SOME MULTIVARIATE CHEBYSHEV INEQUALITIES WITH
EXTENSIONS TO CONTINUOUS PARAMETER PROCESSES!

By Z. W. BIRNBAUM AND ALBERT W. MARSHALL
University of Washington; University of Washington and Stanford Univefsity

0. Summary. In this paper we obtain some multivariate generalizations of
Chebyshev’s inequality, two of which are extended to continuous parameter
stochastic processes. The extensions are obtained in a natural way by taking
into account separability and letting the number of variables approach infinity.

Particular attention is paid to the question of sharpness. To show that the
bound of the inequality cannot be improved, examples are given in a number
of cases that attain equality.

1. Introduction. We begin by discussing a model for the various generalizations
of Chebyshev’s inequality, and for a standard proof that we shall use. Examina-
tion of this proof will enable us to make some general comments concerning the
problems of deriving inequalities and of proving sharpness.

Let (2, ®, P) be a probability space, and let (X, @) be a measurable space.
For each 7 ¢ I, an arbitrary index set, let @; € @ and let F; be a class of random
variables on (Q, ®) taking values in (X, @) such that X ¢&; whenever Y ¢5;
has the same distribution as X. Chebyshev’s inequality and its generalizations
are of the following form:

(11) X &5;implies P(X £ A} < &(A) forall Aee; and all icl,

where for each ¢ ¢ I, ®; is a non-negative function on €; .

For the usual Chebyshev inequality, & is the real line, @ is the Borel sets,
I =(—w, o) x [0, ©), Fp,ee is the set of all real-valued random variables
X with expectation u and variance o°, € .2 consists of all sets of the form
A= (up — ¢ u + ¢)° (E° denotes the complement of the set E), and

‘P(,,,z)(z‘h) = 0'2/62.

In Sections 2 and 3, X will be Euclidean n-space R" for some n, and @ will again
be the Borel sets.

Inequalities of the type (1.1) can very often be proved as follows: for each
1 £ I, one defines a function f; on @; x X to R such that, for each 4 ce;,

1. fi(A, -) is measurable,

2. fafi(A, X) dP is independent of X ¢F;,

3. [ixeayfi(4,X)dP = Oforall X ¢9,,

4. [(xeay fi(A, X)dP = P{X ¢ A} forall X €5;.
Then
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8,(4) = fnfi(A, X)dP = f{xeA’f,-(A,X) dP = P{XeA} forall Xeg,.

Often conditions 3. and 4. are replaced by the stronger conditions

3. fi(4,X) =z Oforallz ¢ X,
4' fi(A,X) = 1forallz e A.

This replacement will be made in Section 3, but not in Section 2.

The above model has been presented with various degrees of clarity and
generality by a number of authors. It is used quite extensively by Fréchet [4],
who credits Cantelli with its first presentation.

An inequality of the form (1.1) is said to be sharp if for all ¢ in I and 4 in
@, there is a sequence { X} r-o of elements of &; such that

o,(4) if ®(4) =1
1 if ®(4) > 1.

By examining a proof of the kind described above where conditions 3’. and
4’. are satisfied, it is often possible to find an example for which equality holds
in (1.1) and thereby demonstrate sharpness. If X is a random variable in &; for
which equality holds for arbitrary but fixed 7 in I and A in @;, then equality
must hold in 3’. and 4’. Hence (neglecting sets of zero probability) it must be
that X assumes in A (A°) only values x for which f;(4, z) = 1(fi(4, z) = 0).
Using this determination of the values that X may assume with positive prob-
ability together with the requirement X £&;, one can often find a distribution
for X if one exists.

When deriving an inequality of the form (1.1), there are certain procedures
one may use to find the functions f;. For example, if the bound is to involve
only second moments of the random variables, then f; must be a quadratic
form. This together with conditions 3’. and 4’. may so severely limit the possible
candidates for f; that one can write f; as a function involving only a few unknown
parameters. Their values can sometimes be found by the requirement that they
minimize the bound &;. Alternatively, one can begin by using the method of
the preceding paragraph to find (in terms of the unknown parameters) the
values that a random variable X may assume with positive probability to
achieve equality in (1.1). The requirement that X ¢%; may then determine
the unknown parameters.

lim P{X; ¢ 4} =
k>0

2. A generalization of Kolmogorov’s inequality.

TueoreM 2.1. Let X;, X2, -+, X, be random variables such that
E(Xul| X1, -+, Xom) 2 i Xoa|  ael,
where Y, = 0, k = 2,3, --- ,n. Let

2 Even though we usually neglect to mention the underlying probability space (2, &, P),
we use the abbreviation a.e. to mean ‘“‘almost everywhere with respect to P.”
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a > 0, b, = max (a, Gs¥er, GesWesWitz, “*° , On ’Hk-i-l‘,/i),
k=1,2, - ,n,bys =0, and let Xo = 0. If r = 1 ¢s such that E|Xi|" < =,
k=12 - n, then

(2.1) P{ max | X 2 Z (bk — Yrbe1) E| Xe|
= k;l bi(B|Xxl” — Y| Xia).

REMARKs. Several known generalizations of Kolmogorov’s inequality follow
from this theorem by setting y» =1, Xpo =Y1+Ye + -+ + Vi, k =
1,2, ---, n, and further specializing the assumptions. In particular, assuming
E(Yl) = O,E(Yk|Y1, ety Yk_l) = Oa.e.,k = 2, e, N, T = 2,&1 = e =
a, = 1/¢, one obtains an inequality given by Loéve [7, p. 386] and by Doob

[3, p. 315]; assuming Y;, ---, Y, mutually independent, E(Y;) =0, r = 1,
a; = --+ = a, = 1/¢, one obtains an inequality given by Logve [7, p. 263]; and
assuming Yi, -+, Y, mutually independent, E(Y:) =0, r = 2, a; = a» =

- = a, > 0, one obtains a result due to Hijek and Rényi [5].
ProoF. Since E(| X ooy Xp1) = Y| Xe| a.e. implies that
vy Xp1) = Y| Xl a.e.,
where X = (sign X;)|X;|", we can take r = 1 without loss of generality.
Let Ay = {ai‘XiI < 1’ 1= 1,2; ,k - 17 alc|ch‘ = 1}; k= 17 N
Then if 7 > k (we denote the characteristic function of a set C by xc¢),

L |ledP=E{xAkE[|Xj||X1) o X)) 2 E{xa ¥ 1 X4}
13

= tl/jf | X dP,
Ak
and by induction it follows that

j;k | X;| dP = <i§1 1,0,-) Lklxkl dP.

Since > i (b; — ¥isbjs1) (JTiks1¥:) = b = @i, and since by = Yipabisa,
k=12 ,n

‘;“ JBIX) = BIX;ul) = 3 (b = bsbis) BIX

n

>

=1 j:

M:

v

(b; — ¥js1 bjga) fAk |X;| dP = 2 2 (bj — ¥4 bjpa) _[Ak |X;| dP

k=1 j=k

(b; — ¥jt1 bj1) (z:;[kl IP,) j;’ | X.| dP

...
I
Al

J

v
™=

a-
;L
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M:

>

k=1 j=k

(b; — Y41 bia) (i-=II;I|-l \l/s)a;lP(Ak) = 1; P(4;)
- =P{max ak[X,,|;1}.

1sk<n

"The proof is now complete, and we list some special cases.
If E(Xk[Xl, ,Xk—l) = X3 a.e., then Yk = 1, k= 2, 3, e, M, and
(2.1) becomes *

P{max @/X:| =1} £ ,:21 (bi — bra) E| X"

(22) = )
= kz; bi(E| X[ — E|Xjal).
If g %0,k = 2,3, -+, n, then with the change of variables
k—1 -1
X1 X1,Xk Xk<H\I/.) y Ic=2,---,n,
=1
in (2.2), one obtains (2.1) after removing the primes.
If {Xy, - -, X,} is a semi-martingale, then so is {X7 , - -+, X5} where Xi =

max (Xi, 0) (see, e.g., [3], p. 295). In this case it follows from Theorem 2.1
that

(2.3) P max aX: = 1) = P{max aX5 =1} < Z (bi — brs) E(XH)"
<ksn k=1

1<ksn
With @y = a2 = --- = a, > 0 and r = 1, this lnequahty has been given by
Chow [2]. It follows from (2.3) that if {X1 , +++, Xn} is a semi-martingale
(2.4) P{max aX, =1} < Z (br — bin)E|X4[.
1<k<n k=1

Ifyr =0,k=23, ---,n thena, = by, k=1,2, -+, n, and (2.1) be-
comes
(2.5) P{max a)Xi| = 1} £ X aiE|X["

1sk<n k=1

This inequality was obtained by Olkin and Pratt [8, p. 234] with » = 2 and
the additional assumption that X;, ---, X, are uncorrelated. With » = 2 it
also appears as a special case of Theorem 3.1.

If o < an([[Gmtr1¥i), 6 =1,2,--- ,n,thenagaina, = by, k=1,2, .-+, n
and we obtain from (2.1)
(2.6) Pf max a|Xi| 2 1} £ aRE| X,

1<k

With n = r = 2, we obtain the following from Theorem 2.1. Let X; and X,
be random variables such that E(X;) = 0, E(X}) = ¢f < o, ¢ =1, 2, and
E(X1X;) = o102p. If the regression of X, on X is linear, then for every positive
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a; and @,
aiol + azor(1 — p')

(27) PlaXs| 21 or affXy| =1} < if ailol = diorp
asos if alol < alorp’.

To obtain this, we have used the relation £, = po; where E(X, | X;) = £X,; a.e.
THEOREM 2.2. Equality can be achieved in (2.1), so that (2.1) ¢s sharp.
REMAREK. Actually we prove slightly more than this. Even though the hy-

potheses of Theorem 2.1 are strengthened by assuming that E(X,) = m and

E(Xi| X1, -+, Xe) = &Xi ae. (in which case we take ¢ = |&|), k =

2,3, -+, n, equality can be attained in (2.1) so long as biE|Xy|" = bi|m|. If

the hypothesis E(X;) = m is added to Theorem 2.1 and biE|X)|" < bim|,

then (2.1) is no longer sharp, and a better bound for the case n = 1, 7 = 2 has

been obtained by Selberg [10].

Proor. We introduce the notations E(X:) = m, u = 0, E|Xi| = u,
k=1,---,n Since r = 1 and E(|Xy| | Xa, oo, Xia) = | Xi| ace., it fol-
lows from Hélder’s inequality that

E\X\ = BE{X.] | X1, - -, Xact}] = EIE{|Xd| | X1, -+, Xat)]
; w;Ele_ll" k = 2’ 3’ cee,n.

Hence bi(ur — Yimi1) 2 0,k = 2,3, .-+, n.
Now suppose that bju = byjm| and that D s;bi(ui — imia) < 1, and

consider a random vector Z = (Z,, ---, Z,) with the following distribution
(where ¢, = |&|, k = 2,3, ---,n):
2= (21, ,2) P(Z =2)
— - 1,
b11<1)52)f2£3:"'y112£i> é(bll-‘l'i'blm)
- - 1, -
—bll(lyfz,&'&;"‘,nfz‘) §(b1u1—b1m)
— - l r/ r ror
:I:bzl<0, 1,&, - ,IIJ;",-) é(bz(uz — yau1))
— i 1 r r ror
:‘:bkl(oy Ut 707 17£k+11 Tty H £‘> §(b"(“k - 'I/k“k‘l))
ikt 1
— 1 r r r r
+£57°(0, --+,0,1) 5 (bn(un — Yhuna)

©,---,0) 1 —I;bi(m? — i pi).

Then Z,, Z,, -- -, Z, satisfy the conditions of Theorem 2.1; in fact they satisfy
the stronger assumptions given in the above remark.
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Suppose that for some k, b;|Z;| = 1. Then for some j = k,
be = a;(JTicin1vs), and on  {be|Zi| = 1}, Z; = Zi(JLiwen £)-
Hence
be|Zi| = a;1Z;) 2 1 sothat maxicegn belZi| 2 1

implies max; < <n | Zx| = and

L
P{maxlékén aklel _Z__ 1} = Z)?=l bl’c.(”'/: - ¢;I—‘£—l)'

Thus the random vector Z attains equality in (2.1).

Next suppose that bjui = bym| but that ) iy bi(u — ¥kuia) > 1, ie., the
bound of (2.1) exceeds unity. Choose ¢i, ¢z, - -+, ¢n such that 0 < ¢ < by,
k=1,2 - ,n, > rci(ui — ¥imi) = 1, and such that ciui = cifm|. Then
in the distribution of Z, replace by by ¢z, k = 1,2, ---, n. For a random vector
defined in this manner,

P{ max @|Z: = 1} = P{ max b|Z: = 1} = P{max c|Z =2 1} = 1,
1<kgn 1gkgn 1<kzn

and the bound of unity is attained.

3. Generalizations of Berge’s inequality. We consider now multivariate
generalizations of Chebyshev’s inequality providing bounds for

P{maxléign aiIXil = 1}

under assumptions regarding second moments.

In 1919, Karl Pearson [9] published a generalization of Chebyshev’s inequality
providing an upper bound in terms of second moments for the probability that
a two-dimensional random vector falls outside a given ellipse. His results may
be described as follows: Let &, be the class of random vectors X = (X1, X2)
with E(X:) = 0, E(X?) = 7,7 = 1,2, and E(X1X,) = o1 ; let € be the class
of sets A, C R?of the form A, = {# = (21, 2) :fo(z) < 1}, where the boundary
of A. is the ellipse f.(z) = ex: + exrs + estyrs = 1. Since f, is positive definite
and not less than one on A{, it follows that X ¢, and A, ¢ © implies

wotadtan= [L(X)aPz [ [(X)dP 2z P{XzAl.
Q {X¢de)

If A = {(21, 22) @z < 1,7 = 1,2}, where a; and a; are positive, it is trivial
that

(31) Play|Xi = lora, |Xd =1} = P{X 24} < infasace ff,,.(X) dp.
Q

In a special case, P. O. Berge [1] computed this bound and obtained the fol-
lowing inequality: If X = (Xi1, X») €5, , then for all k£ > 0,

(3.2) PX)| = koy or |Xa| = keo} < [1+ (1 — o))/,
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where p = 015/(0102). Whenever ¢ = (o3, 03, 012) is such that the covariance
matrix is positive definite (i.e., o3 > 0, ojo3 > 1) and the bound is not greater
than one, Berge gave an example attaining equality to show that (3.2) is sharp.
The bound of (3.1) was computed in general by D. N. Lal [6] and follows from
(3.4) withn = 2, v = 1.

We describe now a natural generalization of Berge’s result to higher dimen-
sions. Use a prime to denote transpose and let $, be the class of random vectors

X=(X,X,, --,X,) taking values in R" with moment matrix A =
(E(X:X;)). Replace the functions f. above by quadratic forms Fu(z) = z'Mz
where x = (z1, -+, z,)' e R" and M is an n X n positive definite matrix. If

Ay = {z:2'Mz < 1}, it follows as before that for X £F, ,

®(M, A) = fX'MX P 2 f X'MXdP 2 P{X zAx).
Q

{X¢Am)
If A = {z:aias] < 1,7 =1,2, ---, n}, we obtain

(3.3) P{X zA} = inf ®(M, A),
AyC A
which is the desired inequality. Unfortunately the bound is not easily computed.

This generalization of Berge’s result has been recently investigated by Olkin
and Pratt [8] and by Whittle [11]. They consider the set @ of positive definite
n X n matrices M for which Ay = {z:2’Mz < 1} C A and prove that there is
a unique element M* of this set such that infy fo Fu(X) dP = [o Fu+(X)dP
where Fu+(2) = xM*z. They have not succeeded in obtaining M* but were
able to characterize it as the solution of a certain matrix equation. Using this
result they prove that the inequality (3.3) is sharp.

It is possible to obtain many inequalities related to (3.3) that are not sharp,
since, M ¢ @ implies P{X 2 A} < [o X’MX dP. An inequality of this kind was
given by Lal [6] and a better one by Olkin and Pratt [8].

Extension of (3.1) to n dimensions are obtained by generalizing the sets
A = {zeR:a|mi| < 1, ag|ze| < 1} to n dimensions, and the sets F, to sets of
n-dimensional random vectors. Clearly both of these generalizations may be
accomplished in many ways other than those used to obtain (3.3). In the re-
mainder of this section, we obtain an extension of (3.1) which differs from (3.3)
in that only certain terms of the covariance matrix are assumed known.

THEOREM 3.1. Let v be an integer in the interval 0 < v < n — 1, and let
7y, -+, 1, be integers such thatry = land romy S 1 < by kb = 2,3, -+, ». If
X = (X1, -+, X»)' s a random vector with E(X?) = o7 < ©,i=1,2, ---,n
andE(X,‘.X,url) = @, < 0',-'.0','..;.1,7: = 1, 2, ey vandife; > 0,7, = 1,2, st ,MN,
then

n Voo gt
(34) P{X|<e,i=12 -, a}z1-2F4+2% i
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where
0' 0' 2

, 2

T4 T ond dy =l — 4

€" € i+1 €ri€it1

y t=1,2,-4,v

(¢f v = 0, regard the empty sum of the bound as zero).

ReMARk. Inequality (3.4) is applicable whenever all the moments E(X})
are known. It utilizes all knowledge of second moments whenever (possibly
after a permutation of the random variables X;) every 3 X 3 principle minor
of the matrix (E(X;X;)) has at least one unknown entry.

Proor. We begin by assuming that ¢; = 1. For 0 < ¢ < n, let

c;—di f1<i<
(3.5) a; = 20: ifl<i=vande; #0

0 otherwise,
Since 02,0541 > o for 1=¢=v4d;##0and
= [(es + 2led) (es = 2led)) > e — 2l
so that |a < 1,0 <7 = n.
Fork=1,2 :---,n—1let
Frpa(x) = Fra(m, -+, ) = :Zo (Tip — o)’/ (1 — o).

If Q ?é 0,
Fin(z) = Fu(z) — 27, + (Tr, — oaten)’/ (1 — ak) + zk41 5

using this and the relation Fy(x) = Fi(x), it is easily established by induction
that Fi(z) = 23,1 £ % < k. Hence

Fo(x) 20 and Fo.(zx) =21 for 224 ={z:2; < 1,i=1,2, .-+, n}.
From this and the relations

2
] 2] i C — d%

1-& &' 1-& 2d

we obtain

E[F.(X)] = ; (e: ;d;i e > d* + Z o5

= Z %y Z oi = f F.(X) dP 2 P{XeA}.

1=1
{Xe4}

(36)

Inequality (3.4) follows from (3.6) after the change of variables X7 =
eX:,?=1,2 ---,nis made and the asterisks removed, so that the proof is
complete.
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If in (3.4) we take » = n — 1 and r; = 7, we obtain
P{|Xd| < &,2=1,2,---,n}

3.7 . n 2 2 2 %
(3.7) 1__{01+an+z[< <7;+1> 242']}
i=1 €3 €41 €€i+1

where o; = E(X:X:4),7=1,2, ---,n — 1. Withy =n — land r; = 1,
(3.4) becomes

P{X:| <e&,i=1,2,---,n}

(3.8) 1 (& o2 o2 n—1 2 \2 2
> _ 1 g __ _ 1 0541 — 4¢z
z 1 2 {é é 3) + Z I:( s+1) 6?6’“244] }

where @; = E(XlX,'.H), 1= 1, 2, R (Rt 1.

Note that with » = 0, (3.4) becomes (2.4) with r = 2

We investigate the sharpness of (3.4) only in the special cases (3.7) and (3.8),
and only under the additional hypotheses that E(X;) = 0,z = 1,2, -+ |, n

Consider first (3.7);i.e,assume v =n — landr; = 1. 0 Z = (Z1, -+, Zn)'
is a random vector for which equality holds in (3.7) then equality must hold
throughout (3.6) when X is replaced by Z. This means

(3.9) F.(Z) = 0ae. on {ZcA}
and
(3.10) F.(Z) = lae. on {ZgA}.

Since {F,(z) < 1} is strictly convex, F,(Z) = 1 on {Z ¢ A} implies that there
is at most one root of the equation F,(z) = 1 on each plane z; = 1. Hence
there are at most 2n roots not in A of the equation F,(x) = 1. It is easily veri-
fied that these roots are plus and minus the columns b®, - - -, b™ of the Green’s
matrix B = (bij) where b,’,‘ = bji = ﬁj/lsi (1 = .7); B = 1land B = fn;ll Qo
E> 1

In order that (3.9) be satisfied, Z must with probability one assume in A
only the value (0, ---,0)’; in order that (3.10) be satisfied, Z must with prob-
ability one assume in Ac only the values :I:b(") Thus Z must have a distribution

of the form
P(Z =} =p/2, P(Z=-b"} =pl/2
Piz=0y=1-3 (B+2).
=1 \2 2
Ifu= (u,us, -, uUs) where u; = (p; — pi)/2, then E(Z) = B'u. Since
|B| = I]ie:i (1 — o) and |ai| < 1 Bis posmlvé deﬁmte and E(Z) = (0, ---,0)’
if and only if u; = 0,i.e,p; = pf ,i = 1,2,
Now consider the equations

(3.12) E(Z) =o6i,i=1,2, -+ ,n, E(ZZin) = i,i=1,2,--+,n— 1.
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From (3.12) we obtain o + o741 — awps = @i/, and since we require les] < 1,
(3.12) is consistent with (3.5). It also follows from (3.12) that

o — o o3
1 102
1 —af’ k

=1’

2 2 2 4 2
or — 20 ok41 + ay o

2(1 — o)

(313) pp =% 20iciataiiol
' ’ 2(1 - a/t—l)

222k=n—1,

0'2 - a2 1 0'2
n n— n—1
L 1 —_ aﬁ,_l ’ k
The expressions for p; and p, are easily verified; the other p; are obtained by
computing (0']2¢ - ai_loi_l) —_ az_l(ai_l - az_loi) and (0’% —_ oqzco'i_i_l) -
aj(ohs1 — ajor) in terms of the p; .

Since (3.13) is the solution of (3.12) it follows that (3.11) together with
(3.13) does provide an example satisfying the hypotheses of (3.7) providing
that pr = 0 for all k. Furthermore,

=n.

n n n—1 n—1
1
Sp= ot = 5 wr = gt A T (ot + o) — 4D,
so that the example attains equality in (3.7).

It follows from Schwarz’s inequality that o1/02 = |au| and this implies p; = 0;

similarly, p, = 0. For 2 < k = n — 1, p, = 0if 07 — 20k_106—1 + akyor = 0
and o7 — 201;2‘024_1 + ajor = 0. That 18, pr = 0 if

o 201 i 201
(3.14) 14+ - 2 57— and 14— =55
Of—1 Ojk—1 O Ok+1 O Ok+1
These conditions are satisfied, e.g., for of = ¢°, k = 1,2, ---, n or for ¢, = 0,

k=12---,n— 1.
With n = 3, the covariance matrix

1 V7 7
2 8 16
Vi1 V7
(3.15) % 1 “§
[1 VTl
16 8 2

provides an example of p, < 0, since both conditions of (3.14) are violated.
Thus we cannot claim sharpness for (3.7) under all conditions.

If we write F,.(z) in the form F,(z) = a’Mzx, then B~ = M. In view of
Theorem 3.7 of [8], this is as expected.

To investigate the sharpness (3.8), let b®, b, - b™ be the columns of the
matrix B = (b;;) where by; = 1, b;; = a;1a;(7 # j) and oy is given by (3.5)
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withr, = 1,k =1,2,---,n — 1 and a9 = 1. Suppose that Z = (Z:, Z., - -,
Z,)' has the distribution

@ W 1[ . Halloly — aiod) D1
P{Z ="} = P{Z = —b"™} =§[01—Z—3——l——T’—]=—2~,

§=1 1 - a;

2 2 2
P{Z = b®} = P{Z = —b®) =_2"'El____°":%1_%=%,k=2,3, o

P{Z =0} =1 —kzlpk.
Using the relations

(c: — d? 2 (c: — d¥) — 2,°

1 + a% - ct(czzqog dt) , a; — cz(cz dz) 2(91

1+ 0‘3 cie: — df) ’
one verifies that ) s ps is the bound of (3.8). It is straightforward to verify
that E(ZY) = 03, =1,2, - ,nand that E(Z:Z:41) = 05,5 =1,2, .-+ ,n — 1.
Since P{maxi<i<n [Z: = 1} = D i1 pi, equality is attained in (3.8) whenever
X has the same distribution as Z. Of course the example is valid only if p, = 0,
k=1,2,---,n From Schwarz’s inequality, it follows that ¢ — aj— o = 0 so
that pr = 0,k = 2,3, - - -, n. However, if the first and second rows and columns
of (3.15) are interchanged, an example is obtained for which p; < 0. Thus, as in
the case of (3.7), we cannot claim that (3.8) is sharp under all conditions.

This example can be obtained by arguments similar to those used in investi-
gating sharpness of (3.7). Both examples can be obtained using the results of [8]

4. A lemma on separability. In the remainder of this paper, results of the
preceding sections are used to obtain some inequalities of the Chebyshev type
for continuous parameter stochastic processes. Separability of the processes will
of course be required (the term ‘“‘separable” will be used to mean “separable
relative to the class of all closed subsets of the extended real line”, although a
weaker separability would suffice). From now on, the underlying probability
space (9, ®, P) will be such that P is complete.

If {X,,t = 0} is a separable process and S is a countable set satisfying the
definition of separability and containing the points 0, , then {supsp.n |X¢ < 1}
is measurable and P{supupon |Xi < 1} = P{supssnp, |X: < 1}. However
for a positive function f on [0, ) it is not clear that {supe.o.1 [|X/f(¢)] < 1}
is measurable and the following lemma, is required.

LemMma 4.1. Let {X,, t = 0} be a separable process, let f be a positive function on
[0, ) having at most countably many discontinuities, and let + > 0. If S is a
countable set dense in [0, ») satisfying the definition of separability and containing
the set of discontinuities of f as well as 0 and 7, then {w:supep. [|X(w)|/f(1)] < 1}
18 measurable and

| X i { (k — 1)f(2)
Pham ) <1f - i =

for all teSN[O, r]}.

(4.1)
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Proor. Let {tj}71 be an ordering of SN [0, 7] with the property that
SUPcero,r) infige<n [t — G| — 0 as n— . Let {Son, S1my *** ) Sniny Sngrn} =
{0,t1,8, -+ ,tn, 7} Where 0 = $on < 810 < *** < Spn < Spp1n = 7. Let
Gkn = SUPse(op_rmenm J(E), 6 = 1,2, -+ ,n 4+ 1,n =12, ---,and let

n+1 n+1

fa(e) = g Qi X(spotimosi () + k;ﬂf(sk.n) X{sn.n}('),

where for any set E, xgz represents its characteristic function. By considering
separately the case that ¢t ¢ SN [0, 7] and the case that ¢ is a continuity point
of f, it is easily shown that lim,.. f.(t) = f(¢) for all t £ [0, 7].

Let A, = {|X,| = fu(t) for all te SN [0, 7]}, and let B, = {|X:| = fa(t)
forall ¢ ¢ [0, 7]}. Since {X,, ¢ = 0} is separable and P is complete, it can be shown
that for all n, B, is measurable and P(4,) = P(B,). Since f, = fou = f, it
follows that A, D A, and B, D B,y for all n. Hence

42) P (ﬁ A,,) — lim P(4,) = lim P(B,) = P (61 B,.).

n=1 n-»w0 n->0

But

ﬁ 4, = {|X = f(t)forallt e SN [0, 7]} and
(4.3) — |
[']1 B, = {|X| = f(t)for all ¢ £ [0, 7]}.

Now let Cx = {X, = [(k — 1)/k]f(¢) forallt e [0, 7]}, k = 1,2, - - -; applying
(4.2) and (4.3) with f(¢) replaced by [(k — 1)/k]f(t), it follows that C; is meas-
urable and P(C:) = P{| X,| < [(k — 1)/k]f(t) for all t ¢ S N [0, 7]}. Since
Cix C Crp for all k, P{supsro.(| X |/f(£)) < 1} = limgsw P(Ci) = limpee
P{| X,| = [(k — 1)/k]f(t) for all t £ S N [0, 7]}, as was to be proved.

We remark that the assumptions of the above lemma are not sufficient to imply
that the set {| X;| < f(¢) for all £ ¢ [0, ]} is measurable. However {sup:e.,]
(| X |/f(8)) < 1} c {| X¢| < f(t) forall ¢t £ [0, 7]} so that if this latter set is
measurable and if P{supeo.n (| X:|/f(t)) < 1} = &, then P{| X, | < f(¢) for
allte[0,7]} = @

6. An inequality for semi-martingales. In this section we apply (2.3) to
obtain an inequality for semi-martingales, and give an example to demonstrate
sharpness.

TraEoREM 5.1. If {X,, ¢ > 0} is a separable semi-martingale such that E|X,| =
p(t) < o« forall t < 7, and if f is a non-decreasing positive function on [0, 7]
such that the Riemann-Stieltjes integral in the following bound exists, then

X, o p(O) du(t)
(51 Plam 21 s 5o+ [ -

Proor. Define 8, $o,n81,n, *** , Sn1.n 88 in the proof of Lemma 4.1, and let
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fo = [(k — 1)/k]f.Since X,yy Xs1nr = » Xonsr. Satisfy the conditions of (2.4),

Xc.n ”(0) W n(si.n) - ﬂ(si—l,n)
P ‘{;“2’1 Fulsim) = } 70 T & Fe(sim) '

Since limy.w SUP;—; 2,ccc.nt1 (8in — Siaa,n) = 0 and since the integral exists,

. w M(si,n) - l"(ss‘—-l.n) _ rdl"(t)
m Y e~ h T

Then since

X X
lim P fin >1} P{ su —'>1},
n->w {0§1§n+1 fk(sz n) tesn [pO-fl fk(t)

we obtain

u(0) [ du(t)
P {ufr‘,‘[%ﬂ ok 1} 2l-r0 " h T

Hence by Lemma 4.1,
X p(0) _ [Tdp(?)
P{ sup o~ < 1} 21— as claimed.
ceton FC0) FIONEE IO}
If {X,,t = 0} is 2 martingale and r = 1, {IX d", t = 0} is a semi-martingale
and it follows from Theorem 5.1 that if u'(¢) = E | X, |,

IXt I #(0) " dw ()
(52) d {;Z"[t‘.il 1O = 1} =TO " h 0

The restriction of Theorem 5.1 that f be monotone is not necessary; in any
case, g(¢) = inf,<,<. f(s) is monotone and g(¢) = f(¢) on [0, 7] so that
X, < #(0) " du(t)
(5.3 P { su = 1} + | ==
) ST Y =2 T h 50
One can prove (5.3) sharp by replacing f by ¢ in the example of the following

theorem.
THEOREM 5.2. Equality can be attained in (5.1) whenever the bound does not

exceed one.
Proor. Let w be a random variable such that

Plo = wi = [(0+)/f(0)] + a(w)
where a(w) is the Lebesgue-Stieltjes integral [, [du(t+)/f(¢)] (wedenote
lim, ; u(s) by u(t+) and similarly define u(t—)). Let
7(8) = [u(t) — p(@—=)/k@+) — p(-)]

unless u i8 continuous at ¢, in which case n(t) = 1 (define u(0—) = u(0)). The
process {Z,,0 < t < 7} defined on [0, 7] by

0) t < w,
Zy(w) = yn(«)f(w), t= o,
f(w)’ T ,2_ t > w,
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is a semi-martingale since it has non-decreasing sample functions. Furthermore,

u(0+4) f dp(w+) p(t+) —p(t =) _
Eth| = 70) |Zt(0)| + 05 |Zt(w)| 7(@) + IZt(t)I—f(t-)————- = u(t)
so that the process satisfies the conditions of Theorem 5.1.

The existence of the Riemann-Stieltjes integral [¢ [du(¢)/f(¢)] implies that f
and g have no common discontinuity points, so that supeepo..; [Z:(w)/f(t)] =
whenever v < 7. But P{w < 7} is the bound of (5.1) so that the process attains
equality, and the proof is complete.

It is possible to modify the Z, process of Theorem 5.2 to obtain a martingale
attaining equality in (5.2). Where the sample function Z;(w) jumps to some
value, say v, the modification jumps to » or —v with probabilities chosen so that
the martingale condition is satisfied.

6. An inequality for a class of second-order processes. We now apply (3.7)
to obtain an inequality for second-order processes satisfying certain regularity
conditions.
~ The inequality, together with an ingeneous heuristic derivation, has already
been given by Whittle [12]. Using (3.7) as a starting point we give a more
straightforward proof, and, in the stationary case, we show that the inequality
is sharp by defining a process attaining equality.

The procedures used to obtain an inequality for processes from (3.7) might
also be used with (3.8) as a starting point. If this is tried, only a trivial bound is
obtained.

THEOREM 6.1. Let {X,, t = 0} be a separable stochastic process with E(X,;) = 0
for all t, and let f be a positive function on [0, © ) with at most countably many dis-
continuities. For non-negative s and t, let (s, t) = E(X,X:), ¢°(t) = o(t, t),
and g(s, t) = a(s, t)/[f(8)f(t)]. If g has continuous third partial derivatives, then

|Xt| 1
P{:}%}z, Xy } < 5 100,0) +9(s,7)]

+f [9(‘ 1) 2zar g(w,y)lz-,,=,] dt.

ProoF. Since ¢g( -, -) is symmetric, it follows that for all non-negative s and ¢,

(6.1)

ag(x,y) ag(z,y)
- — = — —1 t
g:(t) el N pvand B g2(t)
g(z,y) 8°g(z,y)
. p— = — = t
(62) (t) 6x6y z=y=t Oyax z=y=t 92,1( )
3’g(z,y) a°g(z,y)
= 77 = = t .
gl,l(t) 922 et o oyt gz,z( )

Since the third partial derivatives of g are continuous, it follows from Taylor’s
theorem that
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g(t, 1) + gt + At 4+ A) = 2¢(8, t) + Alga(t) + ¢2(2)]
+ 32%g1a(t) + 2g12(8) + g22(8)] + 0(4%),
and .
g(t, t 4+ A) = g(t, 1) + Aga(t) + 3A%:2(t) + o(A7)
for all non-negative A and ¢. Making use of (6.2) we obtain
{lg(t, t) + g(t + A, t + A — 46%(t, ¢ + A))?
(6.3) = 2A{g(t, )gra(t, )1 + o(A%)/ AW = 2A[g(¢, t)gr2(t, 1)]'[1 + 0(A)/A],
forallt, A = 0.

Define 8, son, S1n, ***, Snta,n a8 In the proof of Lemma 4.1, and let
fi =1 (k — 1)/k]f. Applying (3.7) and (6.3) we obtain

{P max [ Xl > 1} = 2—(klc_—1)2{g(0,0) +g(,7)

0<igntl fk(& n)

+ ;0 [[g(si,n,si.n) + g(3i+1,n 8i+l,n)]2 - 492(8i,n sz’+l,n)]*}
2

T o(k— 1)

(6.4) .
{9(0, 0) +g(r,7) +2 ; (Sit1m — si,n)[g(si,n,si,n)glz(si,n)];

0(3i+l,n - si,n)
<1 + Si+1,n — Sin )} )
The limit on the right side of (6.4) as n — o is

K 1 ! 3

m{g [9(0,0) 4 g(r,7)] +fo l9(¢, )g1.2(8,2)] dt},

and the limit of the left side of (6.4) asn — % is P{supwsnio. [| X:/fe(t)] > 1}.
From Lemma, 4.1 it follows that

Xl o 1X| -
P {5’}%‘31 = 1} =imP {ufh‘[‘% IOk 1} < \m M.,
and the proof is complete.

COROLLARY 6.2. Retain the hypotheses and notation of Theorem 6.1 and suppose
that there.is a real function h such that g(z, y) = h(y — x) for all non-negative
zandy. If H(-) = {1 — [K*(-)/h*(0)]}* has a derivative H'(0) at the origin, then
KW (0) = 0 and

(6.5) P{ sup X > 1} < h(0)[1 + 7H'(0)] = h(0) + 7[— h(O)R"(O)]%.

Mk=

teto.r) f(2)
Proor. The second bound of (6.5) follows directly from (6.1). If
(i —1)r o bty = ( T_)
t,‘ = —1—,67 = (}(t»,,t ) = h(O) @ = 1 2 e,eﬂ_l = g(tzt,.yl) = h n—1 5
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t =12 .-+, n — 1, then by applying (3.7) and passing to the limit on =,
one obtains the first bound of (6.5). This bound can be rigorously established
by showing that it is equal to the second bound. By computing H'(t) and using
the fact that H'(0) exists, one can show that A’(0) = 0. The hypotheses of
Theorem 6.1 imply that H’ is continuous at the origin, so that by using a Taylor
series expansion of A°(t), one obtains

‘oY — 1 K (t) _[_»w07
H(0) = = lIm oy — wop “[ h(0>]'

and the desired result follows.
TuaeoreEM 6.3. Equality can be achieved in (6.5) whenever the bound does not

exceed one.

Proor. The bound of (6.5) dependson {X,, ¢ = 0} only through A(0) and
H'(0). To prove the theorem, we show that for all possible values of these
parameters, there is a process {Z;, 0 < t < 7} attaining equality in (6.5) with
E(Z;) = 0 and with

hz(8) = E(ZZea)/FOf + 8)],  Hz(d) = {1 — [hz(a)/hz(0)]}}

satisfying hz(0) = h(0), Hy(0) = H'(0).
Let @ = [0, 7] x {—1, 1} U {(0, 0)}, ® be the Borel subsets of ¢, and let P
be the probability measure defined on ® by

P{(0, 1)} = P{(0, —1)} = P{(r, 1)} = P{(r, —1)} = h(0)/4,
P{(0,8):0< 0<a,6=1} = P{(6,8):0<0<a,d= —1}
= }ah(0)H'(0),0 < a = 7,
P{(0,0)} =1 — A(0)[1 4+ 7H'(0)].
Define the process {Z;,0 <t = 7} on (2, ®, P) by
Z(0,8) = f(t)sexp [— |t — 6|H'(0)].
Then E(Z;) = 0 by symmetry, and
hz(A) = 3h(0){exp [— |¢ — O|H'(0) — [t + A — O|H'(0)]
+exp[— |t — 7|H'(0) — [t + A — 7[H'(0)]}
+ [oexp [— |t — 6|H'(0)] exp [— [t + A — 6|H'(0)]h(0)H'(0) db
= h(0) exp {— AH'(0)}{1 + AH'(0)].

Thus hz(0) = k(0). Direct computation of Hz(0) = [— h7(0)/h(0)]! yields
HZ(0) = H'(0). Thus the process {Z,, 0 < t £ 7} satisfies the conditions of
Corollary 6.2. Since

124 }= 0<perl o .
P{,?}%B,f(t)gl P{(6,8):0 <0 =} =h(0)[1+7H'(0)],

the proof is complete.
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In order to apply (6.5), one does not need to know the function A but only
h(0) and H'’(0); presumably a better bound could be given if » were known.
The preceding example shows that if A is of the form A(A) = o*(1 + ald)e™®
(a 2 0, A = 0), then no such improvement is possible.

Acknowledgments. The authors are most grateful to Robert M. Blumenthal
and to the referee for a number of valuable suggestions and comments.

REFERENCES

[1] P. O. BERGE, ‘“‘A note of a form of Tchebycheff’s theorem for two variables,”’ Biometrika,
Vol. 29 (1937), pp. 405-406.

[2] Y. S. Crow, “A martingale inequality and the law of large numbers,” Proc Amer.
Math. Soc., Vol. 11 (1960), pp. 107-111.

[3] J. L. Doos, Stochastw Processes. John Wiley and Sons, New York, 1953.

[4] Mavurice FrficHET, Recherches Théoriques Modernes sur la Théorie des Probabilitiés,
Book 1, Gauthier-Villars, Paris, 1937.

[5] J. HAsex AND A. RENYI, “Generalization of an inequality of Kolmogorov,” Acta Math.
Acad. Sci. Hungar., Vol. 6 (1955), pp. 281-283.

[6] D. N. LaL, “A note on a form of Tchebycheff’s inequality for two or more variables,”’
Sankhya, Vol. 15 (1955), pp. 317-320.

[7]1 MicHEL Lo&vE, Probability Theory. New York, D. Van Nostrand Co., 1955.

[8] INgrAM OLKIN AND JoHN W. PraTT, “A multivariate Tchebycheff inequality,” Ann.
Math. Stat., Vol. 29 (1958), pp. 226-234.

[9] KarRL PEARSON, “On generalized Tchebycheff theorems in the mathematical theory
of statistics,’’ Biometrika, Vol. 12 (1919), pp. 284-296.

[10] HEnrik L. SeLBERG, ‘“‘Zwei Ungleichungen zur erginzung des Tchebycheffschen
lemmas,” Skandinavisk Aktuarietidskrift, Vol. 23 (1940), pp. 121-125.

[11] P. WHITTLE, “A multivariate generalization of Tchebichev’s inequality,” Quart. J.
Math., Oxford 2nd Ser., Vol. 9 (1958), pp. 232-240.

[12] P. WHiTTLE, ‘“‘Continuous generalizations of Tchebichev’s inequality,” Teoriya
veroyatnoste! i ee premeneniya, Vol. 3 (1958), pp. 386-394.



