THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR
INFINITELY MANY STATES OF NATURE!

By ARTHUR E ALBERT

Columbia University’

0. Summary. In [2] and [3], H. Chernoff discussed the Sequential Design of
Experiments. In [2], a procedure was exhibited and was proved to be asymptoti-
cally optimal for the hypothesis testing problem when there are finitely many
states of nature. This paper extends Chernoff’s results to infinitely many states
of nature.

1. Introduction. As a rule, when a scientist performs an experiment in order
to obtain information about a certain phenomenon, the outcome of the experi-
ment not only serves to cast light on the problem at hand, but also aids the
experimenter in designing a more informative experiment. As more and more
data is accumulated, his experiments can be made more and more informative
until he reaches a point where he feels that further experiments are unnecessary.
He then announces his results.

In [2] and [3], Chernoff dealt with this procedure (which he called the ‘“‘Se-
quential Design of Experiments’’) and in [2], he proposed a sequential procedure
which applies to the two action (i.e., hypothesis testing) problem when there
are finitely many states of nature. It was shown that the risk under this pro-
cedure is approximately —c log ¢/I(8) when the cost ¢ per experiment is very
small (where 7(6) is an appropriately "defined information number). It was
also shown that in order for another procedure to do appreciably better for
some value of the parameter (state of nature) 6, it must do worse by an order
of magnitude for some other value of the parameter (as ¢ tends to zero).

Chernoff’s procedure can be partially described by saying that at each stage,
the experimenter continues experimenting so long as the likelihood ratio is less
than 1/c. If another experiment is to be performed, the experimenter chooses the
experiment as though he believed that the cutrent value of the maximum likeli-
hood estimate (m.l.e.) were the true value of the parameter. If the likelihood
ratio is so large that no more observatjon$ are required, the experimenter ac-
cepts the hypothesis corresponding to the current value of the m.l.e. (It has
been pointed out by one of the referees, that the idea of estimating the true
situation by the m.l.e. and then using this estimate to decide what future course
of action to take, seems to date back to A. Wald’s work on sequential estimation
in [9].)
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SEQUENTIAL DESIGN OF EXPERIMENTS 775

We shall deal with the extension of Chernoff’s procedure and results to the
case where the possible states of nature are infinite in number. A class of pro-
cedures will be exhibited which possesses the property that for any positive
number ¢, there is a member of this class for which the risk is no larger than
—(1 4+ e+ o(1))clog c/I(6) as ¢ tends to zero.

The following example will serve as a prototype for the sequential design of
experiments problem as applied to hypothesis testing:

Two random variables are independent and normally distributed with means
my and m, respectively, and unit variance. It is desired to test Hy:m; = m;y vs.
H,:m; < mg . The cost of making the wrong decision (hereafter called the “re-
gret”) is a function of the distance from the true parameter 8 = (m;, ms) to
the boundary line {6’:6' = (my, ms), m1 = ms}. Two experiments are available.
These are e; : Observe the first random variable, and e, : Observe the second
random variable. After each experiment, the statistician must decide whether
to perform another (independent) experiment or to stop. If he continues, he
must decide which experiment to perform next. If he stops, he must decide
whether to accept H; or H, .

2. The Relevance of Kullback-Leibler (K.L.) Information Numbers. In {2]
and [3], extensive heuristic arguments were set forth to motivate the use of K.L.
information numbers in the sequential design problem. (See [7] for a wider realm
of application.) Chernofi’s arguments can be briefly summarized as follows:

Suppose an experiment is repeated many times, yielding independent observa-
tions Y1, Y2, c+-, Y., ---. Let H; be the hypothesis that the observations
have a density fi(z) and let H, be the hypothesis that the observations have a
density f2(x). The Bayes strategies are the Wald sequential likelihood ratio tests.

A sequential likelihood-ratio test is characterized by two numbers A and B,
(A > B): After the nth observation, continue sampling if

B < 3 log [A(Y5)/A(¥)] < 4.
Stop sampling and accept H; if
3 tog [A(¥)/A(Y)] = 4.
Stop sampling and accept H, if
3 log [A(Y))/f(¥)] S B.

The appropriate numbers A and B are determined by the a prior: probabilities
and the costs. However, when ¢ is very small, compared to the regret, it turns
out that A is approximately equal to —log ¢ and B is approximately equal to
log c.

Denote the probability of error (when H; is true) by «;(7 = 1,2) and the
expected sample size (when H; is true) by Ni(¢ = 1, 2). In [10], Wald showed
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that for small ¢, Ny &~ —B/I,, N~ A/l , oy =~ ¢ * and oy & €°, where

1 = [[1og [0 /) fiw) dy

and

1, = [[1og [1:(0) /)1 1w) d.

(The quantities I;,(z = 1, 2) have subsequently come to be known as Kull-
back-Leibler information numbers.)

If the regret for making an incorrect decision (when H, is true) is r;(¢ = 1, 2)
then the average regret (or risk) under H; can be approximated by

R; = ¢N; + rio; & [('—C log C)/IQ]

when ¢ is small compared to 7;(¢ = 1, 2). (See [2]).

Suppose that a design element is introduced: Assume that two equally costly
experiments e; and e, are available for testing H, against H, . If the experimenter
chooses ¢; , performs it exclusively, and proceeds in an optimal fashion, his risk
under H; will be approximately inversely proportional to I;(e;) when ¢ is small.
Hence, if I1(e1) > I1(e2) and Iz(e;) > I:(ez), it obviously behooves the statis-
tician to select ¢; .

However; if I1(e1) > I1(e2) and Is(e) < Ix(e2), e is better than e, if H; is
true, but e, is better than e, if H; is true.

If the cost per experiment is small compared to the cost of making an incor-
rect decision, the experimenter may find it expedient to perform an additional
experiment, even though he is virtually convinced that H; (for instance) is the
true hypothesis. In this case (I;(e:) > Ii(e2)) it would seem that he would be
wisest to choose e; .

Owing to the uncertainty about the true state of nature, the statistician is
bound to make mistakes at the early stages of experimentation, but if the prob-
ability laws are such that the true hypothesis becomes more and more evident
as data accumulates, the small cost of experimentation will make initial mistakes
in choosing experiments relatively unimportant, and eventually the statistician
will begin performing the most advantageous experiment and stick to it until he
decides to make his terminal decision.

If the hypotheses are composite and if a finite number of experiments are
available to the experimenter, considerations of the sort mentioned above sug-
gest that if the experimenter is almost positive that 6 is the true state of nature
(say, 6 ¢ H;), he should choose his next experiment so as to maximize
inf,en, 1(6, ¢, €), where

1(6,¢,¢) = [og [f(y, 6, )/f(3, ¢, S5, 0, ) dy,

and f(y, 6, e) is the density of the random variable observed under the experi-
ment e.
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The appearance of an expression of the form max, min, 7(6,, ¢, ¢) immediately
calls to mind a resemblance to similar-looking expressions which occur in the
theory of games. By interpreting 1(6,,-,-) as a payoff matrix, we recall that it
is sometimes possible to do a better job of maximizing min, I(8,, ¢, €¢) with
respect to e if we utilize randomized strategies.

A randomized experiment can easily be interpreted when the collection of
available experiments is finite (or countable). If the statistician consults a table
of random numbers chooses experiment e with probability AMe} (D . e} = 1),
and then performs experiment e, this process constitutes a randomized experi-
ment, which can be denoted by A. It will be shown that a Kullback-Leibler in-
formation number for the randomized experiment A can be consistently defined
by

1(6,0,%) = 2 1(6, 0, )Me}.

3. General formulation. We now extend the notions of the previous section
to the case where the parameter space is not finite.

Suppose a statistician is contemplating two courses of action in connection
with a problem of inference. The true state of nature is unknown to the statisti-
cian, but corresponds to a point in an abstract space 6. Denoting the
two (terminal) actions by @; and a, we assume that © can be partitioned into
three sets:

9 = 90U 91U 92

If the true state of nature is in 6, , either action is acceptable, but if the true
s.o.n. lies in ©;, then a; is preferred (¢ = 1, 2). If 8 £ 6, U O, is the true s.o.n.
and the non-preferred action is taken, the regret is given by r(6) > 0. We can
extend the domain of definition of 7 to © by setting r(6) = 0 for 6 € 6.

The statistician has at his disposal a finite set of (pure) experiments

& = {61262)”')61‘4}'

(From now on, e with or without subscripts, will denote a generic element of &.)

By performing a sequence of experiments, the statistician hopes to amass
enough data to make an intelligent guess (or terminal decision) as to whether
the true s.o.n. 8 lies in 6, or in 6., and then will take action a, or a, accordingly.
(He is not concerned if 6 ¢ 6y, for then, either action is acceptable to him.)

If experiment e is performed, the random variable Y., which takes its values
in a measure space (Y., u.), is observed. It is assumed that Y, has a density
with respect to (w.r.t.)u. for each 6 ¢ ©. Hereafter, we shall denote this density
f(y, 6, €).

If the n 4+ 1st experiment e is chosen according to any measurable rule
(i.e.,e™™ =" (y® ¥® ... Y"™)isameasurable function of the previous n
observations Y®, Y®, ... | ¥Y™), the outcome of this experiment (once ¢"*"
is specified) is assumed independent of the n previous outcomes. No matter
which experiment is chosen, we assume a sampling cost of ¢ units per observation.

(n+1)
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When a randomized experiment \ is performed, two random variables (r.v.’s)
are, in effect, being observed. First, the statistician observes the value of the r.v,
E, whose probabalistic behavior is governed by the relation

PlE = ¢] = \Me}.

After observing E, he observes Yz. The probabalistic behavior of Y (given
that E = e) is, of course dependent upon the true state of nature 6. But aside
from that, it is known that for every (u,) measureable subset B of %,,

PiY. e B] = f £y, 6, €) dua(y).

It will be convenient for us to have a notation for dealing with r.v.’s which
are associated with a random experiment A\: When the (randomized) experiment
\ is performed, the statistician is actually observing the values of the random
variable

X\ = (E, Yg)
which takes its values in the space ‘
X ={z:z=(e9y),eed yeYdq.
If S is a subset of &, we define the projection of S on Y. by
8. = {y: (e, y) € S}.

We define a set function x on all sets S © & having the property that S, is
(ue) measureable for all e, by

l"(S) = ; l"e(Se)'

It is easy to see that the domain of u is a s-algebra of sets and that u is a
measure on X. Since it has been assumed that the (pure) experiments are such
that Y** is independent of the past given e"*?, it follows that the outcome,
X" — Xym+n, of the (n 4+ 1)st randomized experiment is also conditionally
independent of the previous n observations, once A is specified.

It is clear that X, has a density (w.r.t. u) over X:

f(x,O,)\)=f(y,0,e))\{e} if x=(e,y) and yeYe.

We define the K.L. information number for the experiment A by

16,0,0) = [1og T22M 0,6,1) duto).

It is plain then, that
1(07 (2} )\) = ; I(07 (4 e))‘{e}'

4. An “optimal” class of procedures. We now define the class of sequential
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procedures with which we shall deal. As is the custom, we shall define our pro-
cedure(s) by giving the stopping rule, the terminal decision rule and in addition,
we shall prescribe a rule for choosing the next (possibly randomized) experiment
if the data and stopping rule allow an additional sample.

Given the data from the first n (possibly randomized) experiments X,
X® ... X™ we define L,(8) to be the log of the likelihood:

(4.1) L.(6) = JX:; log f(z?, 6, \?),
where
X9 = x,@
Let
(4.2) Lin = supgeo; La(6') (1=1,2).
The generalized log of the likelihood ratio can be defined by
(4.3) L, = max {Lin — Lsn, Lon — Lun}.

If, for each 6 £ 6,U O, , we define a(6) to be the hypothesis alternative to the
one containing 9:

(4.4) a(6) = (6,U ©,) — 0, if 6¢e0,, (t=1,2),
then it is easily verified that

. n X(:i) o )\(J')):I
. Ln = nf l u___ .
(45) v< 0100 [o"elaw') ;1 8 JXO, 67, 20)
For any p(0 < p < 1), we say that 8, is a p-pseudo maximum likelihood esti-
mate (p-p.m.l.e.) over 6 = 6,U 6,U 6, if:
(1) 8, = 6,(X W x® ... X™) is a function of the first n observation

X(l), X(2), e X(n)’ and
(2) I]I f(X(j), én ) )\(j)) _Z p ?ug JIII f(X(j), 01’ )\(J’)).
= & =

For any p(0 < p < 1), 8, will always exist, and we tacitly assume that a
measureable version of 8, is available. If 8, exists for p = 1, it corresponds to the
usual m.le. Throughout the remainder of this paper, we assume p to be fixed
and less than unity.

We define A to be the set of probability distributions over & and A, to be the
set of probability distributions over & which assign at least probability
v(0 = v = 1/M) to each element of &.

Given 8 £ 0, U 6, and v(0 < v = 1/M), define X"y to be that element of A,
which maximizes inf .0 [[(6, @, A)]. (Such an element exists by Theorem 2.4.2.
of [1], since A, is convex and has a finite set of extreme points.)

Given v1(0 £ v1 £ 1/M), v2(v2 = 0) and ¢(0 < ¢ < 1), we define procedure
A (71, v2) as follows:
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(1) On the first trial, perform any randomized experiment from A.,, .
(2) After the nth trial, if L, = —(1 4+ v:) log ¢, stop sampling and accept
the hypothesis corresponding to

el if Ln == Lln - L2n
0, if L, = Ly — Lyx

(3) If, after the mth observation, L, < —(1 + v, log ¢, compute the
p-p.m.le. 8, , and perform the (n + 1)st randomized experiment with

A = O\ i G e U 0,
A i B0,

Each member of the class depends upon four parameters: v1(0 < v < 1/M),
where M is the number of pure experiments available to the statistician),

Yo(v2 2 0),p(0 < p=1), and ¢(0 <c¢c < 1).

Throughout the course of our discussion, p will remain fixed and we shall investi-
gate the risk associated with the procedure as ¢ approaches zero. For these rea-
sons, we suppress ¢ and p when we talk about a typical procedure “A(vi, v2)”’
from this class.

It should be pointed out that the procedure proposed by Chernoff in [2] and
[3] for the case when O is finite, corresponds to 4(0, 0) with p = 1.

5. The main theorems. The most important result in this investigation is
obtained via five theorems. Theorem 1 establishes the (strong) consistency of
the p-p.m.l.e. 8, . The method of proof is derived from a technique employed by
Wald in [8] to establish the consistency of the m.l.e. However, it was found that
Wald’s technique was not general enough to cope with the random variables
arising from randomized experiments in the simple normal prototype example
mentioned in Section 1.

The overly restrictive nature of Wald’s assumptions were eventually recog-
nized, and in [5], Kiefer and Wolfowitz were able to demonstrate the consistency
of the m.l.e. under a substantial relaxation of Wald’s conditions.

The assumptions utilized in the present work in order to establish the con-
sistency of 8, bear a striking resemblance to the Kiefer-Wolfowitz conditions
(although the present work was done independently) and consequently, the
reader is referred to [5] for a full motivation for assumptions A1-A7. Assumptions
A8-a and A9 represent additional conditions governing the rate of convergence
of b, .

Theorem 2 establishes a bound on the expected sample size under a typical
procedure “A(y1, v2).” Assumptions B1-B6 relate most directly to Theorem 2
and are used primarily in showing that this bound holds uniformly over large
subsets of the parameter space.

Theorem 3 exhibits an upper bound on the probability of error under A (v1, v2)
and depends heavily on A8-b, and Theorem 4 merely combines Theorems 2 and 3,
yielding a bound on the risk under A(y1, v2).
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Theorem 5 follows from C1 and some known theorems about convex sets. It
establishes the sense in which the proposed class of procedures is optimal.

6. The assumptions. The set of assumptions A1-A7 are the generalization of
Wald’s assumptions. A8-a and A9 permit us to analyze the rate of convergence
of 8, . A8-b (which is a strengthening of A8-a) is used in establishing bounds on
the probability of error under A (y:, v2).

A1l: The space of (pure) experiments is a finite set consisting of M elements:

& = {317627 e ’eM}'
Associated with each e ¢ & is a random variable (r.v.) Y., which takes its values

in a measure space (Ye, Ke). i 18 a measure on Y, , and Y, has a density f(y, 6, e)
with respect to u, for each 6 € ©.

A2: [y llog 7(y, 6, €)| (v, 6, €) dud(y) < =

forall@ e ©andalle ¢ &.
Hereafter, we will denote the expectai;ion of a Borel function G of Y. by

EG(Y):
B G(Y,) = f Gy, 0, €) dud(y)
Ye

A3: We assume that © can be embedded in a compact topological space
(6%, 3*) where (0% J*) is T, satisfies the first axiom of countability and
6 C 06*. (A topological space (0%, 3*) is T, if, for every pair of points ¢, ¢’ € 6%,
there is a set in 3* which contains ¢ but not ¢’. The space satisfies the first
countability axiom if -there is a countable basis at each point. See [6] for a full
discussion of these prdperties.)

We further assume that the domain of definition of f(y, 6, ¢) can be extended
from O to 6* in such a way that

Ad: (a). For each e £ &, ¢ € 6%, f(y, 0, ¢) = 0 (a.e.u,) and

‘[}I f(y’ @, 6) dﬂe(y) =1
(b). If 6 €0, p e 0% and ¢ # 0, then

f f(y, 6, e) dus(y) > 0 for some e ¢ &.
[f(y.0.e)%f(y,0.€)]

A5: If o, — ¢ (in 3*), then for each e ¢ &, there is a set D = D(e, ¢) C Y,
(which does not depend upon the sequence {¢} ), for which

ff(y, 9, ¢) du.(y) =0 forall 6e0
D

and for which
lim Supz-»wf(yy Piy 6) = f(yy b, 6)

whenever y £ D (upper semi-continuity).
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DeriNtTION. w(y, U, ) = sup,.v f(y, ¢, ¢) for each U & 3*,

AG6: For each U ¢ 3% w(y, U, e) is a (u.) measureable function of y.

AT: For each 6 ¢ © and each ¢ £ 6%, (¢ 5 0), thereis a set V = V (9, ¢) £ 3*
containing ¢, for which

- Eylogtw(Y,,V,e) < « forallees.

(For any function h, h™ = max (h, 0).)

Let 3 be the relativization of 3* t0 0: 3 = {U: U = VN 0, Ve3%. Jisa
topology on O (see [6]).

A8: (a).Given 6 € © and ¢ € ©* (6 = @), there is a positive number ¢ = (9, ¢),
aset V= V(p, 0) ¢ 3* containing ¢, and a set @ = Q(6, ¢) ¢ I containing 6,
for which

Eop [w(Y., V,e)/f(Y,, 0, e)]° < o forall e ¢&.

and all ¢’ £ Q.
(b).Given 6 € ©, ¢ € 6* (¢ 5 0) andy > 0, thereisaset V = V(g, 6, v) £ 3%,
containing ¢, and a set @ = Q(6, ¢, v) ¢ 3 containing 6, for which

Eo (Y., V,e)/f(Ye, 8, e)]"™ < o forallees,

and all ¢’ € Q.

A9: If Ep [w(Y., V,e)/f(Y, ¢, e)]’ exists and is finite for some $(0 < ¢ < 1),
whenever ¢’ is in some set @ ¢ 3, then Eo [w(Y,, V,e)/f(Y., ¢, ¢)] is upper-semi
continuous in ¢’ (w.r.t. 3) over Q.

(Let (2, 8) be a topological space and let ¢ be a real valued function on Q.
The following statements are equivalent:

(a). g is upper-semi-continuous over Q (in 8).

(b). For any real k, the set {w: g(w) = ¥} is closed (in 8).

(¢). If w; — w(in 8), then lim supi.. g(w;) < g(w).

(d). If w; — w(in 8), then for any ¢ > 0, there is an n, such that g(w;) =<
g(w) + eforall = n.

An upper semi-continuous function achieves its maximum over any (8) com-

pact subset of ©.)
The derivation of a bound on the expected sample size requires an additional

terminology which we now develop:

(a). For any v(0 = v = 1/M), A, is the collection of probability distribu-
tions over & which assign at least probability ¥ to each element of &. A% is the
(finite) set of extreme points of A, :

At’; = {>‘1.‘Y B >‘M,‘V}7
where:
L if 27
O L {1 — (M — 1)y if §=j
Ay = A = the set of all probability distributions over &.
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(b). For 8 £ 6,U 6,,
0(0) = (91U 92) — O if 6¢&6; (7,

1’ 2)’

and
h(6) = ©; if 6¢6; (t=1,2).
(¢).If o £ 6% y e Yoand = (e, y) we define
f(x, ¢, \) = f(y, ¢, e)Me}.

This is just an extension of the domain of definition of f(z, 6, \) (as defined in
Section 3) from © to ©*.
(d).Ife e, 0 c0and g € 6%

I(O, @, 6) = Eo lOg [f( Y, ) 0’ 6)/f( Yc IX'2) 6)]7
(I(6, ¢, ¢) may be + ©),and if A € A, 6 £ © and ¢ £ 6%,
1(6, 0, 1) = Eolog [f(Xa, 6, )/f(Xx, ¢, )] = 2N L(6, ¢, €)-

(e). If 6 £ 6,U 0., A is that element of A, for which
inf, . ey 1(0, @, N\§) = maxy e a, [infy c a0y 1(6, ¢, N)]
and
I(8,v) = maxx.a, infyca (6, @, N).

(). 1(6) = I(6, 0)
(g). w(z, V,\) = sup,.vf(z, ¢, \) for all Ve 3*
(h). For 8 £ © and V & 3* and X & A we define

j(07 V7 >‘) = Ep IOg [f(X)\ ) 0’ )\)/’ID(X)\ ) V; x)]‘
(I(6, V,\) may be ¢ «.)

We now state assumptions B1-B6:

B1: For each v(0 < v £ 1/M), I(6, v) is continuous (w.r.t. 3) over 6;U ;.

B2:1f0:6,U 6,,0 < v < 1/M and {oj} is a sequence in 6* converging to
¢ (in %), then lim;.., I(6, ¢i, \y) = I(6, ¢, \q) (The limit may be + «).

B3:If 6 £ 0 and I(6, V, e) < =, then I(6', V, ¢) is continuous in some (3)
neighborhood of 6.

B4:10:60,0 < v < 1/M and I(6, V, ¢) < o for all ¢, then I(¢, V, \¢")
is continuous in some (J) neighborhood of 6.

B6: I(6) > Oforall6e6,U O,.

B6: 6, and ©. are in J.

In order to establish the desired optimality property, we require

Cl:If 6, o £ © and I(6, ¢, ) < o, then

Eoflog [f(Y., 6, €)/f(Ye, ¢, )]} < .



784 ARTHUR E. ALBERT

7. Consistency of the p-p.m.lLe. 8, . Before attempting to establish the con-
sistency of 8,, we need to investigate the underlying structure associated with
the problem as we have formulated it.

LemMma 1. If 6 €0, ¢ £ ©* and \ € A, then I1(6, ¢, \) = 0 with equality if and
only if f(z, 6, \) = f(x, ¢, \) on a set of Py probability measure one.

Proor. For any r.v. Z, exp E Z £ E exp Z with equality if and only if Z is
constant with probability one (Jensen’s inequality ). The conclusion follows with
Z = log [f(x, ¢, N\)/f(=, 6, \)], by applying Ad-a.

LEMMA 2. Given 0 £ ©, ¢ £ ©*(p 5% 0), there is a decreasing sequence of sets {V,}
such that V, € 3* for every n, a1V, = {¢}, and

lim Eglogw(Y., V., e) = Eglogf(Y., e, e).

Proor. Let U, be a countable basis for 3* at ¢ and let V,, = 1;-.U;. Then
{V.} is a decreasing sequence of sets in 3* and ¢ lies in every V, . Since (6%, 3*)
Sa T, space, we have in fact, () 7=1V. = {¢}. By A7, there is an no such that

Ealogw(Ye, Vn, e) =< Eolng(Ye7 V”cne) <

for all e €& and all n = ny. The conclusion follows by A5 and the monotone
convergence theorem.
LemMa 3. Given v(0 < v < 1/M), 6£ 6 and ¢ € ©* (¢ %= 0), there is a set

V = Ve, 0, v) € 3* containing ¢, and a constant B = B(6, ¢, v) < 0, such that
w(Xy, V, N)
fX,6,))

Proor. By A4-b and Lemma 1 and 2,
lim Eslog w(Y., Va,e) = Eglogf(Y.,e,e) < Eglogf(Y., 0,e)

with strict inequality for at least one e € &. Since Es |log f(Y., 6, )] < « (by
A2), it follows that

lim Ep log w(X», V., A) < Eslog f(Xx, 6, \)

n->0

Eslog <pB forall AeA,.

for all A ¢ A% . Since A% spans A, , the conclusion follows.
It should be observed that Lemma 3 is not, in general, true for y = 0, for if
I(6,¢,¢") = 0and X places unit probability on ¢', then for all V & 3* containing ¢,

Eglogw(Xa, V,\) = Eslogf(X, 6, \).

This situation actually occurs in the prototype example of Section 1. If § =
(ma, mg) and ¢ = (mq, ms), then I1(6, ¢, 1) = 0.
The following lemma permits us to apply the assumptions concerning f(y, 6, )
and 1(6, ¢, e) directly to f(=, 6, \) and I(6, ¢, \). The proof is left to the reader.
LemMma 4. A2, A4, A5, A6, A7, A8 and A9 remain true if & is replaced by A,
eby \, Y, by Xa, y by z, Ye by X and p. by u (see Section 3) throughout.
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The following inequality will be used in investigating the rate of convergence
of 4, :

Lemma 5. For any r.v. Z, P[Z = 0] £ E(e*?) for all t > 0.

Proor. If E(e”) = o, then inequality is trivial. Otherwise,

E(e') = E(t'") | Z = 0)P[Z = 0].

Since E(e*” | Z = 0) = 1 when ¢t > 0, the conclusion follows.

In order to establish the consistency of 8,, we shall show that for any set
S & 3 containing the true parameter 8, the probability (under 6) that 8, ¢ S for
all n sufficiently large, is unity.

DeriniTION. For any set S C 3, we define T'g to be the smallest integer m, such
that 8, € S for all n = m if such an integer exists; if no such integer exists, we
define Tg = + .

We now derive a bound on

Py [0 2 S for some m = n).

THEOREM 1. Let v, (0 < v < 1/M), S e3 and 6 € S be given. If experiments
A are chosen from A, according to any measurable procedure (i.e., such that A?
s a measurable function of the previous (j — 1) observations), then there are finite
positive constants k and b and a (3) neighborhood Q of 6 for which

Py [Ts > m] < kexp (—bm) forall ¢ ¢ Q.

(k, b and Q depend upon 6,y and S.)
OUuTLINE OF PRrOOF.

Py [Ts > m] < Z) Py [6, 2 S].

If 6, £ S, then since S = S*N O, (where S* ¢ 3*), it follows that 8, £ S*. Hence,
by definition of 8, ,
~ n X(j)’ 0’ x(]’)
Pyld, #S] < Py I:" sup D IOg;EX"W_N’_’; =logp|.

£0*—8* j=1

for all ¢’ € S.

By virtue of the (3*) compactness of 6% — S* Lemma 3, A8-a, A9 and the
convexity of moment generating functions, we can choose a finite collection of
sets {Vi, Va, ---, V,} © 5% a set @ ¢ 3, containing 6 and positive constants
b and t, such that

—b
(4

I\

w(Xy, Vs, x)}]

max [max Ey {exp tlog & TN
L)

i=1l-c-p Ne Ay

and

. » n w(X(j)’ V. , )\(J'))
Po'[O,, ZS] é ;Po’ [;log—w _% 10g P

forall 9’ € Q. (p, Vi, t, band Q depend upon S,y and 8.) We then apply Lemma 5
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and obtain

4
Pol,gS < X p e

t=1

for all 6’ £ Q from which the conclusion follows.
CoROLLARY. For any 0 € ©, Py[f, — 6] = 1. (The convergence is relative to 3.)
Proor. 8, — 6 if and only if Ts < « for every set S £ 3 containing 6.

8. Bounds on the expected sample size under procedure A(y:, v2). In this
section, bounds on the expected sample size are derived. Lemmas 6, 7, and 8
are building blocks and Lemma 9 is the keystone of the main result of this sec-
tion. The proof of Lemma 6 follows that of Lemma 2 and is left to the reader.

LEMMA 6. If 00, o £ 0* and 1(6, ¢, ¢) = «, then for any constant C > 0,
there is a set V.= V(p, 0, ¢, C) & 3* containing ¢ for which I(8, V, e) > C.

DermiTIoN. For 6 ¢ 6,U 6, let a(8) be the (3*) closure of a(6).

LEMMA7.If0 £ 6,U 6,0 <y < 1/M and ¢ € a(0) then I(6,0,\y) = 1(6,7).

Proor. If I(6, ¢, \§) is infinite, the assertion is trivial. Otherwise, there is a
sequence {¢;}  a(6) converging to ¢. Let § > 0 be given. By assumption B2
we may choose 7 so that 1(6, ¢:, \d) < I(6, ¢, \g) + 8. Since

eica(0), I(6,0:,\) = I(6,v),

and since § is arbitrary, the conclusion follows.
LeMMa 8. If 0 e 0,U 6, and 0 = v < 1/M, I(6,v) > 0.
Proor. By B5, I(0,0) = I(0) = inf, . a@ 1(0, ¢, As) > 0. Let

el = (1 — My)nele} + .

Then, A £ A, and Mo{e} = [AMle} — v]/[l — My]. Sinceinf, caw) 1(6, ¢, Ns) > 0, it
follows that for some 8 > 0, inf, . @ [[(6, ¢, \) — v I(0, ¢, €)] > 6. Thus,
maxye A, inf, .00 L(8, ¢, ) = inf, .0 1(6, ¢, 5\) >8> 0.

In Theorem 2, we show that the expected sample size under 4 (y:, v2) is not
much larger than — (1 + v2) log ¢/I(6, v1) when 6 is the state of nature and ¢ is
small. To do so, we will show in Lemma 9 that Po{N > n] (where N is the sample
size) declines rapidly (in fact exponentially) when n is significantly larger than
—(1 + 72) log¢/I(6, v1). The proof of Lemma 9 is complicated, so the general
idea is sketched roughly below to help the reader see the forest through the trees:

The event [N > n] is (by definition of the stopping rule) contained in the event

. n X(J’) o )\(j))} ]
f lo M__ -1 lo
[olb‘SlelRJel {¢:E(0') ; & f(X(])7 ¥, )‘(])) < ( + 72) 8¢
and this event is, in turn, contained in the event
. n f(X(J') 0 )\(J’) )} ]
f log 21— —(1 loge|.
[O'eseg%ez {v a0 ; %8 TX®, 0, D) < () log

If 6 is the true s.o.n., then by appropriately choosing a finite number of (3*)
neighborhoods V1, - - -, V, so0 as to cover the (3*) compact set a(6), we will be
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able to assert that for all 6’ £ h(6)
, r n f(X(i)’ 01’ )\(f))
PyIN > n] = Z;Po' [;10gm < —(1+'yz)logc ,
or more conveniently,
' r n w X(j), Vi , )\(J‘)
Py[N > n] < Z_:l Py [E logw > (1 +72)10g0 .

=1

If n is larger than — (1 4 8)(1 + 72) log¢/I(6’, 1), then

n w(x(i) Vi,)\(j))
v 10g W +I(0,’Y)/1 +6>0/.

The summand can be decomposed into three terms:

PyIN > n] Zl Py [

X(f)’ Vi, )\(f) ,
logu*)f((—X—(]—)"—OT)—\T))—) + ](0,’)’1)/1 +8 =A1]+A2]+A3,,

where

X(j), Vi, @ _ ' .
A = log w_;(X(’),-—H',)\(’))—Z + 1(6, Vs, >\(J)) — 8I(6', v1)/2(1 4 5),

A2j = '—j(elj Vi ) )\(j)) + i(el’ Vi ’ )\g'l)7
A3j = _I(olyvi ) )\g'l) + I(ely 71)(1 - 6/2(1 + 6))

Since
w(XP 7, AP)
F(Xo, g @) ’

A;; has negative mean and hence, > 7, Ay tends to be negative. The particular
choice of A (from A,,) will insure that A,; grows very slowly when 7 is large.
The neighborhoods V; will be taken so small that A;; will be approximately
— 3I(0, v1)/2(1 + 8). Hence, D ;= (A1; + As; + As;) tends to be negative,
and exceeds zero with small probability.

DeriniTION. Let N be the sample size required to reach a terminal decision
under A(y1, v2).-

LeMMA 9. Let 0 be a point in ©,U ©,and let (0 < 6 < 1),71(0 < 11 < 1/M),
and y2(y2 > 0) be given. Then there are finite positive constants b and k and a (3)
nesghborhood Q of 6 such that for ¢ € Q and

n> —(1 + 8)(1 + 7)) loge/I(¢, v1), Po [N > n] £ ke™

under A(v1, v2). (k, b and Q depend upon v., 6 and 8.)

Proor. For notational convenience, @ with or without subseripts will denote
a generic (3) neighborhood of 6 throughout the following discussion. If a result
holds in a (3) neighborhood of § and a second result holds in a second (3) neigh-
borhood of 6, then the results are simultaneously true in the intersection of these

10,V AY) = —Ep log
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neighborhoods which is itself a (non-vacuous) (3) neighborhood of 6, and hence,
no ambiguity can arise, provided that we only require a finite number of state-
ments (each of which is true in a neighborhood of 8) to be simultaneously true
in a neighborhood of .

As was mentioned in the introduction, given 8 e ,U 6, ,

. n X(:’) 0 )\(J'))

81) P.[N < Pg F(X7, 6,M7)

(8.1) PolN >nl < Py [¢ lerlfm :Z=; log F(XD, o, \@D)

for all 6’ £ h(6). (Notice that if 6 ¢ ©,U 65, then by B6, k() N a() is empty.)
For each ¢ € a(6), choose V = V(g, 6, §) € 3* containing ¢ so that

w(Y,,V,e)

Y., 7,0 ] <

for some t = t(6, ¢) > 0 whenever 6’ is in some (3) neighborhood Q = Q(6, ¢, 6)
of 6 and

< —(1 + 'Y2) l.Ogc]

(8.2) max Ey [

eEes

7 1(0’ @, e) - 6[(0)'71)/2(1 + 8)7 if I(O, ;G) <
(83,4) I(6,V,e) > {I(B, v)/Nte, it I(6,¢,6) = . ¢

((8.2) is possible by A8-a, (8.3) is possible by Lemma 2, and (8.4) is possible
by Lemma 6.) Since a(6) is (3*) closed and hence compact, there is a finite set
of points {¢1, -, o} (r = r(8, 8, v1)), for which

(8.5) a() € l.l;Jl Vi (where V; = V(g;, 0, 8)).
Hence, under A (v1, v2),

(86) PoN > 1) S 5 P (3 00(0) > (L ) logdl
for all ¢’ £ h(6), where

(X, Vi, 2%)
(®7) wi (0) =108 XG5 3w

(Keep in mind the fact that v; (6’) depends upon 8 implicity through V; =
V(e:, 0, 8), and that, by definition,

(8.8) By [v;,:(0") + 10, Vi A9) | X©, X® ... XYV = 0.
Now, suppose that '

(8.9) nz —(1+ )1+ 6) loge/I(6, n1).

Then

(8.10) Py [N >n] = ; Py [Z:; v;,i(0") + I(6', v1)/(1 + &) > 0]-

Let
(8.11) J(0,0) = {i: 1(¢, Vi, e) < = forallec§&}.
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By B3, there is a (3) neighborhood Q of 6 such that I(6/, Vi, e) < =
if I(6,V,;,e) < « and ¢’ £ Q. Hence, for all ¢ £ J(6, 6), and all 8’ £ Q,

n

Pa' ii ' I I; 1 1 0
(8.12) Ll (v;,(0") + (0, 7)/(1 + 8)) > ]

=< Py [Ci; > 0] 4 Py [Cos > 0] + Py [C3; > 0],

where

n

(8.12a) Cii = 2 [w;,(8") + I(8, Vi, N\) — 816, v)/4(1 + 8)],

j=1
(8.12b) Cai = Z‘i (=100, Vi, \9) 4+ I(0, Vi, N*) — 8I(0,v1)/4(1 + 9)],
=

and
(8.12¢) Cy = Zl[—I(e', Vi, Nt) 4+ I(0,v1) — 8I(0,v1)/2(1 + 8)].
iz

Given the first 7 — 1 trials, Cy; has a finite moment generating function in some
neighborhood of 8 and a negative mean at . Applying Lemma 5 as in Theorem 1,
we can show that there is a (3) neighborhood @ of 6 and a positive cinstant b, ,
(Q and b, depend upon 6 and &) such that
(8.13) Py [Cri > 0] < 7
for all 6 eQ, and 7¢eJ(6, 6). As a direct consequence of (8.3), (8.4)
and Lemma 8,

(8.14) I, Vi, NY) > 1(6,v1) — 81(6,71)/2(1 + 6)

for ¢ e J(8, 6) (in fact, for all 4, but we don’t use this). By B1 and B4, there is
a (3) neighborhood @ of 6 (depending upon & and ;) for which

(8.15) 16, Vi, \*) > 10/, m1) — 8I1(¢, v1)/2(1 + 8)
whenever ¢’ ¢ Q and 7 ¢ J(6, 6). Consequently,
(8.16) Pe [C3i >0 =0

whenever ¢’ ¢ Q.

In order to deal with the expressions Py[Cs; > 0], we recall that B3 and B4
permit us to choose a (3) neighborhood @* € h(6) of 6, (@* depends upon 8
and &) for which the following statements are simultaneously true:

(8.17) A = A(8,5) = Sup {max [ max ) |I(0, Vi, e) =18, Vi, )]} < =,

‘e Q* e, e'eg teJ(0,0
(8.18a) |I(0, Vi, \) — I(6”, Vi, N)| < nes/8
forallX ¢ A,,, and
(8.18b) [0, Vi, Ng?) — I(0”, Vi, Not)| < nos/8
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for all ¢', 6" ¢ Q* and all 7 £ J (6, 6),
where

(819) Mqs = il’lfgr, Q* 61(0’, 71)/2(1 + 6),

is positive by virtue of Lemma 8 and B1.
Let T ¢+ be as defined in Theorem 1. If ¢ & J(6, 6), then for all 8’ £ Q*,

(8.20) Cy = Dy + Dyi + Dsi + Dy
where by (8.17),
(821) Du= 2, [=I0, Vi, A?) + (0, Vi, \{)] £ AT o,

1575To*

(822) Du=_ 2. [=I10,Vi,A?) + I(8;, Vi, N1 S npsor/8
TQ*<jsn

(since A = A\ and §; e Q* € ©6,U @, for j > T'q),
(828) Du= 2., [—I(6;, Vi, N}) + I(8, Vi, M) < npee/8

TQ*<j<n

(since 6’ and 8; are in @* for j > Tqs), and

(8.24) Dui = —ndI(8, v1)/4(1 + 8) £ —npg/2.
Thus, for all ' € Q% 7 ¢ J(9, 6),
(8.25) Py[Ce; > 0] = PoI[TQf > nuge/44A].

By Theorem 1, there are finite positive constants k. and b, , and a (3) neigh-
borhood @ of 6 such that

(826) PW[TQO > nﬂqt/4A] = k2 exp (—b:m)

for all 6’ € Q. (ks , bs and @ depend upon 6, 6 and v, .)
Combining (8.12), (8.13), (8.16), (8.25) and (8.26), we see that there are
finite positive constants b; and k; and a (3) neighborhood @ of 6, such that for

0 eQ,

(8.27) Z; y Py [Zl v;.:(0") > —nI(6',v1)/1 + aJ < ks exp (—bsn).
1 &J(0, J=
If 22J(6,60) then Ew; (§) = — o under A(y1,v:2) and the technique of
Theorem 1 will establish that there are finite positive constants ks and by and a
(3) neighborhood @ of 6 for which

(8.28) Zo " Py [Zl v;,:(00) > —nI(6,v1)/1 + 6] < ksiexp (—bsan)
T ¢J(0, Jj=
whenever ¢’ ¢ Q. By adding (8.27) and (8.28), and comparing with (8.10) the
conclusion follows. This brings us to the main result of this section:
TuroreM 2. Let 6 be a point of 6. U 0, and let ¢ > 0, v1(0 < v < 1/M),
and v2(v2 > 0), be given. Then there is a function £(c) = £(c; 0, €, v1) which (for
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fized 6, € and v1) tends to zero as ¢ approaches zero, and a (3) neighborhood @ =
Q(8, €, v1) of 8, such that for all 6’ & Q

Ep(N) £ —(1 4+ 72)(1 + e + &(c)) log ¢/I(8, v1)

under procedure A (v1, v2).
Proor. For any n* = 1

By(N) < n* + 3 PolN > ).
jzn*

By Lemma 10, there are finite positive constants k and b and a (3) neighborhood
Q of 6 (all depending upon 6, ¢ and v1) for which

Py[N > n] < kexp (—bn)

whenever 6/ e Q and n = n* = —(1 + €)(1 + v2) log ¢/I(6’, v1). Thus, under
A(v1,72)

Ey(N) = n* + K exp (—bn*)

whenever ¢ ¢ Q. By Lemma 9 and B1, we can assure without loss of generality,
that Q is chosen so that I(#’, 1) is bounded and bounded away from zero in Q.
The desired result follows with £(¢c) = —k”c”"/log ¢, where k'’ and b” are ap-
propriately defined positive constants.

9. Bounds on the probability of error under A(y:, v:). In this section we
show that for0 < y1 < 1/M andvy: > 0, the probability of error under A (v1 , v2)
is O(c) (i.e., less than or equal to a constant multiple of ¢). The essential idea is
sketched in

THEOREM 3. If v1, (0 < v1 < 1/M), and vz, (v2 > 0), are given and 6 is a
point ©,U O, then there is a constant W and a (3) neighborhood Q of 6 for which
the probability of error under A(v1, v2) 18

a(f') = We

uniformly for ' € Q. (W and Q depend upon 71, vz and 6.)
OvutLINE OF ProOF. Let 6 be the true state of nature. By B6, 6 is an interior
point of its hypothesis and hence, there is a set A* & 3* such that

6ecA*N © S R(0).

If an error is committed on the nth trial, then

n f(X(J)’ 0’ x(J)) >
,Sup 2 log Fxe 7o) = () loge
for all ' ¢ A*N o.
If we properly combine Lemmas 2 and 4 with A4 and A8-b, and use the com-
pactness of ©* — A* it is possible to pick a finite collection of sets
{Vi, Va, -+, Vp} © 5* having the properties that
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n X(i) 3 )\(i)) n w(X(f) V. X(j))
log XL A1) o LS SCILER
sceap . ,;1 % FX®, g @) = 0% ; log (XD, ¢, \0)

for all ¢ ¢ A*N O, and
1 'ID(XU) V,, )\(i))
By [exp (1 4+ 72~ Z log FXD, 7, ) <
(where 0 = g < 1) for all ¢’ in some (3) neighborhood of 6.
We now can apply Lemma 5 and obtain

(€] (€]
o) 3 5 5 e [ on iyt = -1+ v

< pc; g"

for all ¢’ in some (3) neighborhood @ of .

10. Bounds on the risk under A(y;, v2). At this point, we are almost ready
to combine Theorems 2 and 3. However, a lemma concerning the relationship
between I(6, v) and 1(6) is required: '

LemMa 12. Let K be any (3) compact subset of U 0, . Then, lim 4.0 I(6,y) =
1(6) uniformly for 6 ¢ K.

Proor. By definition, 1(6, v) < I(8) = I(6, 0), for all v. Let A*{e} =
(1 — My)Ngle} +v. (A\*eA,.) Then

106, 0,0%) = (1 — M~)I(6, ¢,73) + 721(0, o, e) = (1 — My)I(6,0,2).

But then,

I(6,v) = lnf 1(0, e, A\ 2 (1 — My) lnf 1(0, ¢, Ng) = (1 — My)I(6,0)
@ £ a( ¢ € a(

So,

1(6,0) = lim,,o I(6,v) = 1(6,0).

Since the convergence is monotonic and since I(8,vy) and I(6, 0) are (3)
continuous, the convergence is uniform on (3) compacta.

TueorREM 4. Let K be a (3) compact subset of ©: U O, over which the regret
function is bounded. If e(e > 0) is given, then for sufficiently small vi(y1 > 0),
and va(y2 > 0), the risk under A(y1,v2) 18

R(6) £ —(1 + e+ £*(c))c log ¢/I(6)

for all 6 ¢ K. (Here, £*(c) depends upon K, e and ¢, but tends to aero as ¢ ap-

proaches zero).
Proor. Let 6 ¢ K be given and let = ¢/¢ + 2. Choose v so that 0 < v» <
(5/2)(1 + 8/2)"". By Theorems 2 and 3 there is a (3) neighborhood Q(6) of 8

such that
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Ey(N) = —(1 + v2)(1 + 6/2 + £(¢; 6, 1)) log ¢/I(8', 1),
and a(6’) < We for all ¢ £ Q(6). The risk is, by definition,
R(6") £ cEp(N) + rxa(6)

for all 6’ ¢ K (where rx is the upper bound for the regret over K). Combining
Theorems 2 and 3

R(6') = — (1 + 8+ &(c; 0,7, €))c log ¢/I(6', 71)

for 6’ £ Q(8), (where £(c; 0, v1, €) approaches zero as ¢ — 0).
Since K is compact, a finite number of neighborhoods Q(68) cover K:
K C U521 Q(6:). Let
§(c, K, €, 'yl) = IMNAX;i=1...s E,(C, 0,' y Y1, 6).
For all 6 ¢ K,
R() = —(1 4+ 6+ £(c; K, ¢, m1))e log ¢/I(6, v1).

By Lemma 12, we can pick v; so small that I(6,v1) > (1 + 8)I(9) for all

6 e K. Let
£ (c) = £(c)/1 — 8
and the conclusion follows.

11. Comparison with other procedures. This section will serve to establish
the optimality of the class of procedures {A(y:, v2)} in the following sense: If
a procedure B has risk BR(6’) < (1 + o(1))c log ¢/I(6") for some 6’ ¢ 6, U 6.,
then for some other '’ £ 6,U 0., R(8") is of a greater order of magnitude than
—c log c:

(i.e., lim sup ;.0 R(6”)/(—clogc) = »).
Thus, the risk under procedure B is greater (by an order of magnitude) for

some 6" ¢ ©,U O, if it is significantly smaller than that of A(y:1,v2) for any

other ¢’.
Three preliminary lemmas are required. The first is a theorem about convex

sets:
LeMMA 13. Given 6 € 6,U 6, and & > 0, there is a finite set &5 = $5(0) & a(0)

having the property that
max, .5 1(0, ¢, ) < o, for all ¢ & ®;
and
maxy . p min, . s, 1(6, ¢, \) = I(6) + /2.

ProoF. Let 8 = {s:s = (I(6, ¢, &), -+, 1(6, @, ex)), ¢ € a(0)}, let S5 be
the convex hull of 8y and let 85 be the closure (in M dimensional Euclidean
space) of 85 . Define a function m on A X 85 by:m(\,s) = D1l siM{ed (where,
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of course, s = (s, -+, su)). By Theorem 2.2.7 of [1], maxy . m(), s) =
MaXigigu 8 is continuous and convex on 35 . Since 1(6, ¢, ¢) = 0 for ally ¢ a(6),
39 1s a closed subset of the positive orthant and maxa . a m(\, s) = 0 for all
s &8y . It follows that max, . » m()\, s) achieves its minimum on 3; (say at
§= (5, ,5u)). Let

1(6) = min, . gy max . am(), 8) = maxy . s m(}, §).

In particular, I( 0) = max; sksu s;, Since § is a point of closure of 8; , there
is a point s* = (s}, -+, k) in Sf , such that TMaX: gk g M s = maxi<k<u & +
8/2 = I(6) + 8/2. By Theorem 2.2. 2 of [1], s* is a convex combination of a
set of M’ < M + 1 points s of $s

M’ M’
s* =Y a;s” where a;> 0, E a; =

1=1 =1
Let ¢ be such that
S(i) = (I(ar ‘P“)a el)) s I(G, ¢(i)’ 3M)) i = 1’ 21 R M.

Let & = {o®, 0@, -+, o™"}. Since st < 1(0) + 8/2, fork = 1,2, --- M,
it follows that

min, . s, 1(6, ¢, ¢) < 1(6) + 8/2, for each e,
so that
maxy . o Ming, . o, 1(6, ¢, €) < I(6) + 5/2.
But,

{nai([ inf m(}, s)] = max[ mf m(}, s)] = max[ infm I(6,0,\)] = 1(6).
€ te8p ca

By Theorem 2.4.2. of [1],
max[ inf m()\, s)] = min [max m(), s)] = 1(6),

aesa 3880

so that 1(6) < I(8). By B, I(6) < « for §£6,U ©,, so that 1(8) < «
Hence,

max I(0,p,e) < for all 0 ed;;
for if I( 0, ¢®, e;) = o, then s{) = =, contradicting the fact that

max s¢ = max Z a:1(0, P, &) < 1(0) + 8/2.
igksM ISkSM i=1

This establishes the lemma, since
max), . » [miny, . s, 1(6, o, )] < 1(0) + 8/2 < 1(0) + 8/2.
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DEeFINITION

(XD, g, \
8x(6,0) = Z logw

The next two lemmas establish the sought after optimality property. The
first says that Sx(0, ¢) must be large with high probability if the probability of
error is to be small at 6 and ¢. The second shows that the rate of growth of
S.(0, ¢) is such that n must be very large in order to make S,(6, ¢) large.
Together, these lemmas show that the expected sample size must be large if
the probability of error is to be kept small. (Here, N is the sample size required
to reach a terminal decision.)

LemMA 14. Suppose 8 € .U 6., ¢ £ a(0) and procedure B has the property
that a(8) = O(—c log ¢) and a(p) = O(—clog c). Then for any (0 < 6§ < 1),

Py[Sx(8, ¢) < —(1 — 8) logc] = O(—c’ logc).
Proor. Assume (without loss of generality) that 6 € ©,. Let
B, = [H, is accepted on the nth trial] N [Sx(6, ¢) < —(1 — &) log c].
Then,
Po[Sn(8,¢0) < —(1 — 8) logc] = ; Py[B,] + Po[H, is rejected]
< ‘"Z, Py[B,] + O(—c logc).

Since

P, [accept Hy] = O(—clogc) = E P,B,] = Zf H 1?2, 0, \?) du(z?)

By j=1

=Y f g e) H f(@?, 0, \) du(z?) = exp (1 — 8) log ¢ >, Ps[B.]
n By J=1 n
it follows that
PoSn(6, 0) < —(1 — 8) logec] < e ™ 0(—clogc) = O(—c’ log c).
LemMaA 15. Given 6 € 6,U 6, and & > 0,
Po[max; cm<n Min, . o, Sm(6, ¢) = n[I(0) + 8]] = 0(1/n).

Proor. By Lemma 13, min, . s, 1(6, ¢, \) < I(8) + 8/2 for all X ¢ A. Hence,
min E 108, 0, A7) = m ( mln 100, ¢, N*)) = m(1(0) + 8/2)
@& Py j=1

for any set of (randomized experiments) {(A®, -+, A"} where

Ne} = (1/m) :v_‘l, A9 e}, (so that A\* ¢ A).
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Let

Wy _ v (X2, 0,2) %)

and
ZP(e) = 2 1(8, 0, AD).
i=

If n = m, min, . s, 23 (0) < n(I(8) + §/2), so that if
min, ¢ o, (Z5 (¢) + Za’(¢)) Z n(1(8) + 9),
then
max, . o, 2o’ (¢) > n8/2, for n = m.
Since
Sm(8,0) = Z3 () + Z’ (o),
Py[ max min Sm(8, 0) = n(I(8) + 8)] < ‘Ez_“,@ Py[ max ZP (o) = nb/2].

1gmgn ¢ &
For each ¢, {Z$ (¢)} is a martingale sequence, so that {IZ,(,,l (o)} is a semi-
martingale. By applying Theorem 3.2 of [4] we obtain
Pyl max |Z5 (0)| = n8/2] < 4B, |Z5P (o) P/n?6".
<mZn
Let

2

f(¥,,6,¢) _
O I

Since ¢ ¢ ®; < a(6), we have, by Lemma 12, that (6, ¢, ¢) < « for all ¢ £ &.
By Cy, ¢*(6, ¢) < o forallp £®;.
Let o3(8) = Z@f(e, 0).

pePp

Since

(8, ¢) = max Ey|log
e &8

Eo| Z8 (o) = nd’(6, 0),
we conclude that
Pofmaxi gmgn Mily ¢ 3, Su(8, ) Z n(I(8) + 8)] < 403/ns* = O(1/n).

The main theorem of this section now follows readily.
TuroreM 5. If a procedure B has risk R(6) = O(—clogc) for each 6 € 6, Ue.,
then
R(8) = —(1 + o(1))c log ¢/1(6)

for all 6 £ 6,U 6, .
ProorF. Let n* = n*(¢c, 8) = —[(1 — &) log cl/[1(6) + 8], (0 <& < 1).



SEQUENTIAL DESIGN OF EXPERIMENTS 797

Py[N = n*] £ Po[maxi cmgnx Ming e o, Sw(f, ¢) = n*(1(60) + )]
+ Py[min, 5, Sx(6, ¢) = —(1 — 8) logc].
(This is so because
MAX1 <m<nr MiNy ;65 Sw(0, ) = n*(1(0) + 6)

whenever N < n* and min, . s, Sx(6, ¢) = —(1 — 8) logc.)

Since R(0) = O(—c log ¢) for each 6 € 6,U 6,, Lemma 14 applies to each 6
and each ¢ ca(8). (Since R(6) = cEy(N) + r(8)a(0) = O( —clogc) and
since 7(8) > 0on 6, U 6;, a(f) = O(—clogc) on 6, U 6,.) In particular,
P; [min Sx(6, ¢) = —(1 — 8) log ¢]

oed;
< D PiSy(8.0) £ —(1 —5) loge] = O(—c log ¢).
8

ped
By Lemma 15
Pl max min Sn(6,0) = n*(I(8) + 8)] = O((=loge)™).

1=m<n* ¢ ¢ P

Hence,

__(1 — 68)(1 + o(1)) log ¢

Ey(N) = n*PoN > n*] = 10 + o

Consequently,

—(1 4+ 0(1))(1 —8)cloge

R(6) = cEy(N) = 10 + 5

for all (0 < 6 < 1). Hence,
R(6) =2 —(1 + o(1))c log ¢/I(6)
which was to be proved.

12. Concluding remarks. (a). The optimal properties of the class of procedures
{A(v1,72)} have been established only for those points § where the regret is
positive. It is quite likely that these procedures are not optimal when the true
state of nature lies in a region where the regret is zero. The core of the difficulty
lies in the fact that for most meaningful statistical problems, 7(8) is zero on
the boundary between the two hypotheses, rendering Theorem 2 virtually useless.
To put it another way, when 6 is a boundary point, the likelihood ratio tends to
be small in magnitude, causing the expected sample size to be large.

(b). In any particular case, the choice of (6% 3*) to compactify © need not
be unique. However, there seems to be a natural method of determining a suit-
able compactification of © (if one exists at all) : With each point 6 £ 6, we can
associate a point in a function space, 5(6) = (f(+, 6, &), -+, f(, 0, en)). If
we denote this function space by £ and let £* be the set of limit points of £
(in the sense of almost sure convergence), it seems natural to define ©* so that



798 ARTHUR E. ALBERT

the domain of F(-) can be extended in such a way that F(-) now takes values
in £* The topology on 6* will most naturally be one for which component-wise
continuity for & can be established.

For the prototype example, 6 is Euclidean two space and the function space
&, consists of all functions F(my , my) = (2r) (™% @™ a5 m, and
m, range over the real line. £* consists of all functions F(m;, ms) as m; and m;
range over the extended real line. It seems quite natural to take ©* to be all
points of the form

¢ = (ml,m2)1—°° =m =< o, —® S my £ o,

and the obvious topology on the enlarged set 6* will satisfy the conditions set
forth in our assumptions. The relativization of 3* to © will be the usual topology
on R®. Alternatively, we could take ©; to be all points of the form

Y = (m11m2))_°° <my,mg = ®

and let 35 be the relativization of 3* to ©;. Again, 35 wll satisfy the required
conditions and the relativization of 35 to © is also the usual Euclidean topology.

(¢). Finally, a word should be said concerning the apparent complexity of the
class of procedures {A (v1, v2)}. The use of the p-p.m.l.e. 8, , (with0 < p < 1),
instead of the seemingly more tractable maximum likelihood estimate 4, , is
necessitated by the fact that 8, may not exist in © whereas, 8, always will. (When
O is a finite set, as was the case in [2], §, will always exist in © and hence, it is
permissible to take p = 1.)

In order to guarantee the consistency of 8, , it is, in general, necessary that
the randomized experiments A put positive weight on each e in &. In our proto-
type problem for instance, suppose that the experimental rule dictates that e; be
performed on the first trial and e, be performed thereafter. Then (s, , 1Ma,)
will not converge to the true parameter. To circumvent this difficulty, we re-
quire that the \‘”’s be chosen from A, .

Chernoff recognized this difficulty in [2] and he proposed a different modifica-
tion of the experimental rule which allowed him to choose his experiments from
the larger class A. However, it appears that this technique is not readily analyz-
able in the case where O is infinite.

Uunder the stopping rule given in [2], the probability of error is O(c). When
the parameter space is infinite however, this author can prove only that the
probability of error is O(c"/**") for any y: > 0. By modifying the stopping rule
so that sampling ceases when the likelihood ratio is greater than ¢ “*"® (for ¢
between zero and one) instead of ¢ (as in [2]) we too can attain a probability
of error which is O(c).

(d). It seems natural and desireable to extend the results contained here to
the case where & is an infinite set. Such a result would have many applications
to questions arising in connection with statistical inference on time series. It
appears as though suitable continuity restrictions on f(y, 6, -) would permit the
application of the techniques employed here to establish the necessary results.
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