ESTIMATION OF THE SPECTRUM!
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Stanford University and University of North Carolina

0. Summary. This paper extends some results of Grenander [1] relating to dis-
crete real stationary normal processes with absolutely continuous spectrum to
the case in which the spectrum also contains a step function with a finite number
of saltuses.

It is shown by Grenander [1] that the periodogram is an asymptotically un-
biased estimate of the spectral density f(A) and that its variance is [f(A\)]* or
2[f(\)T, according as X % 0 or A = 0. In the present paper the same results are
established at a point of continuity.

The consistency of a suitably weighted periodogram for estimating f(X\) is
established by Grenander [1]. In this paper a weighted periodogram estimate
similar to that of Grenander (except that the weight function is more restricted)
is constructed which consistently estimates the spectral density at a point of
continuity.

It appears that this extended result leads to a direct approach to the location
of a single periodicity irrespective of the presence of others in the time series.

1. Introduction and preliminary lemmas. We shall now proceed to establish
our results.

Let z(n) be a discrete, real, stationary, normal process. It is known (Karhunen
[2]) that the process can be decomposed into two mutually orthogonal stationary
processes as £(n) = x,(n) + z2(n), where x,(n) is a purely periodic process and
22(n) is a purely non-periodic process.
be a realization of size 2N + 1 from the process z(n), and consider the statistic
proposed by Grenander [1],
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The two stationary parts, 1(n) and z2(n), have the spectral representations.

sxl(n) = [ ™ dai(0),

T

(13) ;
?mz(n) =[ ¢™ dz;(\),

™

where z1(A\) and z()\) are orthogonal processes.

We shall use the following two lemmas.

Lemma 1 (Karhunen [2]). If 2(s) ¢s an orthogonal process with the associated
measure o(s) on the subsets s of the elements (\) of W, and if gi(\) and go(\) are
complex valued functions of the real pariable N such that each of them is quadratically
integrable on W with respect to the c-measure, then we have

(1.4) E [[w g1(A) dz(\) ]Wgz()\) dz()\):l = fw g1(\)g.() do(N) .

where do(N) = E{dz(\) dz(\)}.
Lemma 2 (Grenander [1]). For any discrete, real, stationary, normal process
with absolutely continuous spectrum, it was shown that

1 [ sin’[(2N 4+ 1)(1 — ) /2]
2r(2N + 1) L. sin?[l — \)/2]

5 _ 1 "sin’[(2N 4 1) (I — 2)/2] ?
D001 = [21r(2N L segona W d’]

1 " sin[(2N +1) (T — \) /2]
(16) + [21r(2N T [ Sl = N/

sin [(2N 4+ 1)(1 + 1) /2] ¥
B my vy, RO d’] :

where D*[Ix(\)] denotes the variance of Ix()\); also that
cov [Iy(N), In(p)] = Ry(\, 1)

(15)  EIy\)] = f() dl.

_ 1 "sin [(2N + 1)(I — ) /2]
(17) - [21r(2N +1) L. sin [(I — A)/2]
sin[(2N + 1) (1 — u)/2] ¥
R (Y ]f W dl] )
1 "sin [(2N 4+ 1)(1 — ) /2] sin [(2N + 1)1 + n)/2 2
+[21r<2N+ L, sna="/2 @ w0 (’)d’]’

where f(\) is the spectral density.

2. Expectation and variance of Iy(A\). Using Lemmas 1 and 2, it is easily seen
that for our processes, i.e., for discrete, real, stationary, normal processes whose
spectrum includes, besides the absolutely continuous part, a step part with a
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finite number of saltuses,

1 "sin’[(2N 4+ 1) (I — 1) /2]
272N + 1) L. sin?[(I — \)/2]

1 "sin’*[(2N + 1)(1 — \) /2]
2r@2N + 1) L. sin? [0 — N)/2]

: ~ 1 "sin? (2N + 1) (1 — \)/2] :
DU = | gy [ S DU N 40,0y 10|

+[ 1 Tsin[(2N 4+ 1)(1 — \)/2]
2r(2N + 1) L. sin [(1 — \)/2]

_sin[(2NV + 1)1 + 1) /2] ’
s [0 + )\)/2] d(Ul(l)“l-ﬂ'z(l))] ’

(2.3) cov [In(N), In(u)] = Ra(M 1) = RO (N, w) + RO, w),

where

ElIy(N)] = do1(1)

(2.1)

+ daZ(l) )

(22)

1 "sin[(2N + 1)(1 — A)/2]
2r@N + 1) L, sin[( — V) /2]

sin [(2N 4+ 1) — p)/2] :
N EDUZ B 40 + ) |

waw=[
(24)

. . 1 "sin [(2N 4+ 1)(1 — \) /2]
BV (\ ) = [21r(2N oL T smid=n/3

sin [(2N + D(U+ w/2)
N4 DULEDE0,0) + ) |

From the nature of the two parts z;(n) and xz:(n) of the process x(n), their
spectra o1(N\) and o2(A) are respectively a pure step function and an absolutely
continuous bounded measure function. Also it is evident that the spectrum
o(\) of the process x(n) is the sum of ¢1(A) and a2(\) the spectra of the two
parts.

(2.5)

2

3. Asymptotic unbiassedness and inconsistency of Iy(A). We shall now prove

TuroreM 1. For any real, discrete, stationary, normal process whose spectrum
consists of an absolutely continuous part and o step function with a finite number
of saltuses, In(N) ts an asymptotically unbiased estimate of f(\) at every point of
continuity of a(N\).

Proor. Let Si, Sz, -+, S, be the steps of o1(\) corresponding to the values
M, A, -, A of Nin (—m, ). We have from (2.1)

_ 1 "sin’[(2N + 1) (1 — \)/2]
) B = sonsn L, snii=na  @?
n 1 "sin’[(2N + 1) (1 — x)/z]f(l) al,

2r(2N + 1) L sin?[(I — 2)/2]
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where
(32) dos(l) = (1) dl.
The first term on the right-hand side (R.H.S.) of (3.1) can be written as

1 Z”; s sin’[(2N 4+ 1) (A, — N)/2]
2r@2N + 1) & ™" sin? [\ — M) /2] )

If N is a point of continuity of the spectrum ¢(}), it does not coincide with any
one of Ay, k = 1,2, -+, p, and hence all the p terms in the above expression
are finite. As N — o the above expression tends to zero. By Fejér’s theorem the
second term on the R.H.S. of (3.1) tends to f(A) as N — «. We have thus
established that

(34) limy.o E[Ix(N)] = f(N),

at a point of continuity.

THEOREM 2. For any discrete, real, stationary, normal process whose spectrum
constists of an absolutely continuous part and a step function with a finite number
of saltuses, the variance D[Ix(N)] is equal to [f(M)]* or 2[f(A)]* according as \ = 0
or N = 0 at a point of continuity of the spectrum.

Proor. From (2.2)

(3.3)

2 _ 1 " sin’[(2N + 1) (1 — 7)/2] 2
DIy = [21r(2N +1) [ s —na e "2(”)]
1 " sin [(2N 4+ 1)(1 — 2)/2]
(35) + [21(2N Iy [ S = N3]

sin [(2N + 1)(1+))/2] :r

By an argument like that of the previous theorem, the first term on the
R.H.S. of (3.5) tends to [f(\)]* at point of continuity of ¢(\). In the second
term the contribution of the term containing o,(1) tends to zero as N — «, so
that we have only to investigate the nature of

1 [" sin [(2N 4+ 1)(1 — ) /2]
272N + 1) ) sin [(I — X)/2]

(3.6) .
LS [N+ DA+ 2/2 0 0

sin [(I +2)/2]

Case I: A = 0. In view of Fejér’s theorem it is easily seen that (3.6) tends to
[f(MB-oas N — .

Case II: A # 0. We divide the range of integration (—m, =) into six parts
as follows letting A > 0: (—7, =X — €), (=N — ¢, =X + ¢€), (=X + ¢ 0),
O,N—=€),(N— €, A+ ¢),and (A + ¢, 7), where ¢, ¢ are small, arbitrary,
positive constants. Denote the corresponding integrals by I, I, , I3, I,, Is and
I . Applying the first mean value theorem, it is easily seen that I, , I, I, and I,
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tend to zero as N — «. Consider

_ 1 M gin [(2N + 1) (1 — \)/2]
@7 Ii= 272N + 1) fx_.' sin[(0 — N)/2]
sin [(2N + 1)(1 4+ N) /2]
B e (S V) R

Putting ] — N = ¢, we have
B 1 [ sin [(2N +1) ()/2]
~ 2x(2N +1) L. sin [t/2]
sin [(2N + 1) (¢ + 27) /2]
TG J¢tN
_ 1 f sin [(2N + 1)(t)/2]
(38) T 2x@N+1) b sin[t/2]
' -~ sin[(2N +1)(2\ —¢)/2]
- sin[@2\ — #)/2]
1 j" sin [(2N 4 1)(¢)/2]
ToeN+ Db sin /2]

_sin [(2N 4+ 1) (¢ + 27) /2]
sin [(¢ + 2))/2]

Is

fOn —t) dt

FON+2) de.

Hence

B [lsinleN + D0/ |
Lo on T £ sin /2] at

< k f | sin [(2N + 1)(¢)/2] |
2r@N + 1) b sin [t/2]

which can be written (Zygmund [3] p. 67) as
(3.9) Is < [k/(2w(2N + 1))]0(log N).

Hence limy. Is = 0. Similarly limy_, I = 0.
Therefore the expression (3.6), when N\ # 0, tends to zero as N — «. We
thus established that, at a point of continuity

A=2#0, limw. DI(N)] = [T

while at A = 0, limyow D’[I¥(A)] = 2[f(A)]s=0 . Thus, except in the trivial case
f(A) = 0, Ix(N\) is not a consistent estimate of the spectral density at a point of
continuity of o(\).

dt,

4. Consistency of the weighted periodogram estimator. We will now try to
construct a weighted consistent estimator for the spectral density at a point of
continuity.
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Consider
1 X —in = —i
(4.1) IN(>\) = W—-I-—l) vnz-N :c(v)e y—Z—N x(v)e N

Since z(») is real, it is easy to verify that Iy(\) = Ix(—N\),i.e., Iy(\) is an even
function of N\ in (—m, =).

Let w(\) be an even function of A such that, within (0, =), w(\) vanishes
outside (A, == k) and h is so chosen that the & neighborhood of A, does not contain
any saltus of a(\).

Consider

T Ao+h

(42) 7200 = [(Lwmd=2 [ Lwd
x No—h

Taking expectations on both sides of (4.2), we have

. Aoth
(43) B0 =2 [ BI(Ok() &
Taking limits as N — « we have, at a point of continuity,
Aoth
(44) lim E[fx(N\)] = 2 |, TDw() d.
N-»0o o™

Adding the condition for fx(\) to estimate asymptotically unbiasedly f(A) at a
point of continuity A, of o(\), we have

No+h
(45) 2 [7 50w @ = 10u).

If f(\) does not vary too much in the neighborhood of \,, the approximate con-
dition for asymptotic unbiassedness, is

Aoth
(46) [T wyan =4
TrEOREM 3. Let w(\) be a continuous weight function satisfying the conditions
tmposed in Section 4 and (4.6). Let the spectral density f(\) be continuous.
Then, at a point of continuity N\, of o(\), the variance of the weighted estimator
Fx (o). goes to zero as N — .
Proor. We have from Grenander [1] that

47° (2N + 1)°Df5(\) = by r(n + m)r(k + DW(n + k)W (m + 1)

P
%

(4.7)

+ 2 rtntm)r(k+ DW(m + )W + F),

n,

-N



736 V. K. MURTHY

where
(4.8) r(n) = [r e™ de(\) = [r cos n\ da(N),
(4.9) W(n) = [ e™w(\) d\ = [r cos nAaw(\) dA.

Since w(\) is an even function we have
47* (2N + 1)’D’(fx (M)

N
(4.10) =2 3 rn 4 myr(k + DW(n + W)W (m + ).
r_‘”_‘va
Again following Grenander [1] we have

2r°(2N + 1)D’[fx(No)] < a;, r()r(B)W(Y)W(a + 8 — )

(4.11) = ,,.:ENM l:nizi':mv r(n)W(n + ”)][n:z_:w r(n)W(n — v)] .
Case 1. da(\) = f(\)d\

where f(\) is an even function, being the spectral density of a real process. We
have

(f()\) = }Vim _iNr(n)e_"")‘ = ir(n) COS M\,
(4.12) () = lim _iN W(n)e ™ = f; W (n) cos n\,
FOOWO) = lim 3 d(m)e ™,

where
(413)  d0) = LW+ ) = X Wrin + ).
Let us write d®(») = D v r(n)W(n + »). We have from (4.11) that
(414) 2N + DDYEON < 2 (@)Y
Taking the limit as N — « we have, since
idz(ﬁ < o,
that limp, D*[f¥(M)] = 0.

Case 2. da(X) = f(N)dAN 4+ dar(N),
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where a;()\) is a step function with a finite number of saltuses S;, Sz, -+, S,
at M, A\g, -+, N\, respectively.
We have from (4.8)

V4
(4.15) r(n) = r(n) + 2 Sicosn\;.
7=l
We have from (4.11) in another form

2N + DDE0) < X [ 5 Wadrtn +9) ]

: [ > Wnyrn - )]

n=—2N

2N

= 2 {L:ZLN W(n)ri(n + ») + Z; S; n:i“m W(n) cos n_-l—u)\i]

y=—2N

n=—2N =1 n=—2N

. [ % w(n)ri(n — ») + i S; % W(n) cos mx,]}

2N

(416) = 2 {(d”(v))2+d2”(v)g&

y=—2N

2N
- > W(n)lcos n\; cos ¥\; + sin n\; sin »A)]

n=—2N

D 2N
+ d™(v) 2:1 S; Zm W (n)[cos n\; cos ¥\; — sin n\; sin »A;]

P

2N
+ S:8; 2, W(n)lcos n\; cos »A; + sin nA; sin ¥A;]
1 n=—2N

%,5=

2N
- >, W(n)[cos nA; cos ¥A; — sin nA; sin v)\j]} .
n=—2N

But we have, in view of the conditions imposed on the weight function, that

> W(n) cos nh; = W(\;) = 0,

(4.17) I3 W(n) sinn; = 0, and

édz(v) < .

Taking limits on both sides of (4.16) as N — «, and taking into account (4.17),
we have, at a point of continuity of o(\), that
limyaw D[f¥(\o)] = O,

which proves the theorem.
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