TWO SIMILAR QUEUES IN PARALLEL

By J. F. C. KINGMAN
Statistical Laboratory, University of Cambridge

1. Introduction. Haight [3] has considered a system consisting of two un-
bounded single server queues, in which a customer, on arrival, joins the shorter
queue. In the present paper, we make the simplifying assumption of symmetry
between the two queues, an assumption that enables us to use generating func-
tions to study the behavior of the stationary solution.

Thus we assume that the two servers each have an exponential service time
distribution with unit mean, and that the arrivals form a Poisson process with
mean 2p. If an arriving customer finds that both queues have equal length, he
joins either with probability 3. :

We first prove that, so long as p <1, a state of statistical equilibrium is
reached. Then the equilibrium equations are converted into an equation for a
bivariate generating function, by which this function is given in terms of two
univariate generating functions. These two functions are shown to be meromor-
phic, and the positions of, and residues at; their poles are found. This enables us
to express the probabilities as an irifinite sum of geometric distributions. It also
provides us with approximations valid when p is near unity, such as the result
that the waiting time distribution of a customer is the same as that for a single
queue with traffic intensity o’

2. Limiting behavior of the system. The first problem to be decided is whether
or not the queue will settle down into a stationary state. Under the assumptions
that have been made, the lengths of the two queues form a continuous time
Markov process, and we first prove a lemma referring to these processes in gen-
eral, giving a sufficientcondition for a valid limiting distribution to exist. This
lemma, which is an extension of a theorem of Foster [2] on the discrete time case,
is of wide applicability, and it is hoped to publish an account of further exten-
sions elsewhere.

We consider an irreducible Markov process X (¢), taking a countable number
of values 7, and we assume that the limits

gii = limew HP(X (D) = j | X(0) = 0) — b

existxand‘ satisfy the conservation conditions »; ¢g;; = 0.
_»LEMMA 1. Let —q.; be bounded. Then the limits

= lim,.o P(X(t) = 7| X(0) = 9)
exist and are independent of i. The {p;} form a probability distribution if and only
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if there exist non-negative y; such that > ini @iiY; < o for all i, and
(1) ;Qij(yi —y)z1

for all but a finite number of 1.
Proor. Let Y (n) be a discrete time Markov chain with transition probabilities
¢:;/Q (i # j), where Q > —g.; for each 7. Then Y (n) is irreducible, and hence

a Césaro limit p; of

pi}’ = P(Y(n) = j| Y(0) = 1)

exists asn — «,ie., .
. 1. L (n)
p; = hm,,.m 7—?, Eo : i |-

Now define a Poisson process N (t.) with N(0) = 0, and E{N($)} = @Qt, and let
X*(t) = Y{N(t)}. Then X*(¢) is a Markov process with the same transition
intensities ¢;; as X (t), and X*(¢) has, with probability 1, only a finite number
of discontinuities in every finite interval. Hence (see, for example, [1]),
P(X(t) = 7| X(0) = 7) = P(X*(t) = j|X*(0) =)
= P(YW ()} =74 | Y(0) = 1)
© —Qt ¢ k
e (@)
=0 k!
It follows without difficulty that P(X(¢) = j|X(0) = 4) —p;, as t — =.
The {p;} form a probability distribution if and only if ¥(n) is ergodic. By a
result of Foster ([2], Theorem 2) this is so if, and only if, there exist non-nega-
tive y; such that

;wmw+u+¢mm<&, all 4,
e N

and .
; Q '¢iyi + (1 + Q'¢i)y: < yi — 1, all but finitely many 1.
J#4T

This is easily seen to be equivalent to the conditions stated above, and the lemma
is proved.

In order to apply this lemma to the problem in hand, we have to consider the
values of the g;; for this process. The g¢i; correspond to transitions mvclvmg
only one event. Thus, if m, n are the lengths of the two queues, there is a transi-
tion of rate 2p corresponding to an arrival, which increases the smaller of m, n
by 1. There is also a transition of rate 1 which decreases m by 1, and another
which decreases n by 1. If we restrict ym.. to be symmetric, we have to satisfy
the inequalities

2P(ymn - ym,n+l) + (ymn - ym—l,n) + (ymn - ym,n—l) (1 - ano) g 1 (mgn)
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for all but finitely many (m, n). It is easily seen that ym,» = m’ + n® satisfies
these inequalities for sufficiently large m, so long as p < 1. Hence we obtain
THuEOREM 1. There exists a unique limiting distribution {pma} of the lengths of
the two queues so long as p < 1. )
In all the analysis that follows, we shall confine attention to the case p < 1,
and to the stationary distribution {pma}.

3. The equilibrium equations. These are derived from the Kolmogorov for-
ward equations in exactly the same way as in Haight’s paper [3], and we shall
not, therefore, go into the details. We note that, by symmetry,

(2) Pmn = Pnm -
With this simplification, the equations become, for all m = =,

2p(m =n = 0)
2 + 2p(m,n # 0)

(3)
2p(m = n)
= P(m =n+ 1) Pm—1,n + 2Ppm,n—1 + Pm ,n+1 + Pm+ti,n -
om=n+2))
Now define
(4) . Fr(W) = ;})in.nx" (7’ = O,\lxl =< 1).

Then equations (3) reduce to

(20 + 1)Fi(z) — (1 + p)axFo(x) = —pot
(5) <z(2ez + 1)Fa(z) — 2(1 + p)aFi(x) + (1 + px)Fo(z) = P — Pro®
z(2px + 1)F,1(z) — 2(1 + p)aF(x) + Fra(x) = Proo — Pr
(r=23,---)

LEMMA 2.
(6) F(z,y) = Z;Fr(x)y'
existsin x| £ 1, [y| < 1+ 2p.
Proor. Put z = 1in (5) and add the first r equations.
(1 +20)F,n(1) — F,(1) = =po =0 (rz1)

so that F.(1) < (1 + 2p)""Fy(1). Hence |F,(z)| < F.(1) < F1(1)(1 4+ 2p)",
and the lemma follows.
In|z| = 1, Jy| < 1 4 2p, the equations (5) may be combined to give

z(2pz + V{[F(z, y) — F(x,0))/y} — 2(1 + p)2F(x,y) + (1 + p)aF(x, 0)
+ yF(z, y) + pxyF(z,0) = (y — x)F(0, y),
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or
{z(20x + 1) — 2(1 + p)ay + ¢'}F(z,y)

= y(y — 2)F(0,y) + {x(2pz + 1) — (1 + p)ay — p21/}F(x, 0).
It follows that, whenever z and y satisfy |z| < 1, |y| < 1 + 2p, and
(8) 2(20x + 1) — 2(1 + p)ay + " = 0,
then y(y — z)F(0,y) = —{x(20x + 1) — (1 + p)xy — pxy’}F(x,0), which
may be reduced to
(9)  yly —2)F(0,y) = —2(2px + 1){1 + pz — (1 + p)y}F(x, 0).

4. The fundamental correspondence. We may define a symmétric 2 -2

correspondence S as follows:
DeriniTion. Y = Sy if, and only if, there exists an x such that the pairs

(z, y), (z, Y) both satisfy (8). Theny + ¥ = 2(1 + p)z, y¥Y = z(2px + 1),
and, eliminating x, we obtain
(10) PV —=2{(1+p+p)y— A +o)Y +y(1+p+py) =0

For a given 3o, we define an “S-sequence”’

(7)

s Y2, Y Y0, Y1, Y2, 0

such that ¥,11 = SYn, Yo = Sy» .
LemMa 3. Any S-sequence {y,} s of the form

(11) Yn = A + p(a\* 4+ a2\
where

(12) A= (14p)/21 + o),
\ is the real, posttive rool, less than unity, of

(13) ANNT =21+ 040/,
(14) p=2"0+ 6,

and a s an arbitrary complex number.
Proor. From (10)

P(Ynt1 + Yna) = 2(1 + p + P2)yn — (1 + p).
Now 2p4 = 2(1 4+p + o)A — (1 + p), so that
(Yotr — A) = [(L 4+ o+ 0)/0)(gn — A) + (Yo — 4) = 0.

Hence y, = A + BA" + O\ for some B, C. However, since y; = Syo, we
may put i

y=A+B+C Y=A+B\+O\"
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in (10), which yields an equation simplifying to
BC = /.
Writing B = pa, C = pa™" proves the lemma.

Two other results which will be used later are:
(i) Since

2
x+r1+2=2+21_+';—+"

(15) =2(1 + p)"/p = A/¥,

N = A/
(1) If |yl £ 14 p, |Y| £ 1+ p, the corresponding value of x given by x =
y + Y)/2(1 + p) satisfies )

lyl + Y]
< Wl 171l <q,
Iacl_2(1 o) =1

b. The univariate generating function F(0, y). Suppose that ¥ = Sy, and that
lyl, |Y] = 1 4 p. Then the corresponding z has |z| = 1, and we may eliminate
F(z,0) from (9) to give '

YFO0,Y) _1+p—(Q+pYy—2z _1+ppmw—10+pYA+20)z—-Y
yF(0,y) 1+ —(Q+py Y—2 14+p2z—>104+py (1+20)2r—y

_(4p)(1+2p)c— (1 +p)(1+2p)2Y — (1 +p2) Y + (1 +p) V?
(14 pz)(1 +2p)x — (1 + p) (A +2p)zy — (1 + p2)y + (1 + p)y*

_(l—2)—Q—2)Y _Y—pz_ (2+0)Y —py
el —a) —(L—xz)y y—pr @C+py—pY’

According to Lemma 3, we may write
y=4+ u(z + 3_1)7
Y =44 e+ 2%,

(16)

and we may define
(17) g9(z) = yF(0,y).
Then

gO2) _ 240 Y —py _24/p+ {(2+p)N—ple+ {2+ )N —p}e”
g  2+ey—rY 24/u+ (24 p—pAjz+ {2+ p— X2

Equation (15) implies that z + A is a factor of both numerator and denomi-
nator, so that

gO) _ v — Nz
g(2) Myz —1°

(18)
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where

_240—p
(9 YIRS EF)

Equatlon (18) is Vahd in A+ pz+2, 4+ e+ N2 21+
Now, if M < |2| = \F, then

> 1.

|A+pG+e) | SA+uld+old S A+p+XH =24 = ii’;2<1+ .

Hence (18) is valid in
M5 < |\ <o <N?P4 8, forsomesd,d >0,
and hence in
AP <l <\ 45, for some & > 0.
g(2) is regular in this annulus, and may therefore be expanded in a Laurent
series

(20) g(2) = _Z::az

Hence (\yz — 1) 3 a" = (v — M2) 3 aa2",

(A" 4+ ) = @\ + DA,
— — t —1\n 1+ X’_ Y
(21) an A_n ao()\ Y ) ]I-Il 1 + Aj'y_l'
This defines g(2) uniquely except for a multlplymg factor. Since a, ~ C(\y
as [n| — «, g(2) is regular in My < o] < 2. Equation (18) may be writ-
ten as

—l)lnl

3
oy — Nz
g(\e) = e — 1 9(2),

which may be regarded as deﬁmng a function regular in )x* < lzg] < )\
except for a pole at 2 = Ay~ and coinciding with g(z) in Myt < l2g] < >\'y
Hence g(z) can be continued into

My < 2] < Ay
except for a pole at z = Ay~ Repeating this procedure, we can continue g(z)

over the whole unit disc, excluding z = 0, as a regular function except for poles
at

2 = A"y (n=0,1,2,---).

This proves
TueoreM 2. F(0, y) can be continued to a meromorphic function over the whole
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y-plane. Its poles are at the points Y, ,n = 0,1, 2, - -, where
(22) Yo = A+ sy N

It is an easy matter to show that ¥, takes its smallest value at Yo = (2 + p)/p".
Then, from the fact that, for some C, F(0, y) — [C/(y — Yo)] is regular in
ly| <-Y1, we obtain the

COROLLARY

(23) pom ~ C'[p"/(2 + p)]" as n— .

Let the residue of g(z) at A\"*'y™ be g, . Then gO\" Py 4 §) = go/t +0(1).
From (18)

gy N) _y =Ny
go‘n-l-!,y—l + §‘) At — ] + 0(3. )

Thus
gort _ _ LA
Agn YL e
so that
" n 1 _ )\J —2
(24) gn = go(— M) II1 :
From this it is easy to see that the residue at y = Y of F(0,y) is ¢, where
1— 2n+1 —2 YO 5 n _ XJ -2
(25) ¢n—¢o———1_)w_2 7, (A" I=I1 TS

Luvma 4. Let C., be the contour in the y-plane corresponding to |¢| = A" Then
supe, [y~ F(0, )| =0, asn — .
ProoF. Since y ~ u/z as z — 0 it is sufficient to prove that

Gn = sups |(xn+§ 10) g()\n+“ 10)| 0.

From (18),
Gn _ )x"'y—lew . 1 + Xn"/_l
=< -~ | = -
Gt — Ny sup 1 — Nye® T = Ay
e R oo
GnSG0<)\ ) IIl—l——W'—-)O, 1f)\"Y<]..

But, if \% = 1, then
M2 4p—M)Zp— (240N EC+oAI+N 2 p(1 + N,
(2+p)/sl ZN+A =1 =2[L+p+06)/]l—1 0Zp

The contradiction establishes the lemma.
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THEOREM 3.

(26) F(O,y) = F(0,0) +y 3> o .
r=0 Y ( - r)

Proor. 4y 'F(0, y) is meromorphlc with poles at y = 0 (with residue F(0, 0))
and at y = Y, (with residue ¢,Y;'). By virtue of Lemma 4 we may apply
Cauchy’s partial fraction theorem to give (26).

COROLLARY

v

(27) Puo = —E_0¢,/YZ‘+‘ (n = 1).

Putting m = n = 04n (3) gives
(28) Pw = p P

6. The univariate generating function F(z, 0). Equation (9) gives
(29) =(20z + 1)F(2,0) = —y(y — 2)F(0, y)/{1 + pz — (1 + p)y}

where (z, y) satisfy (8). Hence F(z, 0) is an analytic function except when
Yy = Yu,orwhen 1 + px = (1 4 p)y. This last equation is satisfied only when
z = 0orz = 1/p’. Now define X, as the value of z such that (X,, Y.;) and
(Xn, Ya) both satisfy (8). Then X, = 1/¢, and it follows that the poles of
F(z, 0) are exactly at

€ =Xn=(You+ Ya)/2(1 +p) = A2+ Ny + X7)/2(1 + p),
(n=0,1,---).
Now (29) enables us to find the residue ¥, of F(z, 0) at x = X, , namely

" T 201 + o)X, (2pX + 1){1 + pX‘ - A+ p)Y.}
It is also clear that the supremum of F(z, 0) on the contour in the 2-plane cor-
responding to [¢] = A" tends to zero as n — «. Hence, as in Theorem 3, we

have

(30)

THEOREM 4.
(32) F@,0 =3 -V
r=0 - r
__3 ¥
(34) ~Cp™

as n — o, for some C.

7. The bivariate generating function F(z, y). By equation (7), F(z, y) has
singularities only on the planes * = X, and y = Y, . We may therefore prove
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THEOREM 5.
(35) Pmn ~ C[sz/<2 + o)™

as m, n.— © i m = n, for some C.
Proor. Since the nearest singularities to the origin are at x = X,,andy = Yo,

Prtrn CX-O-nYE)-r~

Putting Xo = 1/5°, Yo = (2 + p)/p’ proves the result.

As in the two previous sections, we could make a detailed investigation of the
properties of F(z, y). However, much of the interest in a queueing system lies
with the waiting time distribution, and it will be shown in the next section that
this may be determined simply from a knowledge of F(z, 0).

8. The waiting time distribution. The waiting time of a customer depends on
the length of the queue he joins, i.e., on

(36) I = min (m, n).

Now E(Z) = D202 {pu + 22 52 pi) = 2F(z, 2) — F(z, 0). In (7) put
z =y = z. Then

2(1 — 2)F(z,2) = 2(1 — 2)(1 + p2)F (2, 0),

so that F(z,2) = (1 + p2)F(z,0), and E(2') = (1 + 2p2)F(z, 0). Hence the
distribution {p;} of [is given by

(37) P = pu + 2ppi-1,1-1,

and is determined from Theorem 4.

The distribution of waiting time is then made up of a component of zero
waiting time with probability po, together with an absolutely continuous com-
ponent with density

© Wi
(38) f(W) = ; Y zz_—l)" (W = 0).

9. The one-pole approximation. It follows from (22) that, for n large,

Y, ~ uyN"} and from (26) that ¢, ~ C(—X"")"Y;". Hence the rth term in
the series (27) for pao is of order

()\nH'Y)r asr — o,

For all p, A + A" = 6, and hence A < 3 — 2+/2 ~ 0.17. Hence, for n fairly
large, A"y will be very small, and we can safely neglect all but a few terms of
the series. Even for n = 1 (when Ay decreases from 1 to 0.17 as p increases from
0 to 1) this will be valid so long as p is not too small.

Hence, in fairly heavy traffic, we may obtain a reasonable approximation by
taking only the first term of the series for pao . Similar remarks hold for the other
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series, so that

2m
P
R
2 m—n
(39) @+ (m = n)
~(C-P
Poo 24+
for some C. Equation (37) then shows that
(40) pr= C(1 + 2p)p" (1>0).

Thus we are led to
THEOREM 6. In heavy traffic the distribution of waiting time is approximately
the same as for a single queue with traffic intensity p°. .

10. Related problems. Haight [3] also considered the case in which a customer
is permitted to change queues if by so doing he could improve his position. Under
the symmetry conditions that have been imposed in this paper, this process is
equivalent, from the point of view of the total number queueing, to a single queue
with two servers. The determination of the waiting time distribution is, how-
ever, no longer a simple matter, since the order in either queue is not necessarily
the order of arrival.

The problem considered in this paper is an example of a random walk on posi-
tive integer pairs, with rather complicated boundary conditions. The method of
attack used may be generalized to deal with other problems of this sort, and it
is hoped to publish an account of this work elsewhere.

This same method, together with the use of the Laplace transform, may also
be used to study the transient behavior of the double queue and of other random
walks.
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