=1®T =" -8F)-T=8&1TFTr) =8 VUFUV') =& VLV') = &(L).

Hence L would be an unbiased estimator of A if it were a statistic. Unfortunately,
though U is a statistic, T is not. As T is usually unknown, V is not a statistic,
nor is L. Note that, whereas the off-diagonal elements of L equal zero by defini-
tion, the off-diagonal elements of L do not. Therefore one ought to write I,
for the diagonal elements of L. Yet, because of the analogy between L and L,
it will sometimes be convenient to write I, for [,,(g = 1, - -+, k). Furthermore
note that §; may well be larger than [; , whereas by definition §; < I .

(3.2)

4. On certain characteristics of the distribution of L and L. Equation (3.4)
suggests that L may have certain undesirable features as an estimator of A.
We are going to investigate the distribution of L (and L). We will adhere through-
out to the following assumption.

AssumprioN A. The symmetric random matriz F is continuously distributed,?
and §(F) = &.

2 The phrase ‘“‘continuous distribution of a symmetric random matrix’’ has been defined
in Section 2 as meaning absolute continuity with respect to a natural measure.
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It is easy to prove the following theorem.
TaEOREM 1.

(4.1) §(trL) =6 (trL) =tr A =tr® = & (tr F).

Proor. These equalities follow immediately from (3.4) and the following
properties of traces:

(4.2) tr &(F) = & (tr F),  tr (AB) = tr (BA).

For instance, tr (L) = tr (VLV') = tr (V'VL) = tr (L); hence & tr (L) =
&tr (L) = tr 8(L) = tr A, etc. Proof completed.

Next we want to prove that L is a biased estimator of A in various respects.
The following elegant argument was suggested to me by T. W. Anderson in a
personal communication (February 1958). It is based on the following well
known extremal property of the latent roots (see, for example, Satz 10, p. 292
of Gantmacher, [3]):

(4.3) I, = max (a’Fa) = vFu,
where the maximum is taken over all vectors (= k& X 1 matrices) a with a’a = 1:

hence the inequality (4.3) holds for all vectors v.; in the eigenspace corresponding
to the latent root \; of ®. Inequality (4.3) yields

(44) 8lk = vfk-S(F)-v.k = vfk‘bv.k = Ng .

A similar argument yields that &l; < A;.
Another consequence of (4.3) is that Med [, = Med (v'xFv.;), and hence that

(4.5) Med I = N, if Med (viFv) = N .

A similar argument yields that Med i < A; if Med (v1Fvq) < \i.

In order, however, to investigate conditions under which the inequality (4.5)
is strict, and as a preliminary to a more detailed study of the distribution of L,
we shall indicate a different method of proof. First we shall prove a lemma.

Lemma 1. Under the general assumption A

(4.6) Plhhi—4L>0)=1 Pl —0L>0) =1
Proor. As V is orthogonal, we have that D ey vih = 1, D kw1 0ks = 1.
Hence, because of (3.3) we have

& k ‘
4.7) Lh—10L = }‘Zl'vih(lh — b, L — b= ’;vzh(lk — ).

This shows that §; — I, and I, — [, are essentially non-negative. Hence we need
only prove that

(4.8) Plh—4,=0)=0; Pli—15=0)=0.

We shall write down the proof for the first of these two equalities. The equation
F = ULU' = TYVLVY (c¢f.,, (3.1a) and (3.2)) parametrizes (for this term see
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e.g., p. 246 of Busemann [1]) 3k(k + 1)-dimensional F-space (F is symmetric)
in terms of the Cartesian product of 3k(k — 1)-dimensional V-space (V is
orthogonal) and k-dimensional L-space. Now (4.7) shows that [, — I, = 0
ifandonlyif, = -+ =1, <lLpuand 0 =054y = -+ =0v(g = 1, -+, k).
Hence |} — I, = 0 defines a union of subsets of the Cartesian product of V-space
and L-space of dimension lower than 3k(k -+ 1). In consequence the image of
i — i, = 0in F-space has 3k(k + 1)-dimensional Lebesgue measure zero, and
as the probability distribution over F-space is assumed to be absolutely con-
tinuous with respect to this Lebesgue measure, it follows that P(l; — i, = 0) = 0,
(cf., equation (3.5) in Busemann [1]).

Theorem 2 is a trivial consequence of Lemma 1.

TuEOREM 2. Under the general assumption A

(49) 8(l1) < >\1 ) 8(l]¢) > >\k 5 S(Ik - ll) > )\k - )\1 .

Proor. \; — 8(l1) = 8(21 - ll) = f(il - ll) dP > 0 by (34) and the first
part of Lemma 1. A similar proof holds for the remaining two inequalities in
(4.9).

Note that the amount of expectation-biases such as \; — &(l1), is a function
of the distribution of F. If this distribution is specified, the expectation-biases
can be calculated from formulae such as

13

(4.10a) M—80) =8 —h) = 8[,;1‘ vt — b))

(cf., (4.7)), which in case k = 2 simplifies into
(410b) M — 8(l1) = 8[1)%2“2 - ll)]

The next theorem will contain a result closely related to distribution-bias
(cf., van der Vaart [7]; it is not really distribution-bias since I; is not a statistic,
see Section 3 of the present paper). Its proof depends on a simple lemma (see
Section 4 in [7]), of which we shall cite a slightly altered version for easy refer-
ence (v without subscripts bears no relation to v with subscripts):

LemMMA 2. Whether the random variables t and u are independent or dependent,

if

(4.11a) P(u > v) =1,

then

(4.11b) Pit<7)zP@t+u=s71+v).

A necessary and sufficient condition for equality of the two sides of (4.11b) 4s
(4.11¢) Plt+u>7r+v)N (< 7)] =0

Under the weaker condition P(u = v) = 1 either the first inequality sign in
(4.11b) and the second one in (4.11c) should be replaced by =, or the third
inequality sign in (4.11b) should be replaced by < and the first one in (4.11c)

by =.
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We shall denote as Lemma 2’ the result obtained by reversing all six inequality
signs in Lemma 2, except the second inequality sign in (4.11b).
TrEOREM 3. Under the general assumption A

(4.12a) Py < 7) =z P(h £ 7) for any (real) r,

(4.12b) P(l > 1) =2 P(l, =z r) for any (real) r,

(4.12¢) Pl — > 7) =2 P(ly — bl = 7) for any (real) 7.
Necessary and sufficient conditions for these inequalities to be strict are
(4.13a) Pl(h>nN (, <7)]>0,

(4.13b) Pl <7)N (I > 7)] > 0,

(4.13c) Pl =< )N (— &k > 1) >0,
respectively.

Proor. Because of Lemma 1 we can apply Lemma 2. In Lemma 2 replace
vby 0, tby Iy, u by (i — &) to obtain (4.12a) and (4.13a). Again in Lemma 2’
replace v by 0, t by I , w by ({, — L) to obtain (4.12b) and (4.13b), and v by 0,
tby (b — L), uby (I — I, — & + &) to obtain (4.12¢) and (4.13¢).

The application of conditions (4.13) is easy if every subset of F-space, hence
of the Cartesian product of V-space and L-space, which has a positive
3k(k + 1)-dimensional Lebesgue measure, has at the same time a positive prob-
ability (such is the case if F is distributed according to a nonsingular multi-
normal distribution) : then all one has to show is that in (V-space) X (L-space)
points exist in which both [; > 7 and l; < 7, etc.; see pages 14 and 15 of van
der Vaart [8].

Turorem 4. If the 3k(k 4+ 1)-variate probability density function of the
fi(l £ ¢ = 7 £ k) is symmetrical with respect to the point with coordinates ¢;; =
8(fi)(L =2 =j £ k), thenly, Iy, and I, — I, are negatively, positively and
positively median-biased estimators of A1, M, and N, — A1, respectively.

Proor. In inequalities (4.12) put 7 = N\, 7 = Ny, 7 = N\, — Ay, respectively.
Then proof will be complete if

(414) Ph=xn) =% Plhzw =3 Plh—-hLhzn-N =4
Now by (3.3), (3.2) and (3.1c) we have that
L — A =TFr — 197 = T(F — ®)T.
Hence
h—N=vy(F —®) vy, le— N = vp(F —®)va, b — L — M+ M
= Zz Ei (vavse — U:lvgl)(fij — @ij)-

These expressions when equated to zero represent hyperplanes in F-space which
contain the center of symmetry. Hence (4.14) holds true.
The argument in the paragraph preceding Theorem 4 immediately yields a
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class of distributions, including the normal, of the matrix F for which median-
bias is strict.

We want to emphasize the importance of the role of Lemma 1, i.e., essentially
of assumption A, in our proofs. If, for instance, for the 2 X 2 matrix F the prob-
ability P(fiz = 0) = 1, and P(fu > ¢) = P(f» < ¢) = 0 (this example stems
from T. W. Anderson in a personal communication (February 1958)), then
P(L = L) = 1 and all former deductions are invalid. Note that in this example
our assumption A is violated: the distribution of F is not absolutely continuous
relative to 3k(k + 1) — dimensional Lebesgue measure.

Finally we shall give a few results concerning various moments of I, and f;; .
We shall use the following equalities (where M* = MM for any matrix M)
in the proofs:

(4.15a) tr L = tr (VLV') = tr L = tr (U'FU) = tr F,
(4.15b) tr (L) = tr (VLV'VLV') = tr (VL'V') = tr (L?)

= tr (UFUU'FU) = tr (U'F’U) = tr (F?),
(4.15¢) tr (&%) = tr (A%) = tr [6(L)-&(L)].

Proofs of these equalities are easy: apply (4.2), (3.3), (3.1c) and (3.4).
TueoREM 5. Under the general assumption A we have for the sum of mean square
errors

(4.16) STl — Y = > varls = D varfi;
g ah %5
for the sum of variances
(4.17a) > varl, = O varfi + DA — > (8l)°
g ¥ g g .
(4.17b) = 2 varfiy + 2ot — 2 (&)
2,9 ] g

for the sum of covariances
(4.18) azh cov (I, l) = gzh cov (§,, ) = ZJ cov (fii, fii)-
Here D ;,; stand for -'{_1 kL, Do for Dok
Proor. Because of (4.15b) and (4.15¢)
Sivarfi = 2 8(fi) — X (&)’ = &tr (FY) — tr (#) = & tr (L)
— tr »[s(L)-a(E)] = %:var In = &tr (IF) — tr (A") = Za:a(lf, — Y,
Equation (!.17a) follows immediately from (4.16); (4.15¢) then shows the
equivalence of (4.17a) and (4.17b). Finally apply (4.15a) to prove
Soncov (l,, b)) =8 (trL) — (8tr L)®
=grL)’— (strL)* = & (tr F)* — (& tr F)*,

which serves to prove (4.18).
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As for the consequence of this theorem concerning response surface theory see
the discussion round equation (14) in van der Vaart [9]. Here we repeat only
that if £ = 2 equation (4.17a) yields

(419) ZV&I‘ lg = Zva,rfi,« — 2&; — 2()\2 - )\1)(1,5 N
g %,

where ag = &(lp — X2) = —8&(lh — M) > 0. This equation is important in theo-
retical work: in theoretical investigations the data of a problem frequently are
M, A2, var fi;; . From (4.19) it appears that in cases where var l; = var [, the
knowledge of the first order moment «; is sufficient to calculate the second order
moment var [, . Hence the problem arises to find conditions under which var l; =
var l(k = 2). We replace this problem by the following: to find conditions
under which a kind of symmetry exists in the distribution of L such that var [, =
var [ .

Let ¢ denote the joint probability density of I, - -, I . A type of symmetry
which suits our purpose is defined by

(4.20) gy by oy ) =gy — by vy — bmay ooy — b).
For, in the first place, because of (2.5) ¢ should be zero except for
(@) h=lks-+=2h; @) vy—h=v—lha=---=y—1.

Conditions (a) and (b) coincide. In order to show other useful features of a
distribution of L satisfying (4.20) we introduce the matrix

=1---Fk
(4.21) L= vt § _ 17

cf., the definition of L and A in (2.6). Now the best way to describe the type of
‘symmetry determined by (4.20) is by means of
(4.22) L ~~I — *L

(1 is the identity matrix; the sign ~ was defined in (2.3a)). As the expectations
of functions of (stochastically) equivalent matrices are equal (cf., (2.3b)) we
find from (4.22) that §(L) + &(*L) = vI, whence

(4.23a) 8l + 8y = v (g=1---k).
From the definition of *L, (4.23a) and Theorem 1 we find
(4.23b) 28trL =28tr*L =2tr A =2tr® = ky.

Now consider the direct product of L and L (cf., p. 81 of MacDuffee [5]); as
L = L, we need not distinguish between left and right direct product. Evi-
dently

L®L~ (I —-*L) ® (vI —*L).
Taking expectations and subtracting
(6L) ® (8L) = [6(vI — *L)] ® [6(v] — *L)]
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we find
EL ® L — (8L) ® (&L)] = &[*L ® *L — (8*L) ® (&*L)],

whence

(4.23¢) cov (ly, , lyy) = oV (Lipi—g, 5 lyr—g,) (g1,02=1--- k).
so that forgs = g = ¢

(4.23d) var [, = var l41, (g=1---k),

i.e., the equality, which prompted this part of our investigation. We shall now
give a condition on the distribution of F, sufficient to ensure the equivalence of
L and 4I — *L. This condition will ensure a fortior: that (4.23d) holds true.

THEOREM 6. Let F be a real symmetric random k X k matrix with 8F = &.
Then in order that L ~ I — *L (L and *L consisting of the latent roots of F
according to (2.6) and (4.21)), 4t ¢s sufficient that some pasr of real, non-singular,
random or non-random, k X k matrices, My and M. , exists such that

(4.24) M{'FMy ~~I — M7'FM,.

This condition entails that

(4.25a) 2tr &(F) =2tr® = ky

and in case My and M, are not random

(4.25b) Z; eill MTY ol M jn 4 (M3} 0 M} ) = v-8 (g, h =1---k)
Proor. Denote the functional relation which to any matrix assigns the matrix

of its latent roots (ordered according to increasing magnitude) by ¥; then
L = ¥(F). It is well known that under the conditions of the theorem

(4.26a) Y(M7T'FM,) = ¥(F) = L.

Likewise, sincey — Iy £y — ly—1 = -+ = v — [ are the latent roots of v/ — F
if i £ --- £ I are the latent roots of F: ¥(yI — F) = I — *L, whence
(4.26b) V(yl — MT'FM,) = ¥(yI — F) = 4I — *L.

Since ¥ is continuous, comparison of (4.26a) and (4.26b) proves the first part
of the theorem. Equation (4.25a) coincides with (4.23b) and may, of course, be
proved directly from (4.24). Equation (4.25b) holds because the expectations
of corresponding elements of equivalent matrices are equal (the symbol {A4};;,
A any matrix, stands for a;;).
In conclusion we want to give an application of Theorem 6. Take k = 2,
0-—-1 -1 Joo —far
M, =1 M, = 1 ol Then M3 F M, = "“fm I
to Theorem 6 we have that L ~ vI — *L if

(4.27) F ~~yI — *F.

= *F, say. According
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This equivalence has some interesting consequences with respect to the first and
second order moments of the distribution of F. By an argument exactly like the
argument leading to the various equations (4.23) we find &(F) + &(*F) = 4l
8F ® F — (&8F) ® (&F)] = §[*F ® *F — (&*F) ® (&*F)], whence

(4.27a) &fu + &n =7,
(4.27b) var fi; = var fy, cov (fu, fiz) = —cov (fiz, fe).

There are no consequences of (4.27) with respect to &fi, var fi2, cov (fu, fa2).
As a corollary, if F' is normally distributed, (4.27a) and (4.27b) are sufficient
in order that ¢(ly, &) = q¢(v — L, v — 1), whence var [, = var l,.
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