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Introduction and summary. This paper concerns the following problem posed
by R. Pyke (1958). What is the cardinality, M;, of the maximal family of
stochastically independent random variables defined on a given space Q, of
cardinality Q@ = k?

Since maximality is sought, the investigation is limited to two-valued, non-
trivial (tvnt) random variables; and the s-algebra of measurable subsets’ of Q
is taken to be that generated by the family of random variables. With these
restrictions the problem is essentially one of cardinality.

The results are summarized in the table below.

Theorem Number 1 2 3 4
Cardinality, k, of space................. <N k=€ k=1 >N, k=N,
Cardinality, My, of a maximal tvnt
family. . ... [log, k] 2¢ 2k N,

Theorem 1 follows from the fact that stochastic independence entails the non-
vanishing of certain finite interséctions of elementary sets. Theorem 2 is a result
of Kakutani, Kodaira and Oxtoby [4, 5, 6]. Theorem 3 is a consequence of a
set theoretic result of Tarski [11], and a theorem of Banach [1, 2, 10, 11], which
results were used in proofs of Theorem 2. Theorem 4 follows from a construction
and a lemma of Marczewski [9].

The paper is divided into five sections. Section 1 introduces the notation and
terminology. Section 2 discusses two types of independence. Sections 3, 4, and
5 treat, respectively, the finite, non-countable and countable cases.

1. Terminology and notation. Let @ be an arbitrary fixed abstract space.
“Q”” will denote the cardinality of @; and “@” will denote the empty subset of €.

If A is an arbitrary subset of @, “A"’ will denote the complement, @ — A,
of 4; and “A" will sometimes be used synonymously with 4 for notational
convenience.

A “c-algebra,” 8, of subsets of Q is a class containing @ and closed under count-
able unions and complementation. A “probability measure” P on § is a countably
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additive, non-negative, real-valued set function such that P(Q) = 1; and the
triplet (Q, 8, P) is called a “probability measure space.”

Since maximality is of prime interest here, it is desirable to restrict considera-
tions to that of two-valued, non-trivial (tvnt) random variables {X,, t e T},
for which the following definitions and restrictions are natural. (a) “4,” =
{Xt — 1}, “A?” — {Xt — 0}; up‘n — P(At) — up}n = 1 — pt(O)”; 0< pe <1
forallt e T, and (b) 8§ = 8({4:,% ¢ T}), i.e., the least o-algebra with respect
to which all the X, are measurable.

A “tvnt random variable,” is then a point function on Q satisfying (a) and
(b). In the sequel only tvnt random variables will be considered.

2. Two types of independence. A family {X,, t ¢ T} of tvnt random variables
on @ will be said to be ‘“stochastically independent w.r.t. (with respect to) a
collection {p., t ¢ T}’ of probabilities if there exists on § = §({4., te T}) a
probability measure P such that P(()7— 4:*) = I5— p;* for each finite sub-
class {4, , -+, Ag,} of 8 and each sequence {¢,} of 0’s and 1’s, P is called the
“stochastic extension” of the {p,}.

A closely related type of independence which will be useful is that of set inde-
pendence.

The { X} are said to be “s-independent” if for each at-most-countable subclass
N = {t, ts, ---} of T with ¢; 5 ¢;for ¢ > jand each sequence {7,} of 0’s and 1’s,
Nom Al = .

Finally, the {X} are said to be “finitely independent” if every finite intersec-
tion N 7-1 Az # 0.

Relations between the types of independence form the basis for the proofs of
Theorems 1, 2, and 3. The fundamental result in this direction [1, 2, 8, 10, 11] is

Lemma 1. If { X} is a o-independent famaly, then for arbitrary given probabilities
{pd, { X4 is stochastically independent w.r.t. the {p4.

Now, since any set of positive measure is non-empty; and since, when 0 <
p. < 1forallt e T, each [ [ 7oy pi» 5 0, the following partial converse of Lemma
1 is valid.

LemMma 2. If a family { X} is stochastically independent w.r.t. some given {p;}
(0 < p; < 1), then the { X4} are finitely independent.

Since for a finite family {XJ}o-independence and finite independence are
equivalent, one can use Lemmas 1 and 2 and an elementary algebraic formula
to find the maximum cardinality M, for finite k.

3. Finite spaces. If Q has finite cardinality, then any family {X,.} of inde-
pendent random variables on Q is necessarily finite. But for any finite class
{Ay, Ay, -+, A} there are exactly 2° sets of the form[)7—; A", which sets are
mutually disjoint and non-empty whenever the {X,} are finitely independent.

However, as previously mentioned, for the finite family {X,} finite independ-
ence is equivalent to s-independence. Hence Lernmas 1 and 2 and an elementary
construction yield,

THEOREM 1. If @ = k < Ny, then
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(@) for each m = log, k, there exists a family of m tvnt stochastically independent
random variables on Q;

(B) if m > log. k, there exists no such family; and consequently

(Y)M) = [logs k] for & < N,.

Since the proofs for non-countable spaces also make use of the relationships
.between the types of independence, it is feasible to treat them next.

4. Non-countable spaces. An indirect result of the Kakutani-Kodaira-Oxtoby
non-separable extension of Lebesgue measure [4, 5, 6] is the following.

TuEOREM 2. If @ = @, the power of the continuum, then there exists a family
of 2° tvnt stochastically independent random variables on Q;and, therefore, Me = 2°.

The proof of Theorem 2 is based on a lemma of Tarski ([12], Hilfsatz 3.16,
p. 61), which lemma can be used to obtain the solution for a special class of
cardinal numbers.

TARSKI'S LEMMA. If Q@ = k2 = k = Ny (where k= = D ,cn k*), then there
exists a class, U of subsets of Q such that

(1) A = 2{‘; and

(2) for each pair £ and N of disjoint subclasses (of U) with cardinalities less

than m,
[Qs] [ 2]

In view of Lemma 1 the interest here lies in a formulation of Tarski’s Lemma
in terms of o-independence. It is readily established that

LemMma 3. If @ = k™ = k = N, for some m > Ny, then there exists a family
{X:, t ¢ T} of two-valued random variables on Q such that

(1) T = 2% i.e., the family is of maximal cardinality; and

(2) the family {X ¢} is o-independent.

The maximal independence theorem now follows from Lemmas 1 and 3, and
the fact that k&' = k™ for k = 2.

Tueorem 3. If @ =k = kMo > N , then there exists a family of 2* tvnt sto-
chastically independent random variables on Q. Consequently, M, = 2k,

At this point one notices that although the proofs have some aspects in com-
mon the results for &k < N and k¥ > Ny are quite different in nature. For the
case k = Ny, not only does the result differ from the two preceding results, but
also the nature of the proof is different. In this last case one employs the results
of Marczewski [9] concerning purely atomic measures.

6. Countable spaces. If (9, 8, P) is a probability measure space, then B ¢ §
is said to be an atom of P if (a) P(B) > 0and, (8) whenever B D E €8, P(E) =
Oor P(E) = P(B).

Further, if © is the union of atoms, P is called purely atomic.

Marczewski [9] has essentially proved that

Lemma 4. If {X,} s countable family of tvnt random variables stochastically
independent w.r.t. {p,}, then the stochastic extension P is purely atomic if and only

i 2mamin (pn, 1 — pa) < .
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Now, if {X,, t £ T} is a family of stochastically independent random variables
on a countable space Q, then clearly

(i) each probability measure P on 8§ is purely atomic;

(ii) for each countable N € T, D ;v min (p:, 1 — p;) < »; and, therefore,

(i) at most countably many of the probabilities {min (p;, 1 — p,), ¢t ¢ T}
are non-zero.

Consequently, one concludes

Lemma 5. Any family of tvnt stochastically independent random variables on a
countable space Q is at most countable.

In order to complete the solution it is sufficient to construct a countable tvnt
family on an arbitrary countable space Q.

In his constructive proof of the necessity of Lemma 4, Marczewski [9] demon-
strates essentially that )

Lemma 6. There exists a countable set {p,} of probabilities; a space Y; and a
countable family {Z,} of tvnt random variables on Y (with B, = {Z, = 1} and
Pn = P(B.)) such that

(@) the {Z,} are stochastically independent w.r.t. {pa};

(B)0 < pu < % foralln;and 2 5 ps < ;

() the stochastic extension, P, is purely atomic; and )

(8) the atoms of P are exactly those sets of the form () =1 B where DR s < .

The space Y above is not necessarily countable. However, it is purely atomic
and has countably many atoms. Hence, there exists a 1 — 1 mapping, ¢, of
the atoms of P onto the single points of any given countable space €. The natu-
rally induced measure; o-algebra; and random variables on Q constitute the de-
sired construction. (A construction with a Markov process is given by Blackwell
(13].)

One, therefore, concludes

THEOREM 4. If @ is an arbitrary countable space,

(a) there exists a countable family of stochastically independent tvnt random
variables on Q;

(b) there exists mo nom-countable family of stochastically independent tvnt
random variables on Q; and, hence,

(C) M Ry = No .
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