NOTES

ON THE CHAPMAN-KOLMOGOROV EQUATION!

By Jack KarusH

University of California, Berkeley

A partial answer is given to the question of whether every Markov random
function comes from a system of transition probabilities satisfying the Chapman-
Kolmogorov equation. A given Markov random function determines the transi-

tion probabilities up to sets of probability zero and for any choice of the transi-

tion probabilities the Chapman-Kolmogorov equation holds up to sets of
probability zero. The problem then is one of selecting appropriate versions of
the transition probabilities so that the Chapman-Kolmogorov equation holds
everywhere. It is shown that such selections exist whenever the time parameter
set is countable or whenever the joint distribution of any two of the random
variables is absolutely continuous with respect to the product of the marginal dis-
tributions. Although the latter condition is always satisfied when the state
space is countable, or more generally, when each random variable assumes a
countable number of values with probability one, this case, being especially
simple, is treated separately. The results are based on exploiting the device of
using the marginal distribution when in doubt about what the conditional prob-
ability distribution should be.

Let (X.,t e T) be a Markov random function, where 7 is a set of real numbers
with elements denoted by r, s, £, u, v. Let 8§ be the o-field of linear Borel sets,
and for every ¢ define P,(S) = P[X, ¢ 8], S ¢8. For every s, t, s < t, consider
the joint probability distribution of X, , X, . There exists what we shall call a
version of the conditional probability distribution of X, given X, or, more
concisely, a version of P(X.| X,), that is, a function P,, of z, S, z real, S ¢ §,
such that P.:(-, S) is Borel for every S €8, P,:(z, -) is a probability distribu-
tion on 8 for every z, and

f P,(dz)Pyi(z, §) = PIX, ¢ 8, X, ¢ 8, 8,8 ¢s.
8

The Markov property implies that for r < s < ¢, P.*P, is a version
of P(X;| X,), where by definition -

(P#P;,) (2, 8) = fP,s(x, dy)P,(y, S), allz,Ses,
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so that the Chapman-Kolmogorov {C — K) equation
Pr(z, 8) = (PrrPs)(, S)

holds forx ¢ N €8, S €8, where P,(N) = 0 and N depends on 7, s, t, S.

On the other hand the usual approach ([1] pp. 89, 255-6) is to start out with
(Pse, s, teT, s < t) satisfying the C — K equation identically, together with
an arbitrary initial probability distribution Py, , T being assumed to have a
minimum value &, and to construct the probability distribution of the cor-
responding random functions. A natural question is whether the probability
distributions of all Markov random functions with T having a minimum value
are obtained in this manner, or slightly more generally, whether, or under what
conditions, one may select versions P, of P(X, | X,), s < ¢, satisfying the C — K
equation identically. .

Each of the conditions 1-4 below ensures such a selection; 1 and 2 are special
cases of 4 and 3, respectively, but are isolated because of their simplicity.

1. T = integers. In this case an obvious selection is available. For every n
take any version of P(X,41 | X») and define for m > 0, all n,

Pn,,,.,.,,.(x, S) = an,n-j-l(x, dyl) an+1,n+2(y1 , dyz) tee

f Prim—2,ntm(Ym—2y QYm1) Poimimim(Yma,S), allz, S8,

It is easily verified that P, n4m is a version of P(X,4m | X») and the C — K
equation is satisfied identically. This amounts to verifying that the operation
““%” is associative.

2. For every ¢, P, is discrete, that is, there exists a countable set C'; such that
P,(C:) = 1. For every s, if P,({x}) > 0 then necessarily

P[X, =x,X¢£S]

PIX, = 2] , t>s8¢S8,

Pst(xy S) =

and if P,({z}) = 0 define

P.(z, 8) = Py«(8S), t>s Ses.
Since Pifx: P,({x}) = 0] = 0, P,; is a version of P(X,|X,). If r < s < ¢
and P,({z}) > 0 then P.(x, 8) = (Pn*Ps)(x, S), S 8. If P,({x}) = 0 then
Po(2,8) = PiS) = [Pud)Po0,8) = [Pula, dy)Pusly, §)

= (Pra*Pst) (x, S), S €8,

3. For every s, ¢, s < {, there exists a version P,, such that P,.(z, -) is abso-
lutely continuous with respect to Pi(P,.(x, -) < P,) for all z, or equivalently,
the joint probability distribution of X, , X < the product measure P, x P,,



CHAPMAN-KOLMOGOROV EQUATION 1335

or equivalently, << some product measure N x u, A, u o-finite. We first establish
the equivalences. Assume P,,(z, - ) < P for all z and suppose (P, X P.)(B) = 0,
where B is a two-dimensional Borel set; then there exists N ¢ § such that P,(N) =
0 and P,(B;) = Oforz £ N, where B, = [y: (z, y) ¢ B], and we have

Pl(X,, X)) e B] = f P.(dz)P.i(z, B.) = 0.

Conversely, if the joint probability distribution of X,, X; < A X g, \, u o-finite,
then P, < N and P; < pu, so that there exist densities dP,/d\, dP,/du.
Let 8 = [2: (dP,/d\)(x) > 0], S’ = [2: (dP./du)(z) > 0]. Then P,(S) =1,
Py(S)=1,A<P,on8S,and u<< P;on §8,sothat A\ X u << P, X P;on 8 X &
and P[(X,, X:) £ 8 X 8] = 0. It follows that the joint probability distribution
of X,,X; < P; X P,and therefore has a density which*can be taken to be of the
form ps(x)pst(x’ y) where

fpu(x, y)P(dy) =1 for all z.
Then
P,(z,8) = fsp,,('x, ¥)P.(dy), allz, S e,

defines a version of P(X,| X,) and P,(z, -) < P, for all z.
Let U be the union of a countable dense subset of T and the countable set of
points of T which are not two-sided limit points of 7. For every ¢ let

N, = U [x: Pu(z, Sy) # (PuxPuw) (2, Sy)],

t<u<v
u,velU
y rational
where S, = (—, y), and define, fort < u ¢ U,
Ptu(x;')=Ptu(x7') ifxezN,

= P, fzeN,.

Since P«(N.) = 0, P,, is a version of P(X, | X,) and since a probability distri-
bution on § is determined by its values on S, , y rational, we have, for 2°¢ N, ,

Pu(z, ) = (Pu*Pu)(x, -), t<u<wv,uvel,
and hence
Pu(z, ) = (PurPu)(z, ), t<u<wv,uvel.
Forz e N,
Pu(z, ") = (PuxPu)(z, -) = P,, t< u<v,uvelU,
by the same reasoning used in 2. Therefore
Ptv=Ptu*Puv7 t<u<ov,uvel.
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Now Pun(x, -) < P, for every z; consequently Pu.(z, -) < P, for every z. It
follows that PP, is independent of the version P,, of P(X,|X.) for any
s > u. Let P, be another version; then for every S ¢ 8,

Puy: Pu(y, S) # P;a(y’ S)]=0
so that for every , Pu(z, [y: Pu(y, S) # P..(y, 8)]) = 0 and hence

[ Pute, a)Puty, ) = [ Put, &) Pty §)

or PPy = Pu.*P.,. In particular
P = PusPu = PuxPu,, t<u <vu,veU

If s < t 2 U there exists a u ¢ U such that s < u < ¢ and we define
P,, = P,.*P,; . Then P, is a version of P(X, | X,), isindependent of the version
of P(X.| X.) selected, and is well defined, forif s <u <v <¢,u,v ¢ U, we have

lpsv*Pvt = (Psu*Puv)*Pvt = pau*(Puv*Pvt) = Psu*Put

since P,.,*P.; is a version of P(X,| X.). Finally, the P,/s satisfy the C — K
equation identically. Suppose 7 < s < t. If s ¢ U then P,, = P, xP,, by defi-
nition. If s ¢ U there exists u € U such thatr < 4 < s < ¢ and, since PPy,

is a version of P(X.| X.),
Prt = pru*(pus*Pst) = (Pm*pus)*Pst = Pfa*Pst .

4. T is countable. Here we impose no condition on the X/’s, but, guided by
3, we enlarge the exceptional set N, to obtain absolute continuity to the extent
needed. For every s define N, as above with U = T and set

Ms = N3U }.j [IL'I ng(x, Ng) > 0].
>s
Then P,(M,) = 0 since Ps(N,) = 0 and for¢ > s
0 = PUNY = [ Pu(dz)Pu(a, N

which implies P,fz: Ps:(z, N¢) > 0] = 0. Suppose r < s and = ¢ M, . Then
P.(z, M,) = 0; for P,(x, N,) = Oand if ¢ > s,

0 = Pulz, N.) = [ Prs, dy)Puly, N0)

which implies P,s(z, [y: Pe(y, N:) > 0]) = 0. For s < ¢ define
Pu(=, -) = Pu(z, +) if z 2 M,
= P, ifxeM,.
Since P,(M,) = 0, P,; is a version of P(X,|X,). Suppose r < 8 < ¢. Then

arguing separately for x £ M, and « ¢ M, , we obtain for all z, P.(z, 8,) =
(P, *Py)(z, S,), y rational, so that P.(x, -) = (Pn*Py)(x, +). Since
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Pu(y, *) = Pu(y, -) if y 2 M, and P,.(x, M,) = 0 for all z it follows that P,, =
rs¥L gt «
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A GENERALIZATION OF A THEOREM OF BALAKRISHNAN!

By N. DonaLD YLVISAKER?
New York University
1. Introduction. Given a stochastic process {X(¢), £ T} on some probability
space with second moment kernel
EX()X(@)] = K(s, 1),
a characterization is given of the function
m(t) = &X(t).

This characterization includes the result .of Balakrishnan [2] for the case of
second order stationary, discrete or continuous parameter processes.

2. The characterization. Let 7 be an abstract set and let K be a positive
definite kernel on 7' X T. A function m on T is said to be an admissible mean
value function for the kernel K if there exists a stochastic process {X(t), t ¢ T}
on some probability space with

EX(8)X(@®)] = K(s,t) and  8X(f) = m(t).

LemmaA 1. m ¢s an admissible mean value function for the kernel K if and only
if K(s,t) — m(s)m(t) is positive definite.

Proor. if K(s, t) — m(s)m(f) is a positive definite kernel on T X T, let
{X(t), t € T} be a Gaussian process with mean function m and covariance kernel
K(s, t) — m(s)m(%), (3], p. 72). Then

8X ()X (1)l = &lX(s) —m(s)IX(®) — m(®)] + m(s)m(?)
= K(s, t).
Conversely, if m is admissible,
8[X(s) — m(s)IX(®) — m@®)] = K(s,t) — m(s)m(?)
is positive definite.
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