CONFIDENCE INTERVALS FROM CENSORED SAMPLES

By Max HALPERIN!

Knolls Atomic Power Laboratory

1. Summary. Suppose a random sample of size n is drawn from a normal
population with mean p and standard deviation ¢ and that the sample has been
censored either to the right or the left. Suppose the censoring is at a fixed point
of the distribution or at a pre-specified sample percentage point, or is a combina-
tion of these two types of censoring. In this paper we present small sample
bounded confidence intervals for p and o, based on a joint bounded confidence
region at a confidence level with fixed bound. The limits for x and ¢ so obtained
converge in probability, as n — «, to the parameter values. The procedure of
the paper allows similar results for some other scale-translation families of dis-
tributions. One such case, which is briefly discussed, is that of the exponential
distribution with unknown initial point. The somewhat general applicability of
the procedure mitigates the fact that it is not based on sufficient statistics.

2. Derivation of results: normal distribution.

a. Fized point censoring. In this discussion we assume censoring is to the right;
the changes if censoring is to the left will be obvious.

Thus, we consider a random sample of n on N (u, o) censored to the right at
a known number T. For m the number of noncensored observations greater than
zero, denote the ordered non-censored observations by

<2< o < z2u<T.

The number m is a random variable having a binomial distribution with
parameters ®[(T — u)/c] and n, where ® is the unit-normal cumulative distribu-
tion function. The density of 21, 2, « -+ , 2, given m is

(21) m! [‘I’(T —_ M)/O’]_m I:‘ll(p[(xi - y,)/a], << <ty < T,

0, elsewhere,

where ¢ is the unit-normal density.

On the basis of (2.1) and the distribution of m, we would like to obtain a
reasonable confidence set on (u, ¢) at a bounded confidence level 8, where 8 is
specified in advance. By ‘‘reasonable” we mean that the set should be bounded
(providing this is possible), and that as n — o« any confidence limit should
converge to the appropriate parameter. We consider in detail the case where
two sided limits on x and ¢ are desired.

First we observe that, from the binomial distribution of m, we can get con-
fidence limits on ®[(T — u)/o] or &7 for short, at say the B; confidence level, as

Received November 16, 1959; revised January 5, 1961.
1 Now at the General Engineering Laboratory, General Electric Co., Schenectady.

828

[
4
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



CENSORED SAMPLE CONFIDENCE INTERVALS 829

[, £ &, £ ®y]. Now suppose that from (2.1) we could make a confidence
statement, conditional on m, concerning & and some other function of u and o,
or at least the latter, at say the 8, level or greater for each m. Denote this con-
ditional confidence statement by C., . The total probability that both C,, and the
statement about ®, are true is clearly

(2.2) > Pr{C,, is true | m} Pr {m},

where the sum runs over all values of m such that the associated statement about
@ is true. It then follows that the probability (2.2) is = B26: . Since u and o are,
functions of ®, and whatever other parameter is involved we should then bé
able to get confidence limits on u and o, as well as other functions, at least at the
B18: level; this presumes ®r and the “other parameter’” are a one-to-one trans-
formation of u, o. The question of optimum choice of 8, and 8, such that 8,8, = 8
is not discussed; for simplicity we take 8, = B = g
Turn to the definition of C,, . Suppose we let

(2.3) 2i = ®v; — p)/o]/®r.

Then the density of the z/s given m is

(2.4) m!, 0=a<a<- - <zn=1,
0, elsewhere,

providing m > 0. If m = 0, we can obviously only make a useful statement
about ®r ; any statement made about any other parameter must include all
possibilities in order to be correct and hence will be trivial. Thus if m = 0, the
confidence region cannot be bounded. However, m = 0 is clearly a degenerate
case for either point or interval estimation of u and ¢ no matter how one goes
about solving these problems. Hence, we take care of this case in a purely formal
way to insure the bounded confidence level property. This will be made explicit
shortly.

Now, suppose m = 1 and that we can find numbers 7 and s (integral or zero)
and a number § such that
(25) 0=s<r=m+10<s6<1, Priz<s=<z|m}=gp,
where 2o = 0 and 2,1 = 1. Of course, s, 7 and § will depend on m. As will be ap-
parent shortly, we must require § < %. Before indicating in detail how to deter-
mine 7, s and 8, we turn to the inequalities on p and o separately which are
implied by (2.5) and a 8! confidence interval on &, . From (2.3), the inequality
on § specified by (2.5) can be written (for s > 0,7 < m + 1) as

(2.6) (s — p)/o < &7 (887) = (z, — u)/o,

where &' («) is the standardized normal deviate exceeded with probability
1 — «. Since we can write, for example,

(27) (2o — w)/o = [(m — T)/o] + (T — u)/a] = (&, — T)/al + &7 (20),
and & (6®;) — & (®r) < 0, for 0 < § < 1, it follows from (2.6) that
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(2.8) o £ (T — 2,)/[87(®r) — &7(8%1)].

A lower inequality for o based on z, and of the same form follows similarly.
Differentiation of the right hand side of (2.8) with respect to ®» shows that it
will be monotone decreasing in &, providing one has

(2.9) exp {—3[@7'(882)]"} — 6 exp {—3[@7 (20)]} > 0.

The left hand side of (2.9) is zero at ®» = 0 and differentiation with respect to
&, shows that it is monotone increasing. Thus one has as limits for ¢, if s > 0,
r<m-4+ 1,sinceT —z, > T — z,,

(T — )/ (®0) — @' (820)] S0
S (T — @) /[@7(®) — &7'(8%.)]-

(2.10)

Clearly if r = m + 1, s > 0, the lower bound in (2.10) becomes zero, while if
r < m+ 1, s = 0, the upper bound is infinite.

Now we turn to the determination of limits for w. First we observe that
u=T — ¢®'(®r) so that

O _@,) £0,if dr =},

do

> 0,if &r < 3,
O _ —o (2m)texp L7 (@,)]* < 0.
0,

Thus we need to consider three cases,
(A)e, 23 (B)Pw<3 (C)dvzi P<i
In case (A), (du/d0) < 0, (9u/0®r) = 0. Consequently the upper limit to u
mustlieon ¢ = (T — ,)/[® " (®&r) — & '(8®7)] so that
(2.11) pET — (T — 2)¥ " (2r)/[@7 (2r) — & (8%1)].

Differentiating the right hand side of (2.11) with respect to ®r it is found that
the derivative is negative providing

(2.11a) 531 (®r) exp { —3[@ (@)} — ®7'(8%r) exp {—1[@(621)1} > 0.

If &, = 4 and & < % (which has been assumed) (2.11a) is clearly satisfied. If
®, < 1, the derivative of the left hand side of (2.11a) is found to be positive.
Since the left hand side of (2.11a) is zero at ®r = 0, (2.11a) is always satisfied
and it follows that

(2.11b) p ST — (T — 2)® ' (3,)/[®7(21) — & (58,)].

Similarly, the lower limit for x must lie on ¢ = (T — 2,)/[® ' (®r) — & '(6%7))
and we conclude that

(2.11¢) w=T — (T — z)8 (&) /[& " (®y) — & '(600)]
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Note that if r =m +1,s> 0, (2.11b) isreplaced by u < T, whileif r < m + 1,
s =0, (2.11¢) isreplaced by u = — .

In case (B) (8r/d0) > 0, (3u/d®r) < 0. Arguments analogous to these above
lead to the interval for p

(T — (T — z)® ' (®0) /187 (®v) — & '(620)],
T — (T — z)® (®)/[®7(®1) — &7(581)]},

ifr<m+1,s>0.Ifr=m -+ 1, s > 0, the lower bound for x becomes T';
ifr <m -+ 1, s = 0, the upper limit becomes + «.

In case (C) we break the interval (®,, ®y) into (®, , %) and (3, ®y). In the
interval (®., ) one has from case (B),ifr <m + 1,5 > 0,

(2182) T S =T — (T — 2,)® () /[ (@) — &7 (80,)].
In the interval (3, ®y) we have by case (A),
(213b) T — (T — 2,)8 ' (®0) /[0 (@y) — & (60)] < u = T,

and we combine (2.13a) and (2.13b) in the obvious way. If r = m + 1, s > 0
(2.13a) and (2.13b) remain unchanged. If »r < m + 1, s = 0, the upper limit to
(2.13a) becomes + « and the lower limit to (2.13b) becomes — « leading to a
trivial interval on p. Note that in all cases considered the confidence region is
closed providing we never take 2 as a lower limit in (2.5); i.e., providing we
exclude the choice s =. 0.

The above discussion can be modified in an obvious way to yield one sided
intervals on p or ¢ but we omit that analysis.

Now we need to discuss the choice of r, s and & to achieve the desired g con-
fidence. First we note that the confidence levels achievable will be somewhat
limited by the confidence levels which can be obtained for ®7. Aside from this
we note that the smallest value of m, given §, for which we can take § > 0,
r < m + 1 and still achieve conditional protection of at least B is determined by

(2.12) -

(2.14) 1—(1=3%"—-s"=4.

We observe the left hand side of (2.14) has a maximum, for given m, at § = %.
Hence taking § = % will allow us to get two sided limits on x and ¢ with r <
m + 1, 8 > 0 for a lower value of m than will be permitted for any other value of
6. For values of m so low that (2.14) cannot be satisfied even for § = %, our
earlier discussion suggests taking s = 1,7 = m + 1 and then choosing é so that

(2.15) 1—(1—8)"=p.

Unfortunately for values of 8 used in practice (2.15) may violate our assump-
tion 6 < 7 for m small enough. Thus, for very small m we would take s = 0,
r = m and choose § to insure

(2.16) 11—z g,
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which can always be done. Thus for some small values of m one will get un-
bounded intervals in the effort to insure bounded confidence. For values of m
for which it is feasible to take § = 1 it is natural to take r and s as the (sym-
metric) extremes from the maximum and minimum order statistics, allowing,
(2.5) to be satisfied. Since for small samples this may be somewhat conservative,
an alternative is to take 6 sufficiently less than % for the given r and s, so that a
conditional coverage of exactly 8 is obtained. Other alternatives may occur to
the reader but the lack of exactness is a trivial question in any case. The case
m = 0, as indicated earlier, is degenerate and can be included in the discussion
above by associating with m = 0 the statement 0 < ¢ < <« as well as the appro-
priate interval on ®7 (which implies — o < u < ®).

Now we turn to the question of the asymptotic behavior of the intervals we
have defined. To this end we note that (2.5) can be written as

r—1

(2.17) > <’tn> 8'(1— o)™ = 6.

t=s

It is clear that for large m (2.17) can be written approximately as
<I>;1 ’
(2.18) @m)™ [ exp (~h) du =g
o
1
where
r—1=oém+ &'mh(1 — 5)%,
s = om + or'misi(1 — &)},

and &;" and ®;" are both finite. For m large our discussion has taken § = % and
7' = —&7' = —&7[1(1 — BY)], although we could also take any 5,0 < & < %
and any finite pair &7, ®;" satisfying (2.18). In any cases it is easy to show that
asn — oo, with 7 and s defined by (2.18),

o= () [+ —o - (5]
= () [ - ()]

are each N (0, 1). This, of course, requires taking into account the asymptotic
distribution of m, which, for simplicity, is not displayed explicitly in (2.19).
It follows that for large n and any ¢ > 0

Pr{ zT—B—M|>e}§O<é>,

(2.19)

(220 @‘1[5(?%— 5)]* 1
Pr{ 2 —8—J——T'>e} §O<E>,

_so that 2 and #, both converge in probability to 8. This fact, in conjunction with
the convergence of ®; and &, to ®r allows us to conclude that the confidence
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intervals on u and ¢ separately will indeed converge as n — o for any § < %
and for 7 and s chosen in any of the ways suggested above.

b. Fixed sample percent point censoring. We again assume censoring is to the
right. This case can be treated in a manner identical to that of case (a) by proper
identification. Thus, here we suppose that the n — m — 1 largest observations
are censored. Denoting the first m + 1 order statistics by @1, 22, -+ + , Tm41, We
identify ®[(zmi1 — u)/o] with (T — u)/s] and consider the conditional dis-
tribution of x;, %5, -+ - , Tm given Zm41 . The same reasoning as used in case (a)
leads to formally identical results with &4 replacing 7. It is clear that the con-
fidence intervals obtained for this case will converge to points for large samples
for 6 £ 7 and r and s chosen as indicated in case (a). The only real difference
from case (a) is the random nature of x,, rather than m and this causes no diffi-
culty because of the stochastic convergence of x., to the appropriate percent point
of the normal distribution.

It should be remarked that for this case one can derive many other confidence
regions for u and ¢ without resorting to the conditional procedure outlined above.
For example, if we obtained two sided confidence limits on two percentiles, this
would generally give a closed region on u and ¢. The approach of this paper does
have the virtue of providing a uniform treatment of both types of censoring. A
more meaningful criterion to use in choosing between our approach and the un-
conditional approach would be the shortness of the confidence intervals obtained.
However, we do not pursue this question.

c. Mixed censoring. As a practical matter many life-testing experiments are
a mixture of cases (a) and (b) above. Thus one frequently finds that a life test
is terminated if either r out of n items have failed or if some fixed length of time,
T, has elapsed. In such cases r will generally be a large fraction of n, reflecting
the thought that the further results give only a modest amount of information;
the choice of T, on the other hand, may reflect the extreme life expected or of
concern, or perhaps the urgency of the need for information. Procedures anala-
gous to those of case (a) or (b) may also be developed for this situation and are
sufficiently different to warrant separate consideration.

In this case the sample likelihood has two forms depending on whether m, the
observed number of uncensored observations is equal to 7 or less than r. If m < 7,
we have exactly the situation described in case (a) and can follow the procedures
described for that case. If m = r, we are in a situation like case (b) but not
identical. The distinguishing feature is that we must have z, < T, i.e., the dis-
tribution of m is truncated at m = r. The procedure of case (b) still applies to the
boundaries of the confidence region defined by the conditional distribution of
X1, T2, **+, Tr given 2, . But because of the truncated distribution of m, at
m = r one only has the trivial upper confidence limit of unity for ®, . However,
one can obtain on the basis of usual binomial theory a non-trivial lower con-
fidence limit for ®7 at the 8* level, say ®, . It is also appropriate to assert that
®[(2, — p)/o] £ &, because of the manner in which the statement on &, is ob-
tained. From ®; = &, we have
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7(@r) 2 ¥ (%)
or writing
(&) = (T — @)/0] + [(& — u)/],
we are led to conclude
(2.21) @ (2) — (T — 2)/o]l £ & < &,

where &, = ®[(z, — u)/0).
The related conditional statement at level Ba, for appropriately chosen 8,
sand ¢ (r >t > s> 0)isjust

(2.22) (T — 2)/[@ (@) — & (68,)] S o
S (T — 2)/[@7(®) — &7'(88,)].

Of course, if (r =¢,8 > 0)or (r > ¢, s = 0) (2.22) must be modified as indi-
cated earlier. We observe that the left hand side of (2.21) is monotone increasing
in ¢ and approaches ®, as ¢ — . Coupling this with previous discussion it is
clear that at least for (r > ¢, s > 0) (2.21) and (2.22) provide a closed region in
the (o, ®,) plane. '

It is clear, from what has been said, that for » > ¢, s > 0 an upper limit to ¢
is given from (2.21) by

(2.23a) o= (T — 2,)/[®7(2) — ()],
and from (2.22) by
(2.23b) o= (T — z,)/[®(®) — & (68,)].

Since in (2.23a) do/d®, > 0 while in (2.23b) do/d®, < 0 it follows that (2.23a)
and (2.23b) have a single point of intersection and that the value of ¢ at this point,
oy say, is an fact the upper limit to ¢ implied by (2.21) and (2.22). The value of
ov is probably most easily found by trial and error using the monotonicity
properties just described. A lower limit for ¢ follows from previous discussion by
substituting &, for &, in the left hand side of (2.22). Again the results must be
slightly modified if (r = ¢, s > 0) or (r > ¢, s = 0). The details are omitted.

To obtain limits for x4 we must go through an argument similar to that of case
(a). There are three cases to consider. We consider only the situation for which
(r > t, s > 0). The necessary changes if (r = ¢,s > 0) or (r > ¢, s = 0) can
easily be ascertained as indicated earlier. The three cases are, as in (a),

(A) ®,., the lower limit to &, , is = %, (B)®, = 1,
(C) &, < 4,8, > 3.
To determine ®,, one must solve (2.23a) with
o= (T — z)/[&" (@) — &7(52,)].

This again is most easily done by trial and error. The analysis parallels that of
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case (a) and one is led to, for case (A), using D(8, p) = & "(p) — & '(op),
(2.242) z, — (T — 2,)® (®,)/D(5,®.) <

< 2 — (T — 2)®7(®1)/D(5, ®11),
and for case (B),
(2.24b) 2 — (T — 2)® "(®,)/D(5,®,) < 1

<2 — (T — 2,) 7 (®,1)/D(5, ®1),
and for case (C),
(224¢) @ — (T — 2,)® "(®,)/D(5, ®L) £ 1
2 — (T — 2)& (®1) /D (5, ®r1).

IIA

To meaningfully discuss asymptotic behavior of the confidence intervals for
this case, it is clear that one must require r/n to approach a constant, say p, as
n — . It is obvious that if p > &, , we will in the limit be essentially in case (a)
so that for suitably restricted 8, ¢t and s the argument of case (a) applies with
almost no change. It is only if p < &, that a new asymptotic argument is needed.
It is clear that such an argument will follow the lines indicated for case (b) and
it is omitted.

3. Extension of results. It is clear that the results of Section 2 do not depend
crucially on the assumption of normality except in the implications of the regions
on o and ®7 (or ®,) for limits on u and ¢. Thus the procedure should be applicable
to other distributions depending only on scale and location parameters. We
illustrate this by sketching the extension of the results of Section 2(a) to the
case of sampling from

31)  pl@) = (/o)exp[—(z —u)/a], O0=p=z<x >0

The entire argument of Section 2 up to and including (2.8) then is applicable to
(3.1) by the trivial re-definition of ® as the cumulative distribution function of
(z — u)/o, where x obeys (3.1), and ' (a) as the value of (¢ — u)/o exceeded
with probability 1 — «. The same type of argument as that following (2.8) leads
to limits for ¢ which are identical with those given by (2.10) upon proper defi-
nition of ' and ®. The discussion concerning limits for u follows identical
lines being rendered even simpler and not requiring § < 1 because of the non-
negative character of &' («); the results for u arein factidentical with those given
in Section 2, upon proper identification and, of course, taking into account that u
is essentially non-negative (although, formally, this is not required). Obviously
there is no difficulty in the consistency argument for properly restricted r and s.

It is evident that the results may hold for many classes of distributions under
appropriate conditions on the parent densities. However, we do not pursue this
question further.
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4. An example. As an example, we consider some data falling in case (a); the
maximum likelihood estimates of u and ¢ are included as a matter of interest.
Thus consider a random sample of 30, drawn from a normal distribution with
zero mean and unit variance, with 7 = 1. The data, obtained from a table of
random normal deviates, are summarized below in order of size.

i x; i £ i %5

1 —1.805 11 —0.482 21 0.658

2 —1.787 12 —0.439 22 0.906

3 —1.501 13 —0.105 23 >1

4 —1.399 14 —0.005 24 “

5 —1.376 15 0.041 25 “

6 —1.339 16 0.060 26 “

7 —1.186 17 0.159 27 “

8 —1.132 18 0.199 28 “

9 —1.010 19 0.279 29 “
10 —0.690 20 0.464 30 “

A 95% confidence interval on &, based on 22 out of 30 sample units uncensored is
given by .53 < &, < .88. For a sample of 22 one finds that the shortest sym-
metric confidence interval for the median at least at the 95% level is given by
1s and 717 . The exact confidence level is in fact .9831. One easily finds using
binomial tables that & = .42 makes zs and zy almost exactly 95% confidence
limits on the 42% point of the distribution. The formulae derived above imme-

diately give
—.83 < u = 916,
62 < o <279,

as confidence limite each at least at the 90% level. Computation of the maximum
likelihood estimates of u and o for these data gives estimates,

f=.12 =128

I\
I\

Nofe that £ is near zero and well within our confidence limits on x while ¢ is near
the lower limit on o. This, of course, is a matter over which we have no control,
since the confidence interval estimates and point estimates are based on different
principles. We would, however, generally expect our point estimates to lie within
the confidence intervals, especially with increase in sample size.

5. Some final remarks. Some consideration was given to the problem of obtain-
ing confidence intervals for u and o when one has double ‘censoring. A procedure
along the lines of Section 2 was studied but it appeared that the confidence
region based on order statistics of the conditional truncated distribution of un-
censored items and the frequency split of the data into the three possible cate-
gories might not define a useful region on u and o. In particular, there was some
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indication that the confidence statement on u derivable from the region might, in
some instances, involve disjoint intervals which would be unacceptable. Atten-
tion was also given to the use of order statistics for obtaining confidence limits on
w and ¢ in the singly truncated (to the right) normal distribution. Using four
order statistics and two percent points to obtain a region along the lines of
Section 2, it turned out that although o could be bounded as a function of ®r
and various order statistics, one could not bound ®; other than trivially. It is
possible but not, in the writer’s opinion, likely, that schemes more complex than
that of Section 2 for using the order statistics might allow a solution.

Although the point has not been emphasized, it is clear that the results of this
paper are conservative in two senses. On the one hand we are using a bounded
confidence region. On the other hand we are using selected order statistics of the
uncensored portion of our sample rather than all the uncensored data. It is felt
that the conservatism is considerably mitigated by the fairly general nature of
the results and the bounded confidence property.

Some readers of an earlier version of this paper have suggested that confidence
intervals based on asymptotic parametric theory can hardly be so bad that the
procedure of this paper should be preferred. This may very well be true but un-
fortunately appears almost impossible to verify analytically and has not yet been
investigated numerically. Thus, a choice between the procedures of this paper
and asymptotic parametric theory is presently a choice between somewhat long
intervals at known confidence levels and relatively short intervals with con-
jectural confidence properties.

Various papers treating the asymptotic parametric theory are given in the
bibliography compiled by Mendenhall [1].
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